Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 273
Filter
Add more filters

Publication year range
1.
Plant Physiol ; 195(4): 2683-2693, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38761402

ABSTRACT

Rice (Oryza sativa) as a staple food is a potential intake source of antimony (Sb), a toxic metalloid. However, how rice accumulates this element is still poorly understood. Here, we investigated tissue-specific deposition, speciation, and transport of Sb in rice. We found that Sb(III) is the preferential form of Sb uptake in rice, but most Sb accumulates in the roots, resulting in a very low root-to-shoot translocation (less than 2%). Analysis of Sb deposition with laser ablation-inductively coupled plasma-mass spectrometry showed that most Sb deposits at the root exodermis. Furthermore, we found that Sb is mainly present as Sb(III) in the root cell sap after uptake. Further characterization showed that Sb(III) uptake is mediated by Low silicon rice 1 (Lsi1), a Si permeable transporter. Lsi1 showed transport activity for Sb(III) rather than Sb(V) in yeast (Saccharomyces cerevisiae). Knockout of Lsi1 resulted in a significant decrease in Sb accumulation in both roots and shoots. Sb concentration in the root cell sap of two independent lsi1 mutants decreased to less than 3% of that in wild-type rice, indicating that Lsi1 is a major transporter for Sb(III) uptake. Knockout of Lsi1 also enhanced rice tolerance to Sb toxicity. However, knockout of Si efflux transporter genes, including Lsi2 and Lsi3, did not affect Sb accumulation. Taken together, our results showed that Sb(III) is taken up by Lsi1 localized at the root exodermis and is deposited at this cell layer due to lack of Sb efflux transporters in rice.


Subject(s)
Antimony , Oryza , Plant Roots , Oryza/metabolism , Oryza/genetics , Antimony/metabolism , Plant Roots/metabolism , Biological Transport , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Shoots/metabolism , Plant Shoots/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics
2.
BMC Plant Biol ; 24(1): 364, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38702592

ABSTRACT

BACKGROUND: This study aimed to investigate the alterations in biochemical and physiological responses of oat plants exposed to antimony (Sb) contamination in soil. Specifically, we evaluated the effectiveness of an arbuscular mycorrhizal fungus (AMF) and olive mill waste (OMW) in mitigating the effects of Sb contamination. The soil was treated with a commercial strain of AMF (Rhizophagus irregularis) and OMW (4% w/w) under two different levels of Sb (0 and 1500 mg kg-1 soil). RESULTS: The combined treatment (OMW + AMF) enhanced the photosynthetic rate (+ 40%) and chlorophyll a (+ 91%) and chlorophyll b (+ 50%) content under Sb condition, which in turn induced more biomass production (+ 67-78%) compared to the contaminated control plants. More photosynthesis in OMW + AMF-treated plants gives a route for phenylalanine amino acid synthesis (+ 69%), which is used as a precursor for the biosynthesis of secondary metabolites, including flavonoids (+ 110%), polyphenols (+ 26%), and anthocyanins (+ 63%) compared to control plants. More activation of phenylalanine ammonia-lyase (+ 38%) and chalcone synthase (+ 26%) enzymes in OMW + AMF-treated plants under Sb stress indicated the activation of phenylpropanoid pathways in antioxidant metabolites biosynthesis. There was also improved shifting of antioxidant enzyme activities in the ASC/GSH and catalytic pathways in plants in response to OMW + AMF and Sb contamination, remarkably reducing oxidative damage markers. CONCLUSIONS: While individual applications of OMW and AMF also demonstrated some degree of plant tolerance induction, the combined presence of AMF with OMW supplementation significantly enhanced plant biomass production and adaptability to oxidative stress induced by soil Sb contamination.


Subject(s)
Antimony , Mycorrhizae , Olea , Soil Pollutants , Mycorrhizae/physiology , Olea/microbiology , Soil Pollutants/metabolism , Antimony/metabolism , Adaptation, Physiological , Industrial Waste , Photosynthesis/drug effects , Biodegradation, Environmental , Biomass
3.
Appl Environ Microbiol ; 90(3): e0172923, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38411083

ABSTRACT

Geobacter sp. strain SVR uses antimonate [Sb(V)] as a terminal electron acceptor for anaerobic respiration. Here, we visualized a possible key enzyme, periplasmic Sb(V) reductase (Anr), via active staining and non-denaturing gel electrophoresis. Liquid chromatography-tandem mass spectrometry analysis revealed that a novel dimethyl sulfoxide (DMSO) reductase family protein, WP_173201954.1, is involved in Anr. This protein was closely related with AnrA, a protein suggested to be the catalytic subunit of a respiratory Sb(V) reductase in Desulfuribacillus stibiiarsenatis. The anr genes of strain SVR (anrXSRBAD) formed an operon-like structure, and their transcription was upregulated under Sb(V)-respiring conditions. The expression of anrA gene was induced by more than 1 µM of antimonite [Sb(III)]; however, arsenite [As(III)] did not induce the expression of anrA gene. Tandem mass tag-based proteomic analysis revealed that, in addition to Anr proteins, proteins in the following categories were upregulated under Sb(V)-respiring conditions: (i) Sb(III) efflux systems such as Ant and Ars; (ii) antioxidizing proteins such as ferritin, rubredoxin, and thioredoxin; (iii) protein quality control systems such as HspA, HslO, and DnaK; and (iv) DNA repair proteins such as UspA and UvrB. These results suggest that strain SVR copes with antimony stress by modulating pleiotropic processes to resist and actively metabolize antimony. To the best of our knowledge, this is the first report to demonstrate the involvement of AnrA in Sb(V) respiration at the protein level. Furthermore, this is the first example to show high expression of the Ant system proteins in the Sb(V)-respiring bacterium.IMPORTANCEAntimony (Sb) exists mainly as antimonite [Sb(III)] or antimonate [Sb(V)] in the environment, and Sb(III) is more toxic than Sb(V). Recently, microbial involvement in Sb redox reactions has received attention. Although more than 90 Sb(III)-oxidizing bacteria have been reported, information on Sb(V)-reducing bacteria is limited. Especially, the enzyme involved in dissimilatory Sb(V) reduction, or Sb(V) respiration, is unclear, despite this pathway being very important for the circulation of Sb in nature. In this study, we demonstrated that the Sb(V) reductase (Anr) of an Sb(V)-respiring bacterium (Geobacter sp. SVR) is a novel member of the dimethyl sulfoxide (DMSO) reductase family. In addition, we found that strain SVR copes with Sb stress by modulating pleiotropic processes, including the Ant and Ars systems, and upregulating the antioxidant and quality control protein levels. Considering the abundance and diversity of putative anr genes in the environment, Anr may play a significant role in global Sb cycling in both marine and terrestrial environments.


Subject(s)
Antimony , Geobacter , Antimony/pharmacology , Geobacter/genetics , Geobacter/metabolism , Dimethyl Sulfoxide/metabolism , Proteomics , Bacteria/genetics , Oxidoreductases/genetics , Oxidoreductases/metabolism , Oxidation-Reduction , Respiration
4.
Scand J Immunol ; 99(4): e13350, 2024 Apr.
Article in English | MEDLINE | ID: mdl-39008005

ABSTRACT

Repurposing drugs and adjuvants is an attractive choice of present therapy that reduces the substantial costs, chances of failure, and systemic toxicity. Mycobacterium indicus pranii was originally developed as a leprosy vaccine but later has been found effective against Leishmania donovani infection. To extend our earlier study, here we reported the immunotherapeutic modulation of the splenic and circulatory neutrophils in favour of hosts as neutrophils actually serve as the pro-parasitic portable shelter to extend the Leishmania infection specifically during the early entry into the hosts' circulation. We targeted to disrupt this early pro-parasitic incidence by the therapeutic combination of M. indicus pranii and heat-induced promastigotes against antimony-resistant L. donovani infection. The combination therapy induced the functional expansion of CD11b+Ly6CintLy6Ghi neutrophils both in the post-infected spleen, and also in the circulation of post-treated animals followed by the immediate Leishmania infection. More importantly, the enhanced expression of MHC-II, phagocytic uptake of the parasites by the circulatory neutrophils as well as the oxidative burst were induced that limited the chances of the very early establishment of the infection. The enhanced expression of pro-inflammatory cytokines, like IL-1α and TNF-α indicated resistance to the parasite-mediated takeover of the neutrophils, as these cytokines are critical for the activation of T cell-mediated immunity and host-protective responses. Additionally, the induction of essential transcription factors and cytokines for early granulocytic lineage commitment suggests that the strategy not only contributed to the peripheral activation of the neutrophils but also promoted granulopoiesis in the bone marrow.


Subject(s)
Antimony , Leishmania donovani , Leishmaniasis, Visceral , Neutrophils , Leishmania donovani/immunology , Animals , Neutrophils/immunology , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/drug therapy , Mice , Antimony/pharmacology , Mycobacterium/immunology , Neutrophil Activation/immunology , Spleen/immunology , Hot Temperature , Cytokines/metabolism , Mice, Inbred BALB C , Drug Resistance
5.
Environ Sci Technol ; 58(26): 11411-11420, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38887934

ABSTRACT

Antimony (Sb) isotopic fractionation is frequently used as a proxy for biogeochemical processes in nature. However, to date, little is known about Sb isotope fractionation in biologically driven reactions. In this study, Pseudomonas sp. J1 was selected for Sb isotope fractionation experiments with varying initial Sb concentration gradients (50-200 µM) at pH 7.2 and 30 °C. Compared to the initial Sb(III) reservoir (δ123Sb = 0.03 ± 0.01 ∼ 0.06 ± 0.01‰), lighter isotopes were preferentially oxidized to Sb(V). Relatively constant isotope enrichment factors (ε) of -0.62 ± 0.06 and -0.58 ± 0.02‰ were observed for the initial Sb concentrations ranging between 50 and 200 µM during the first 22 days. Therefore, the Sb concentration has a limited influence on Sb isotope fractionation during Sb(III) oxidation that can be described by a kinetically dominated Rayleigh fractionation model. Due to the decrease in the Sb-oxidation rate by Pseudomonas sp. J1, observed for the initial Sb concentration of 200 µM, Sb isotope fractionation shifted toward isotopic equilibrium after 22 days, with slightly heavy Sb(V) after 68 days. These findings provide the prospect of using Sb isotopes as an environmental tracer in the Sb biogeochemical cycle.


Subject(s)
Antimony , Isotopes , Oxidation-Reduction , Pseudomonas , Antimony/metabolism , Pseudomonas/metabolism , Kinetics , Chemical Fractionation
6.
Environ Sci Technol ; 58(32): 14475-14485, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39088342

ABSTRACT

Antimony(V) substitution is common in secondary ferrihydrite, especially in mining areas and tailings. However, its impact on the adsorption behavior of ferrihydrite is still unclear. Therefore, this study investigated the influential mechanisms of Sb(V) substitution on the lattice structure and surface properties of Sb-substituted ferrihydrite (SbFh), and its adsorption of coexisting Sb(OH)6-. Antimony(V) is substituted at Fe1 sites and is primarily distributed on the surface. Substitution has opposing effects on the outer- and inner-sphere complexation of Sb(OH)6-. On one hand, substituted-Sb(V) transfers more positive charges to ≡FeOH, reducing the number of H bonds. Subsequently, the charge saturation of ≡FeOH decreases, surface charge increases, and outer-sphere complexation is promoted. On the other hand, the elevated bond valence of Sb-O increases charge saturation of ≡FeOH, reducing the charge capacity that ≡FeOH can accommodate from inner-sphere complexes. Thus, inner-sphere complexation is inhibited. Inner-sphere complexation plays a more important role, and Sb(OH)6- adsorption is inhibited. Additionally, the primary complexation modes of Sb(OH)6- transform from bidentate to monodentate complexation. This research has important implications for understanding the environmental behavior of ferrihydrite, as well as the fate and bioavailability of antimony in mining areas and tailings.


Subject(s)
Antimony , Surface Properties , Antimony/chemistry , Adsorption , Ferric Compounds/chemistry
7.
Environ Sci Technol ; 58(26): 11447-11458, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38899977

ABSTRACT

Mine tailings are extremely oligotrophic environments frequently contaminated with elevated As and Sb, making As(III) and Sb(III) oxidation potentially important energy sources for the tailing microbiome. Although they have been proposed to share similar metabolic pathways, a systemic comparison of the As(III) and Sb(III) oxidation mechanisms and energy utilization efficiencies requires further elucidation. In this study, we employed a combination of physicochemical, molecular, and bioinformatic analyses to compare the kinetic and genetic mechanisms of As(III) and Sb(III) oxidation as well as their respective energy efficiencies for fueling the key nutrient acquisition metabolisms. Thiobacillus and Rhizobium spp. were identified as functional populations for both As(III) and Sb(III) oxidation in mine tailings by DNA-stable isotope probing. However, these microorganisms mediated As(III) and Sb(III) oxidation via different metabolic pathways, resulting in preferential oxidation of Sb(III) over As(III). Notably, both As(III) and Sb(III) oxidation can facilitate nitrogen fixation and phosphate solubilization in mine tailings, with Sb(III) oxidation being more efficient in powering these processes. Thus, this study provided novel insights into the microbial As(III) and Sb(III) oxidation mechanisms and their respective nutrient acquisition efficiencies, which may be critical for the reclamation of mine tailings.


Subject(s)
Oxidation-Reduction , Antimony/metabolism , Mining , Arsenic/metabolism
8.
Environ Sci Technol ; 58(1): 695-703, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38141021

ABSTRACT

The fate of antimony (Sb) is strongly affected by adsorption, yet Sb isotope fractionation and the associated mechanism have not been widely reported. Here we experimentally investigated the process of Sb(V) adsorption on iron (oxyhydr)oxides and the associated isotope effects. Sb isotope fractionation occurs during adsorption (Δ123Sbsolution-mineral = 1.20 ± 0.02‰ for ferrihydrite and 2.35 ± 0.04‰ for goethite). Extended X-ray absorption fine structure (EXAFS) analysis shows that Sb(V) adsorption on iron (oxyhydr)oxides occurs via inner-sphere surface complexation, including mononuclear bidentate edge-sharing (2E) and binuclear bidentate corner-sharing (2C) complexes. A longer atom distance of Sb-Fe in ferrihydrite leads to less Sb isotope fractionation during Sb adsorption than in goethite. The Gibbs free energy and Mayer bond order were calculated based on density functional theory (DFT) and suggested that the strength of the bonding environment can be summarized as Sb(OH)6- > 2E > 2C. In turn, the bonding environment indicates the mechanism of Sb isotope fractionation during the process. This study reveals that Sb isotope fractionation occurs during Sb(V) adsorption onto iron (oxyhydr)oxides, providing a basis for the future study of Sb isotopes and further understanding of the fractionation mechanism.


Subject(s)
Iron , Oxides , Iron/chemistry , Antimony/chemistry , Adsorption , Ferric Compounds/chemistry , Isotopes
9.
Environ Sci Technol ; 58(26): 11470-11481, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38864425

ABSTRACT

Reactive oxygen species (ROS) produced from the oxygenation of reactive Fe(II) species significantly affect the transformation of metalloids such as Sb at anoxic-oxic redox interfaces. However, the main ROS involved in Sb(III) oxidation and Fe (oxyhydr)oxides formation during co-oxidation of Sb(III) and Fe(II) are still poorly understood. Herein, this study comprehensively investigated the Sb(III) oxidation and immobilization process and mechanism during Fe(II) oxygenation. The results indicated that Sb(III) was oxidized to Sb(V) by the ROS produced in the aqueous and solid phases and then immobilized by formed Fe (oxyhydr)oxides via adsorption and coprecipitation. In addition, chemical analysis and extended X-ray absorption fine structure (EXAFS) characterization demonstrated that Sb(V) could be incorporated into the lattice structure of Fe (oxyhydr)oxides via isomorphous substitution, which greatly inhibited the formation of lepidocrocite (γ-FeOOH) and decreased its crystallinity. Notably, goethite (α-FeOOH) formation was favored at pH 6 due to the greater amount of incorporated Sb(V). Moreover, singlet oxygen (1O2) was identified as the dominant ROS responsible for Sb(III) oxidation, followed by surface-adsorbed ·OHads, ·OH, and Fe(IV). Our findings highlight the overlooked roles of 1O2 and Fe (oxyhydr)oxide formation in Sb(III) oxidation and immobilization during Fe(II) oxygenation and shed light on understanding the geochemical cycling of Sb coupled with Fe in redox-fluctuating environments.


Subject(s)
Oxidation-Reduction , Singlet Oxygen , Singlet Oxygen/chemistry , Antimony/chemistry , Iron/chemistry , Ferric Compounds/chemistry , Ferrous Compounds/chemistry , Oxides/chemistry , Oxygen/chemistry
10.
Environ Sci Technol ; 58(4): 1934-1943, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38180751

ABSTRACT

Antimony (Sb) biomethylation is an important but uninformed process in Sb biogeochemical cycling. Methylated Sb species have been widely detected in the environment, but the gene and enzyme for Sb methylation remain unknown. Here, we found that arsenite S-adenosylmethionine methyltransferase (ArsM) is able to catalyze Sb(III) methylation. The stepwise methylation by ArsM forms mono-, di-, and trimethylated Sb species. Sb(III) is readily coordinated with glutathione, forming the preferred ArsM substrate which is anchored on three conserved cysteines. Overexpressing arsM in Escherichia coli AW3110 conferred resistance to Sb(III) by converting intracellular Sb(III) into gaseous methylated species, serving as a detoxification process. Methylated Sb species were detected in paddy soil cultures, and phylogenetic analysis of ArsM showed its great diversity in ecosystems, suggesting a high metabolic potential for Sb(III) methylation in the environment. This study shows an undiscovered microbial process methylating aqueous Sb(III) into the gaseous phase, mobilizing Sb on a regional and even global scale as a re-emerging contaminant.


Subject(s)
Arsenic , Arsenites , Nostoc , Arsenites/metabolism , S-Adenosylmethionine/metabolism , Antimony , Arsenic/chemistry , Nostoc/metabolism , Ecosystem , Phylogeny , Methyltransferases/chemistry , Methyltransferases/genetics , Methyltransferases/metabolism
11.
Macromol Rapid Commun ; 45(9): e2300695, 2024 May.
Article in English | MEDLINE | ID: mdl-38350418

ABSTRACT

Metal halide perovskites have emerged as versatile photocatalysts to convert solar energy for chemical processes. Perovskite photocatalyzed polymerization draws special attention due to its straightforward synthesis process and the ability to create advanced perovskite-polymer nanocomposites. Herein, this work employs Cs3Sb2Br9 perovskite nanoparticles (NPs) as a lead-free photocatalyst for light-controlled atom transfer radical polymerization (ATRP). Cs3Sb2Br9 NPs exhibit high reduction potential and interact with electronegative bromide initiator with Lewis acid Sb sites, enabling efficient photoinduced reduction of initiators and controlled polymerization under blue light irradiation. Methacrylate monomers with various functional groups are successfully polymerized, and the resulting polymer showcased a dispersity (D) as small as 1.27. The living nature of polymerization is confirmed by high chain end fidelity and kinetic studies. Moreover, Cs3Sb2Br9 NPs serve as heterogeneous photocatalysts, demonstrating recyclability and reusability for up to four cycles. This work presents a promising approach to overcome the limitations of lead-based perovskites in photoinduced controlled radical polymerization, offering a sustainable and efficient alternative for the synthesis of well-defined polymeric materials.


Subject(s)
Antimony , Calcium Compounds , Nanoparticles , Oxides , Polymerization , Titanium , Titanium/chemistry , Oxides/chemistry , Catalysis , Calcium Compounds/chemistry , Nanoparticles/chemistry , Antimony/chemistry , Photochemical Processes , Light
12.
Environ Res ; 245: 118011, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38141916

ABSTRACT

Microbes have been confirmed to play key role in biogeochemistry of antimony. However, the impact of indigenous bacteria (from active mines) on the behavior of dissolved antimony remained poorly understood. In current study, the hyper antimony-resistant strain, Achromobacter sp. 25-M, isolated from the world largest antimony deposit, Xikuangshan antimony deposit, was evaluated for its role in dissolved Sb(V) and Sb(III) precipitation and removal. Despite of the high resistance to Sb(III) (up to 50 mM), the facultative alkaliphile, 25-M was not capable of Sb(III) oxidation. Meanwhile 25-M can produce high amount of exopolymeric substance (EPS) with the presence of Sb, which prompted us to investigate the potential role of EPS in the precipitation and removal of Sb. To this end, 2 mM of Sb(III) and Sb(V) were added into the experimental systems with and without 25-M to discern the interaction mechanism between microbe and antimony. After 96 hrs' incubation, 88% [1.73 mM (210 mg/L)] of dissolved Sb(V) and 80% [1.57 mM (190 mg/L)] of dissolved Sb(III) were removed. X-ray diffraction and energy dispersive spectroscopy analysis confirmed the formation of valentinite (Sb2O3) in Sb(III) amended system and a solitary Sb(V) mineral mopungite [NaSb(OH)6] in Sb(V) amended group with microbes. Conversely, no precipitate was detected in abiotic systems. Morphologically valentinite was bowtie and mopungite was pseudo-cubic as indicated by scanning electronic microscopy. EPS was subjected to fourier transform infrared (FT-IR) analysis. FT-IR analysis suggested that -OH and -COO groups were responsible for the complexation and ligand exchange with Sb(III) and Sb(V), respectively. Additionally, the C-H group and N-H group could be involved in π-π interaction and chelation with Sb species. All these interactions between Sb and functional groups in EPS may subsequently favore the formation of valentinite and mopungite. Collectively, current results suggested that EPS play fundamental role in bioprecipitation of Sb, which offered a new strategy in Sb bioremediation.


Subject(s)
Antimony , Minerals , Antimony/chemistry , Spectroscopy, Fourier Transform Infrared , Oxidation-Reduction , X-Ray Diffraction , Adsorption
13.
Environ Res ; 251(Pt 2): 118645, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38485077

ABSTRACT

Every year, a significant amount of antimony (Sb) enters the environment from natural and anthropogenic sources like mining, smelting, industrial operations, ore processing, vehicle emissions, shooting activities, and coal power plants. Humans, plants, animals, and aquatic life are heavily exposed to hazardous Sb or antimonide by either direct consumption or indirect exposure to Sb in the environment. This review summarizes the current knowledge about Sb global occurrence, its fate, distribution, speciation, associated health hazards, and advanced biochar composites studies used for the remediation of soil contaminated with Sb to lessen Sb bioavailability and toxicity in soil. Anionic metal(loid) like Sb in the soil is significantly immobilized by pristine biochar and its composites, reducing their bioavailability. However, a comprehensive review of the impacts of biochar-based composites on soil Sb remediation is needed. Therefore, the current review focuses on (1) the fundamental aspects of Sb global occurrence, global soil Sb contamination, its transformation in soil, and associated health hazards, (2) the role of different biochar-based composites in the immobilization of Sb from soil to increase biochar applicability toward Sb decontamination. The review aids in developing advanced, efficient, and effective engineered biochar composites for Sb remediation by evaluating novel materials and techniques and through sustainable management of Sb-contaminated soil, ultimately reducing its environmental and health risks.


Subject(s)
Antimony , Charcoal , Environmental Restoration and Remediation , Soil Pollutants , Antimony/analysis , Antimony/chemistry , Charcoal/chemistry , Soil Pollutants/analysis , Soil Pollutants/chemistry , Environmental Restoration and Remediation/methods , Decontamination/methods , Soil/chemistry
14.
Environ Res ; 252(Pt 1): 118860, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38582422

ABSTRACT

The application of antimony sulfide sensors, characterized by their exceptional stability and selectivity, is of emerging interest in detection research, and the integration of graphitized carbon materials is expected to further enhance their electrochemical performance. This study represents a pioneering effort in the synthesis of carbon-doped antimony sulfide materials through the pyrolysis of the mixture of microorganisms and their synthetic antimony sulfide. The prepared materials are subsequently applied to electrochemical sensors for monitoring the highly toxic compounds catechol (CC) and hydroquinone (HQ) in the environment. Via cyclic voltammetry (CV) and impedance testing, we concluded that the pyrolytic product at 700 °C (Sb-700) demonstrated the best electrochemical properties. Differential pulse voltammetry (DPV) revealed impressive separation when utilizing Sb-700/GCE for simultaneous detection of CC and HQ, exhibiting good linearity within the concentration range of 0.1-140 µM. The achieved sensitivities of 24.62 µA µM-1 cm-2 and 22.10 µA µM-1 cm-2 surpassed those of most CC and HQ electrochemical sensors. Meanwhile, the detection limits for CC and HQ were as low as 0.18 µM and 0.16 µM (S/N = 3), respectively. Additional tests confirmed the good selectivity, reproducibility, and long-term stability of Sb-700/GCE, which was effective in detecting CC and HQ in tap water and river water, with recovery rates of 100.7%-104.5% and 96.5%-101.4%, respectively. It provides a method that combines green microbial synthesis and simple pyrolysis for the preparation of electrode materials in CC and HQ electrochemical sensors, and also offers a new perspective for the application of microbial synthesized materials.


Subject(s)
Antimony , Catechols , Electrochemical Techniques , Hydroquinones , Pyrolysis , Hydroquinones/chemistry , Hydroquinones/analysis , Catechols/analysis , Catechols/chemistry , Antimony/chemistry , Antimony/analysis , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Sulfides/chemistry
15.
Acta Microbiol Immunol Hung ; 71(1): 89-98, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38520480

ABSTRACT

Cutaneous Leishmaniasis (CL) is one of the world's neglected diseases which is caused by Leishmania spp. The aim of this study was to assess molecular profile and antimony resistance of Leishmania isolated from human and rodent hosts. Samples were collected from suspected CL patients referred to health centres and wild rodent's traps in Gonbad-e-Qabus region, north-eastern Iran. Smears were subjected to PCR-RFLP to identify Leishmania species. In addition, ITS1-PCR products were sequenced for phylogenetic analysis. Clinical isolates and rodent samples were subjected to MTT assay to determine IC50 values and in vitro susceptibilities. Expression levels of antimony resistance-related genes were determined in CL isolates. Out of 1,949 suspected patients with CL and 148 rodents, 1,704 (87.4%) and 6 (4.05%) were positive with direct smear, respectively. Digestion patterns of BusRI (HaeIII) endonuclease enzyme were similar to what expected for Leishmania major. Phylogenetic analysis revealed that the highest interspecies similarity was found between current L. major sequences with L. major obtained from Russia and Uzbekistan. Out of 20 L. major samples tested, 13 (65%) were resistant to meglumine antimoniate (MA) treatment, with an activity index (AI) exceeding 4. The remaining 7 samples (35%) responded to MA treatment and were classified as sensitive isolates, with a confirmed sensitive phenotype based on their AI values. The comparison expression analysis of three major antimony resistance-associated genes in unresponsive clinical isolates demonstrated significant fold changes for TDR1 (4.78-fold), AQP1 (1.3-fold), and γ-GCS (1.17-fold) genes (P < 0.05). Herein, we demonstrate genetic diversity and antimony resistance of L. major isolated from human and reservoir hosts in north-eastern Iran, which could be the basis for planning future control strategies.


Subject(s)
Leishmania major , Leishmaniasis, Cutaneous , Animals , Humans , Leishmania major/genetics , Phylogeny , Antimony/pharmacology , Antimony/therapeutic use , Rodentia , Leishmaniasis, Cutaneous/epidemiology , Leishmaniasis, Cutaneous/drug therapy , Meglumine Antimoniate/therapeutic use
16.
Ecotoxicol Environ Saf ; 277: 116377, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38657454

ABSTRACT

The crucial role of the fluorescent components of dissolved organic matter (DOM) in controlling antimony (Sb) mobilization in groundwater has been confirmed. However, the molecular signatures contributing to Sb enrichment in DOM remain unknown. This study aims to investigate the origins and molecular compositions of DOM in different high-Sb aquifers (Sb-mining and no-Sb-mining aquifer), as well as compare different molecular signatures of DOM and mechanisms for Sb migration. The findings showed that Sb concentrations in Sb-mining aquifer exhibited a positive correlation with lignin- and tannin-like molecules characterized by high O/C and low H/C ratios, indicating an increased abundance of aromatic components with higher Humification Index and SUV-absorbance at 254 nm, compared to no-Sb-mining aquifer. Correspondingly, the complexation and competitive adsorption were considered as the predominate formation mechanisms on Sb enrichment in Sb-mining aquifer. In addition, high abundances of bioreactivity DOM may facilitated the migration of Sb via electron transfer and competitive adsorption in native no-Sb-mining aquifer. The outcomes of this investigation offer novel insights into the mechanism on Sb enrichment influenced by DOM at the molecule level.


Subject(s)
Antimony , Environmental Monitoring , Groundwater , Water Pollutants, Chemical , Antimony/chemistry , Antimony/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Groundwater/chemistry , Environmental Monitoring/methods , Mining , Adsorption , Humic Substances/analysis
17.
Ecotoxicol Environ Saf ; 270: 115948, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38184976

ABSTRACT

The increasing production and prevalence of antimony (Sb)-related products raise concerns regarding its potential hazards to reproductive health. Upon environmental exposure, Sb reportedly induces testicular toxicity during spermatogenesis; moreover, it is known to affect various testicular cell populations, particularly germline stem cell populations. However, the cell-cell communication resulting from Sb exposure within the testicular niche remains poorly understood. To address this gap, herein we analyzed testicular single-cell RNA sequencing data from Sb-exposed Drosophila. Our findings revealed that the epidermal growth factor receptor (EGFR) and WNT signaling pathways were associated with the stem cell niche in Drosophila testes, which may disrupt the homeostasis of the testicular niche in Drosophila. Furthermore, we identified several ligand-receptor pairs, facilitating the elucidation of intercellular crosstalk involved in Sb-mediated reproductive toxicology. We employed scRNA-seq analysis and conducted functional verification to investigate the expression patterns of core downstream factors associated with EGFR and WNT signatures in the testes under the influence of Sb exposure. Altogether, our results shed light on the potential mechanisms of Sb exposure-mediated testicular cell-lineage communications.


Subject(s)
Drosophila , Testis , Male , Animals , Testis/metabolism , Drosophila/metabolism , Antimony/toxicity , Antimony/metabolism , Cell Communication , ErbB Receptors/metabolism , Sequence Analysis, RNA
18.
Ecotoxicol Environ Saf ; 277: 116326, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38640800

ABSTRACT

The available information regarding the impact of antimony (Sb), a novel environmental pollutant, on the intestinal microbiota and host health is limited. In this study, we conducted physiological characterizations to investigate the response of adult zebrafish to different environmental concentrations (0, 30, 300, and 3000 µg/L) of Sb over a period of 14 days. Biochemical and pathological changes demonstrated that Sb effectively compromised the integrity of the intestinal physical barrier and induced inflammatory responses as well as oxidative stress. Analysis of both intestinal microbial community and metabolome revealed that exposure to 0 and 30 µg/L of Sb resulted in similar microbiota structures; however, exposure to 300 µg/L altered microbial communities' composition (e.g., a decline in genus Cetobacterium and an increase in Vibrio). Furthermore, exposure to 300 µg/L significantly decreased levels of bile acids and glycerophospholipids while triggering intestinal inflammation but activating self-protective mechanisms such as antibiotic presence. Notably, even exposure to 30 µg/L of Sb can trigger dysbiosis of intestinal microbiota and metabolites, potentially impacting fish health through the "microbiota-intestine-brain axis" and contributing to disease initiation. This study provides valuable insights into toxicity-related information concerning environmental impacts of Sb on aquatic organisms with significant implications for developing management strategies.


Subject(s)
Antimony , Gastrointestinal Microbiome , Water Pollutants, Chemical , Zebrafish , Animals , Gastrointestinal Microbiome/drug effects , Water Pollutants, Chemical/toxicity , Antimony/toxicity , Oxidative Stress/drug effects , Metabolome/drug effects , Metabolomics
19.
Ecotoxicol Environ Saf ; 277: 116351, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38653027

ABSTRACT

The increasing concentration of Antimony (Sb) in ecological environments has raised serious concerns about its potential biotoxicological impact. This study investigated the toxicokinetics, Global DNA Methylation (GDM), biomarker expression, and Integrated Biological Response (IBR) of Sb at different concentrations in zebrafish. The toxic mechanism of Sb exposure was simulated using molecular dynamics (MD). The results showed that significant differences effect existed (BCFk: liver > ovary > gut > brain) and uptake saturation phenomenon of Sb among zebrafish tissues. Over a 54-day exposure period, the liver emerged as the main target site for Sb-induced GDM, and the restoration was slower than in other tissues during the 54-day recovery period. Moreover, the concentration of Sb had a significant impact on the normally expression of biomarkers, with GSTM1 inhibited and MTF2, MT1, TET3, and p53 showing varying degrees of activation at different Sb concentrations. This could be attributed to Sb3+ potentially occupying the active site or tightly binding to the deep cavity of these genes. The IBR and MD results highlighted DNMT1 as the most sensitive biomarker among those assessed. This heightened sensitivity can be attributed to the stable binding of Sb3+ to DNMT1, resulting in alterations in the conformation of DNMT1's catalytic domain and inhibition of its activity. Consequently, this disruption leads to damage to the integrity of GDM. The study suggests that DNA methylation could serve as a valuable biomarker for assessing the ecotoxicological impact of Sb exposure. It contributes to a better understanding of the toxicity mechanisms in aquatic environments caused potential pollutants.


Subject(s)
Antimony , Bioaccumulation , DNA Methylation , Water Pollutants, Chemical , Zebrafish , Animals , Antimony/toxicity , DNA Methylation/drug effects , Water Pollutants, Chemical/toxicity , Biomarkers/metabolism , Female , Toxicokinetics , Molecular Dynamics Simulation , Liver/drug effects , Liver/metabolism
20.
Luminescence ; 39(3): e4706, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38483095

ABSTRACT

Inorganic cesium lead halide perovskites have evoked wide popularity because of their excellent optoelectronic properties, high photoluminescence (PL) quantum yield (PLQY), and narrowband emission. Here, cesium lead bromide (CsPbBr3 ) quantum dots (QDs) were synthesized via the ligand-assisted re-precipitation method. Post-synthesis treatment of CsPbBr3 QDs using antimony tribromide improved the PL stability and optoelectronic properties of the QDs. In addition, the PLQY of the post-treated sample was enhanced to 91% via post-treatment, and the luminescence observed was maintained for 8 days. The post-synthesis treatment ensured defect passivation and improved the stability of CsPbBr3 perovskite QDs. High-resolution transmission electron microscopy revealed the presence of more ordered, uniform-sized CsPbBr3 QDs after post-synthesis treatment, and the uniformity of the sample improved as the day passed. The formation of a mixed crystal phase was observed from X-ray diffraction in both as-synthesized, as well as post-treated QDs samples with the possibility of a polycrystalline nature in the post-treated CsPbBr3 QDs as per the selected area electron diffraction pattern. The X-ray photoelectron spectroscopy spectra confirmed the presence of antimony and the possibility of defect passivation in the post-treated samples. These QDs can act as potential candidates in various optoelectronic applications such as photodetectors and light-emitting diodes due to their high PLQY and longer lifetime.


Subject(s)
Antimony , Bromides , Calcium Compounds , Oxides , Quantum Dots , Titanium , Cesium
SELECTION OF CITATIONS
SEARCH DETAIL