Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 360
Filter
Add more filters

Publication year range
1.
Cell ; 160(1-2): 161-76, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25594179

ABSTRACT

Axonal death disrupts functional connectivity of neural circuits and is a critical feature of many neurodegenerative disorders. Pathological axon degeneration often occurs independently of known programmed death pathways, but the underlying molecular mechanisms remain largely unknown. Using traumatic injury as a model, we systematically investigate mitogen-activated protein kinase (MAPK) families and delineate a MAPK cascade that represents the early degenerative response to axonal injury. The adaptor protein Sarm1 is required for activation of this MAPK cascade, and this Sarm1-MAPK pathway disrupts axonal energy homeostasis, leading to ATP depletion before physical breakdown of damaged axons. The protective cytoNmnat1/Wld(s) protein inhibits activation of this MAPK cascade. Further, MKK4, a key component in the Sarm1-MAPK pathway, is antagonized by AKT signaling, which modulates the degenerative response by limiting activation of downstream JNK signaling. Our results reveal a regulatory mechanism that integrates distinct signals to instruct pathological axon degeneration.


Subject(s)
Axons/pathology , MAP Kinase Signaling System , Adenosine Triphosphate/metabolism , Animals , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism , Cell Death , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , MAP Kinase Kinase 4/metabolism , Mice , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Proto-Oncogene Proteins c-akt/metabolism , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/pathology
2.
Mol Cell ; 82(9): 1643-1659.e10, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35334231

ABSTRACT

The NADase SARM1 (sterile alpha and TIR motif containing 1) is a key executioner of axon degeneration and a therapeutic target for several neurodegenerative conditions. We show that a potent SARM1 inhibitor undergoes base exchange with the nicotinamide moiety of nicotinamide adenine dinucleotide (NAD+) to produce the bona fide inhibitor 1AD. We report structures of SARM1 in complex with 1AD, NAD+ mimetics and the allosteric activator nicotinamide mononucleotide (NMN). NMN binding triggers reorientation of the armadillo repeat (ARM) domains, which disrupts ARM:TIR interactions and leads to formation of a two-stranded TIR domain assembly. The active site spans two molecules in these assemblies, explaining the requirement of TIR domain self-association for NADase activity and axon degeneration. Our results reveal the mechanisms of SARM1 activation and substrate binding, providing rational avenues for the design of new therapeutics targeting SARM1.


Subject(s)
Armadillo Domain Proteins , NAD , Armadillo Domain Proteins/genetics , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/genetics , NAD/metabolism , NAD+ Nucleosidase/metabolism , Protein Domains
3.
Immunity ; 50(6): 1412-1424.e6, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31076360

ABSTRACT

Assembly of inflammasomes after infection or injury leads to the release of interleukin-1ß (IL-1ß) and to pyroptosis. After inflammasome activation, cells either pyroptose or enter a hyperactivated state defined by IL-1ß secretion without cell death, but what controls these different outcomes is unknown. Here, we show that removal of the Toll-IL-1R protein SARM from macrophages uncouples inflammasome-dependent cytokine release and pyroptosis, whereby cells displayed increased IL-1ß production but reduced pyroptosis. Correspondingly, increasing SARM in cells caused less IL-1ß release and more pyroptosis. SARM suppressed IL-1ß by directly restraining the NLRP3 inflammasome and, hence, caspase-1 activation. Consistent with a role for SARM in pyroptosis, Sarm1-/- mice were protected from lipopolysaccharide (LPS)-stimulated sepsis. Pyroptosis-inducing, but not hyperactivating, NLRP3 stimulants caused SARM-dependent mitochondrial depolarization. Thus, SARM-dependent mitochondrial depolarization distinguishes NLRP3 activators that cause pyroptosis from those that do not, and SARM modulation represents a cell-intrinsic mechanism to regulate cell fate after inflammasome activation.


Subject(s)
Armadillo Domain Proteins/metabolism , Cytokines/metabolism , Cytoskeletal Proteins/metabolism , Inflammasomes/metabolism , Animals , Armadillo Domain Proteins/genetics , Biomarkers , Cell Survival , Cytoskeletal Proteins/genetics , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Knockout , Mitochondria/genetics , Mitochondria/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Protein Binding , Pyroptosis , Signal Transduction
4.
Proc Natl Acad Sci U S A ; 121(27): e2318198121, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38917007

ABSTRACT

Establishing modular binders as diagnostic detection agents represents a cost- and time-efficient alternative to the commonly used binders that are generated one molecule at a time. In contrast to these conventional approaches, a modular binder can be designed in silico from individual modules to, in principle, recognize any desired linear epitope without going through a selection and hit-validation process, given a set of preexisting, amino acid-specific modules. Designed armadillo repeat proteins (dArmRP) have been developed as modular binder scaffolds, and we report here the generation of highly specific dArmRP modules by yeast surface display selection, performed on a rationally designed dArmRP library. A selection strategy was developed to distinguish the binding difference resulting from a single amino acid mutation in the target peptide. Our reverse-competitor strategy introduced here employs the designated target as a competitor to increase the sensitivity when separating specific from cross-reactive binders that show similar affinities for the target peptide. With this switch in selection focus from affinity to specificity, we found that the enrichment during this specificity sort is indicative of the desired phenotype, regardless of the binder abundance. Hence, deep sequencing of the selection pools allows retrieval of phenotypic hits with only 0.1% abundance in the selectivity sort pool from the next-generation sequencing data alone. In a proof-of-principle study, a binder was created by replacing all corresponding wild-type modules with a newly selected module, yielding a binder with very high affinity for the designated target that has been successfully validated as a detection agent in western blot analysis.


Subject(s)
Armadillo Domain Proteins , Saccharomyces cerevisiae , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , High-Throughput Nucleotide Sequencing/methods , Protein Binding , Peptides/metabolism , Peptides/genetics , Peptides/chemistry , Epitopes/genetics , Peptide Library
5.
Nature ; 588(7839): 658-663, 2020 12.
Article in English | MEDLINE | ID: mdl-33053563

ABSTRACT

Pathological degeneration of axons disrupts neural circuits and represents one of the hallmarks of neurodegeneration1-4. Sterile alpha and Toll/interleukin-1 receptor motif-containing protein 1 (SARM1) is a central regulator of this neurodegenerative process5-8, and its Toll/interleukin-1 receptor (TIR) domain exerts its pro-neurodegenerative action through NADase activity9,10. However, the mechanisms by which the activation of SARM1 is stringently controlled are unclear. Here we report the cryo-electron microscopy structures of full-length SARM1 proteins. We show that NAD+ is an unexpected ligand of the armadillo/heat repeat motifs (ARM) domain of SARM1. This binding of NAD+ to the ARM domain facilitated the inhibition of the TIR-domain NADase through the domain interface. Disruption of the NAD+-binding site or the ARM-TIR interaction caused constitutive activation of SARM1 and thereby led to axonal degeneration. These findings suggest that NAD+ mediates self-inhibition of this central pro-neurodegenerative protein.


Subject(s)
Armadillo Domain Proteins/antagonists & inhibitors , Armadillo Domain Proteins/metabolism , Cytoskeletal Proteins/antagonists & inhibitors , Cytoskeletal Proteins/metabolism , NAD/metabolism , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Animals , Armadillo Domain Proteins/chemistry , Armadillo Domain Proteins/genetics , Binding Sites , Cryoelectron Microscopy , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/genetics , Female , HEK293 Cells , Humans , Ligands , Mice , Models, Molecular , NAD+ Nucleosidase/metabolism , Protein Binding , Protein Domains , Sf9 Cells
6.
J Neurosci ; 44(24)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38692735

ABSTRACT

Sterile alpha and TIR motif containing 1 (SARM1) is an inducible NADase that localizes to mitochondria throughout neurons and senses metabolic changes that occur after injury. Minimal proteomic changes are observed upon either SARM1 depletion or activation, suggesting that SARM1 does not exert broad effects on neuronal protein homeostasis. However, whether SARM1 activation occurs throughout the neuron in response to injury and cell stress remains largely unknown. Using a semiautomated imaging pipeline and a custom-built deep learning scoring algorithm, we studied degeneration in both mixed-sex mouse primary cortical neurons and male human-induced pluripotent stem cell-derived cortical neurons in response to a number of different stressors. We show that SARM1 activation is differentially restricted to specific neuronal compartments depending on the stressor. Cortical neurons undergo SARM1-dependent axon degeneration after mechanical transection, and SARM1 activation is limited to the axonal compartment distal to the injury site. However, global SARM1 activation following vacor treatment causes both cell body and axon degeneration. Context-specific stressors, such as microtubule dysfunction and mitochondrial stress, induce axonal SARM1 activation leading to SARM1-dependent axon degeneration and SARM1-independent cell body death. Our data reveal that compartment-specific SARM1-mediated death signaling is dependent on the type of injury and cellular stressor.


Subject(s)
Armadillo Domain Proteins , Cerebral Cortex , Cytoskeletal Proteins , Induced Pluripotent Stem Cells , Neurons , Armadillo Domain Proteins/metabolism , Armadillo Domain Proteins/genetics , Animals , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , Mice , Neurons/metabolism , Neurons/pathology , Male , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Humans , Female , Induced Pluripotent Stem Cells/metabolism , Nerve Degeneration/pathology , Nerve Degeneration/metabolism , Nerve Degeneration/genetics , Cells, Cultured , Mice, Inbred C57BL , Stress, Physiological/physiology , Axons/metabolism , Axons/pathology , Mitochondria/metabolism
7.
J Biol Chem ; 300(2): 105620, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176648

ABSTRACT

Sterile alpha and HEAT/armadillo motif-containing protein (SARM1) was recently described as a NAD+-consuming enzyme and has previously been shown to regulate immune responses in macrophages. Neuronal SARM1 is known to contribute to axon degeneration due to its NADase activity. However, how SARM1 affects macrophage metabolism has not been explored. Here, we show that macrophages from Sarm1-/- mice display elevated NAD+ concentrations and lower cyclic ADP-ribose, a known product of SARM1-dependent NAD+ catabolism. Further, SARM1-deficient macrophages showed an increase in the reserve capacity of oxidative phosphorylation and glycolysis compared to WT cells. Stimulation of macrophages to a proinflammatory state by lipopolysaccharide (LPS) revealed that SARM1 restricts the ability of macrophages to upregulate glycolysis and limits the expression of the proinflammatory gene interleukin (Il) 1b, but boosts expression of anti-inflammatory Il10. In contrast, we show macrophages lacking SARM1 induced to an anti-inflammatory state by IL-4 stimulation display increased oxidative phosphorylation and glycolysis, and reduced expression of the anti-inflammatory gene, Fizz1. Overall, these data show that SARM1 fine-tunes immune gene transcription in macrophages via consumption of NAD+ and altered macrophage metabolism.


Subject(s)
Armadillo Domain Proteins , Cytoskeletal Proteins , Neurons , Animals , Mice , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism , Axons/metabolism , Cyclic ADP-Ribose/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , NAD/metabolism , Neurons/metabolism
8.
J Biol Chem ; 300(2): 105630, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199568

ABSTRACT

Sterile alpha and toll/interleukin receptor motif-containing 1 (SARM1) is a critical regulator of axon degeneration that acts through hydrolysis of NAD+ following injury. Recent work has defined the mechanisms underlying SARM1's catalytic activity and advanced our understanding of SARM1 function in axons, yet the role of SARM1 signaling in other compartments of neurons is still not well understood. Here, we show in cultured hippocampal neurons that endogenous SARM1 is present in axons, dendrites, and cell bodies and that direct activation of SARM1 by the neurotoxin Vacor causes not just axon degeneration, but degeneration of all neuronal compartments. In contrast to the axon degeneration pathway defined in dorsal root ganglia, SARM1-dependent hippocampal axon degeneration in vitro is not sensitive to inhibition of calpain proteases. Dendrite degeneration downstream of SARM1 in hippocampal neurons is dependent on calpain 2, a calpain protease isotype enriched in dendrites in this cell type. In summary, these data indicate SARM1 plays a critical role in neurodegeneration outside of axons and elucidates divergent pathways leading to degeneration in hippocampal axons and dendrites.


Subject(s)
Armadillo Domain Proteins , Cytoskeletal Proteins , Neurons , Animals , Mice , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism , Axons/metabolism , Calpain/metabolism , Cytoskeletal Proteins/metabolism , Dendrites/metabolism , Neurons/metabolism , Signal Transduction
9.
Mol Cell ; 67(2): 181-193.e5, 2017 Jul 20.
Article in English | MEDLINE | ID: mdl-28689657

ABSTRACT

Extracellular signals are transduced to the cell nucleus by effectors that bind to enhancer complexes to operate transcriptional switches. For example, the Wnt enhanceosome is a multiprotein complex associated with Wnt-responsive enhancers through T cell factors (TCF) and kept silent by Groucho/TLE co-repressors. Wnt-activated ß-catenin binds to TCF to overcome this repression, but how it achieves this is unknown. Here, we discover that this process depends on the HECT E3 ubiquitin ligase Hyd/UBR5, which is required for Wnt signal responses in Drosophila and human cell lines downstream of activated Armadillo/ß-catenin. We identify Groucho/TLE as a functionally relevant substrate, whose ubiquitylation by UBR5 is induced by Wnt signaling and conferred by ß-catenin. Inactivation of TLE by UBR5-dependent ubiquitylation also involves VCP/p97, an AAA ATPase regulating the folding of various cellular substrates including ubiquitylated chromatin proteins. Thus, Groucho/TLE ubiquitylation by Hyd/UBR5 is a key prerequisite that enables Armadillo/ß-catenin to activate transcription.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Co-Repressor Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/enzymology , Repressor Proteins/metabolism , Transcription, Genetic , Ubiquitin-Protein Ligases/metabolism , Wnt Signaling Pathway , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Animals , Animals, Genetically Modified , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , CRISPR-Cas Systems , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Co-Repressor Proteins/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Gene Knockdown Techniques , HCT116 Cells , HEK293 Cells , HeLa Cells , Humans , Protein Binding , Protein Interaction Domains and Motifs , Protein Stability , Proteolysis , Repressor Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Activation , Transfection , Ubiquitin-Protein Ligases/genetics , Ubiquitination , Valosin Containing Protein , beta Catenin/genetics , beta Catenin/metabolism
10.
Proc Natl Acad Sci U S A ; 119(35): e2208457119, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35994671

ABSTRACT

The nicotinamide adenine dinucleotide hydrolase (NADase) sterile alpha toll/interleukin receptor motif containing-1 (SARM1) acts as a central executioner of programmed axon death and is a possible therapeutic target for neurodegenerative disorders. While orthosteric inhibitors of SARM1 have been described, this multidomain enzyme is also subject to intricate forms of autoregulation, suggesting the potential for allosteric modes of inhibition. Previous studies have identified multiple cysteine residues that support SARM1 activation and catalysis, but which of these cysteines, if any, might be selectively targetable by electrophilic small molecules remains unknown. Here, we describe the chemical proteomic discovery of a series of tryptoline acrylamides that site-specifically and stereoselectively modify cysteine-311 (C311) in the noncatalytic, autoregulatory armadillo repeat (ARM) domain of SARM1. These covalent compounds inhibit the NADase activity of WT-SARM1, but not C311A or C311S SARM1 mutants, show a high degree of proteome-wide selectivity for SARM1_C311 and stereoselectively block vincristine- and vacor-induced neurite degeneration in primary rodent dorsal root ganglion neurons. Our findings describe selective, covalent inhibitors of SARM1 targeting an allosteric cysteine, pointing to a potentially attractive therapeutic strategy for axon degeneration-dependent forms of neurological disease.


Subject(s)
Armadillo Domain Proteins , Cysteine , Cytoskeletal Proteins , Armadillo Domain Proteins/antagonists & inhibitors , Armadillo Domain Proteins/chemistry , Armadillo Domain Proteins/genetics , Axons , Cytoskeletal Proteins/antagonists & inhibitors , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/genetics , Homeostasis , NAD+ Nucleosidase , Proteomics
11.
PLoS Genet ; 18(6): e1010257, 2022 06.
Article in English | MEDLINE | ID: mdl-35737721

ABSTRACT

Elucidating signal transduction mechanisms of innate immune pathways is essential to defining how they elicit distinct cellular responses. Toll-like receptors (TLR) signal through their cytoplasmic TIR domains which bind other TIR domain-containing adaptors. dSARM/SARM1 is one such TIR domain adaptor best known for its role as the central axon degeneration trigger after injury. In degeneration, SARM1's domains have been assigned unique functions: the ARM domain is auto-inhibitory, SAM-SAM domain interactions mediate multimerization, and the TIR domain has intrinsic NAD+ hydrolase activity that precipitates axonal demise. Whether and how these distinct functions contribute to TLR signaling is unknown. Here we show divergent signaling requirements for dSARM in injury-induced axon degeneration and TLR-mediated developmental glial phagocytosis through analysis of new knock-in domain and point mutations. We demonstrate intragenic complementation between reciprocal pairs of domain mutants during development, providing evidence for separability of dSARM functional domains in TLR signaling. Surprisingly, dSARM's NAD+ hydrolase activity is strictly required for both degenerative and developmental signaling, demonstrating that TLR signal transduction requires dSARM's enzymatic activity. In contrast, while SAM domain-mediated dSARM multimerization is important for axon degeneration, it is dispensable for TLR signaling. Finally, dSARM functions in a linear genetic pathway with the MAP3K Ask1 during development but not in degenerating axons. Thus, we propose that dSARM exists in distinct signaling states in developmental and pathological contexts.


Subject(s)
Armadillo Domain Proteins , NAD , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism , Cytoskeletal Proteins/genetics , Hydrolases/metabolism , Phagocytosis/genetics , Signal Transduction/genetics
12.
Proc Natl Acad Sci U S A ; 119(47): e2203824119, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36375051

ABSTRACT

Autophagy is a cellular catabolic pathway generally thought to be neuroprotective. However, autophagy and in particular its upstream regulator, the ULK1 kinase, can also promote axonal degeneration. We examined the role and the mechanisms of autophagy in axonal degeneration using a mouse model of contusive spinal cord injury (SCI). Consistent with activation of autophagy during axonal degeneration following SCI, autophagosome marker LC3, ULK1 kinase, and ULK1 target, phospho-ATG13, accumulated in the axonal bulbs and injured axons. SARM1, a TIR NADase with a pivotal role in axonal degeneration, colocalized with ULK1 within 1 h after SCI, suggesting possible interaction between autophagy and SARM1-mediated axonal degeneration. In our in vitro experiments, inhibition of autophagy, including Ulk1 knockdown and ULK1 inhibitor, attenuated neurite fragmentation and reduced accumulation of SARM1 puncta in neurites of primary cortical neurons subjected to glutamate excitotoxicity. Immunoprecipitation data demonstrated that ULK1 physically interacted with SARM1 in vitro and in vivo and that SAM domains of SARM1 were necessary for ULK1-SARM1 complex formation. Consistent with a role in regulation of axonal degeneration, in primary cortical neurons ULK1-SARM1 interaction increased upon neurite damage. Supporting a role for autophagy and ULK1 in regulation of SARM1 in axonal degeneration in vivo, axonal ULK1 activation and accumulation of SARM1 were both decreased after SCI in Becn1+/- autophagy hypomorph mice compared to wild-type (WT) controls. These findings suggest a regulatory crosstalk between autophagy and axonal degeneration pathways, which is mediated through ULK1-SARM1 interaction and contributes to the ability of SARM1 to accumulate in injured axons.


Subject(s)
Armadillo Domain Proteins , Autophagy-Related Protein-1 Homolog , Cytoskeletal Proteins , Spinal Cord Injuries , Animals , Mice , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism , Autophagy , Axons/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Mice, Knockout , Spinal Cord Injuries/metabolism , Autophagy-Related Protein-1 Homolog/genetics , Autophagy-Related Protein-1 Homolog/metabolism
13.
PLoS Genet ; 18(6): e1010246, 2022 06.
Article in English | MEDLINE | ID: mdl-35737728

ABSTRACT

SARM1 is the founding member of the TIR-domain family of NAD+ hydrolases and the central executioner of pathological axon degeneration. SARM1-dependent degeneration requires NAD+ hydrolysis. Prior to the discovery that SARM1 is an enzyme, SARM1 was studied as a TIR-domain adaptor protein with non-degenerative signaling roles in innate immunity and invertebrate neurodevelopment, including at the Drosophila neuromuscular junction (NMJ). Here we explore whether the NADase activity of SARM1 also contributes to developmental signaling. We developed transgenic Drosophila lines that express SARM1 variants with normal, deficient, and enhanced NADase activity and tested their function in NMJ development. We find that NMJ overgrowth scales with the amount of NADase activity, suggesting an instructive role for NAD+ hydrolysis in this developmental signaling pathway. While degenerative and developmental SARM1 signaling share a requirement for NAD+ hydrolysis, we demonstrate that these signals use distinct upstream and downstream mechanisms. These results identify SARM1-dependent NAD+ hydrolysis as a heretofore unappreciated component of developmental signaling. SARM1 now joins sirtuins and Parps as enzymes that regulate signal transduction pathways via mechanisms that involve NAD+ cleavage, greatly expanding the potential scope of SARM1 TIR NADase functions.


Subject(s)
Armadillo Domain Proteins , NAD , Animals , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism , Axons/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Drosophila/genetics , Drosophila/metabolism , NAD/genetics , NAD+ Nucleosidase/genetics , NAD+ Nucleosidase/metabolism
14.
Genesis ; 62(4): e23615, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39139090

ABSTRACT

Armadillo repeat-containing X-linked protein-1 (Armcx1) is a poorly characterized transmembrane protein that regulates mitochondrial transport in neurons. Its overexpression has been shown to induce neurite outgrowth in embryonic neurons and to promote retinal ganglion cell (RGC) survival and axonal regrowth in a mouse optic nerve crush model. In order to evaluate the functions of endogenous Armcx1 in vivo, we have created a conditional Armcx1 knockout mouse line in which the entire coding region of the Armcx1 gene is flanked by loxP sites. This Armcx1fl line was crossed with mouse strains in which Cre recombinase expression is driven by the promoters for ß-actin and Six3, in order to achieve deletion of Armcx1 globally and in retinal neurons, respectively. Having confirmed deletion of the gene, we proceeded to characterize the abundance and morphology of RGCs in Armcx1 knockout mice aged to 15 months. Under normal physiological conditions, no evidence of aberrant retinal or optic nerve development or RGC degeneration was observed in these mice. The Armcx1fl mouse should be valuable for future studies investigating mitochondrial morphology and transport in the absence of Armcx1 and in determining the susceptibility of Armcx1-deficient neurons to degeneration in the setting of additional heritable or environmental stressors.


Subject(s)
Armadillo Domain Proteins , Retinal Ganglion Cells , Animals , Mice , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism , Mice, Knockout , Optic Nerve/metabolism , Retina/metabolism , Retinal Ganglion Cells/metabolism
15.
J Cell Mol Med ; 28(12): e18449, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38924214

ABSTRACT

Mitochondrial dynamics has emerged as an important target for neuronal protection after cerebral ischaemia/reperfusion. Therefore, the aim of this study was to investigate the mechanism by which ARMC10 regulation of mitochondrial dynamics affects mitochondrial function involved in ischaemic stroke (IS). Mitochondrial morphology was detected by laser scanning confocal microscopy (LSCM), and mitochondrial ultrastructural alterations were detected by electron microscopy. The expression of mitochondrial dynamics-related genes Drp1, Mfn1, Mfn2, Fis1, OPA1 and ARMC10 and downstream target genes c-Myc, CyclinD1 and AXIN2 was detected by RT-qPCR. Western blot was used to detect the protein expression of ß-catenin, GSK-3ß, p-GSK-3ß, Bcl-2 and Bax. DCFH-DA fluorescent probe was to detect the effect of ARMC10 on mitochondrial ROS level, Annexin V-FITC fluorescent probe was to detect the effect of ARMC10 on apoptosis, and ATP assay kit was to detect the effect of ARMC10 on ATP production. Mitochondrial dynamics was dysregulated in clinical IS samples and in the OGD/R cell model, and the relative expression of ARMC10 gene was significantly decreased in IS group (p < 0.05). Knockdown and overexpression of ARMC10 could affect mitochondrial dynamics, mitochondrial function and neuronal apoptosis. Agonist and inhibitor affected mitochondrial function and neuronal apoptosis by targeting Wnt/ß-Catenin signal pathway. In the OGD/R model, ARMC10 affected mitochondrial function and neuronal apoptosis through the mechanism that regulates Wnt/ß-catenin signalling pathway. ARMC10 regulates mitochondrial dynamics and protects mitochondrial function by activating Wnt/ß-catenin signalling pathway, to exert neuroprotective effects.


Subject(s)
Apoptosis , Armadillo Domain Proteins , Ischemic Stroke , Mitochondria , Mitochondrial Dynamics , Wnt Signaling Pathway , Humans , Armadillo Domain Proteins/metabolism , Armadillo Domain Proteins/genetics , beta Catenin/metabolism , beta Catenin/genetics , Brain Ischemia/metabolism , Brain Ischemia/genetics , Brain Ischemia/pathology , Ischemic Stroke/metabolism , Ischemic Stroke/genetics , Ischemic Stroke/pathology , Mitochondria/metabolism , Reactive Oxygen Species/metabolism
16.
J Biol Chem ; 299(11): 105284, 2023 11.
Article in English | MEDLINE | ID: mdl-37742918

ABSTRACT

Axonal degeneration is a hallmark feature of neurodegenerative diseases. Activation of the NAD(P)ase sterile alpha and toll-interleukin receptor motif containing protein 1 (SARM1) is critical for this process. In resting neurons, SARM1 activity is inhibited, but upon damage, SARM1 is activated and catalyzes one of three NAD(P)+ dependent reactions: (1) NAD(P)+ hydrolysis to form ADP-ribose (ADPR[P]) and nicotinamide; (2) the formation of cyclic-ADPR (cADPR[P]); or (3) a base exchange reaction with nicotinic acid (NA) and NADP+ to form NA adenine dinucleotide phosphate. Production of these metabolites triggers axonal death. Two activation mechanisms have been proposed: (1) an increase in the nicotinamide mononucleotide (NMN) concentration, which leads to the allosteric activation of SARM1, and (2) a phase transition, which stabilizes the active conformation of the enzyme. However, neither of these mechanisms have been shown to occur at the same time. Using in vitro assay systems, we show that the liquid-to-solid phase transition lowers the NMN concentration required to activate the catalytic activity of SARM1 by up to 140-fold. These results unify the proposed activation mechanisms and show for the first time that a phase transition reduces the threshold for NMN-based SARM1 activation to physiologically relevant levels. These results further our understanding of SARM1 activation and will be important for the future development of therapeutics targeting SARM1.


Subject(s)
NAD , Nicotinamide Mononucleotide , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism , Axons/metabolism , Hydrolases/metabolism , NAD/metabolism , Neurons/metabolism , Nicotinamide Mononucleotide/metabolism , Humans , Cell Line
17.
Immunol Invest ; 53(5): 800-812, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38651786

ABSTRACT

BACKGROUND: Sterile alpha and TIR motif-containing 1 (Sarm1) is known as a negative regulator of inflammatory responses. However, its role in inflammatory bowel disease (IBD) is still unclear. OBJECTIVE: This study aimed to explore the function of Sarm1 in IBD and its underlying mechanisms. Sarm1 and tumor necrosis factor (TNF) receptor associated factor 3 (TRAF3) knockout (KO) micewere established. METHODS: The colitis was induced using dextran sulfate sodium (DSS). Bone marrow-derived macrophages (BMDMs) were isolated and stimulated with lipopolysaccharides (LPS) or cytidine phosphate guanosine(CpG). Inflammatory cytokines were measured viaELISA. qPCR and Western blotting were used to determine the levels of the mRNA and protein expression, respectively. RESULTS: It was demonstrated that reduced expression of Sarm1 was correlated with the severity of IBD in ulcerative colitis patients, and also with the reduction of pro-inflammatory cytokines in the mouse model induced by DSS. It was further observed that Sarm1 KO enhanced the induction of pro-inflammatory cytokines in both animal and in vitro cell models. Sarm1 deficiency in macrophages increased the severity of colitis in the mouse model induced by DSS. Moreover, Sarm1 regulatedTRAF3 recruitment to myeloid differentiation primary response protein 88 (MyD88), which in turn controlled the MYD88-mediated inflammatory responses. CONCLUSIONS: In summary, our data suggest that Sarm1 controls the MYD88-mediated inflammatory responses in IBD via its regulation of TRAF3 recruitment.


1. Sarm1 KO enhances the induction of pro-inflammatory cytokines in both animal and in vitro cell models.2. Sarm1 deficiency in macrophages increases the severity of colitis in the mouse model.3. Sarm1 regulates TRAF3 recruitment to MyD88.


Subject(s)
Armadillo Domain Proteins , Cytoskeletal Proteins , Dextran Sulfate , Disease Models, Animal , Inflammatory Bowel Diseases , Macrophages , Mice, Knockout , Myeloid Differentiation Factor 88 , TNF Receptor-Associated Factor 3 , Adult , Animals , Female , Humans , Male , Mice , Armadillo Domain Proteins/metabolism , Armadillo Domain Proteins/genetics , Colitis/immunology , Colitis/metabolism , Colitis/chemically induced , Colitis/genetics , Colitis, Ulcerative/immunology , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/genetics , Colitis, Ulcerative/chemically induced , Cytokines/metabolism , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/genetics , Macrophages/immunology , Macrophages/metabolism , Mice, Inbred C57BL , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , Signal Transduction , TNF Receptor-Associated Factor 3/metabolism , TNF Receptor-Associated Factor 3/genetics
18.
Brain ; 146(10): 4117-4131, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37086482

ABSTRACT

Hereditary spastic paraplegia is a neurological condition characterized by predominant axonal degeneration in long spinal tracts, leading to weakness and spasticity in the lower limbs. The nicotinamide adenine dinucleotide (NAD+)-consuming enzyme SARM1 has emerged as a key executioner of axonal degeneration upon nerve transection and in some neuropathies. An increase in the nicotinamide mononucleotide/NAD+ ratio activates SARM1, causing catastrophic NAD+ depletion and axonal degeneration. However, the role of SARM1 in the pathogenesis of hereditary spastic paraplegia has not been investigated. Here, we report an enhanced mouse model for hereditary spastic paraplegia caused by mutations in SPG7. The eSpg7 knockout mouse carries a deletion in both Spg7 and Afg3l1, a redundant homologue expressed in mice but not in humans. The eSpg7 knockout mice recapitulate the phenotypic features of human patients, showing progressive symptoms of spastic-ataxia and degeneration of axons in the spinal cord as well as the cerebellum. We show that the lack of SPG7 rewires the mitochondrial proteome in both tissues, leading to an early onset decrease in mito-ribosomal subunits and a remodelling of mitochondrial solute carriers and transporters. To interrogate mechanisms leading to axonal degeneration in this mouse model, we explored the involvement of SARM1. Deletion of SARM1 delays the appearance of ataxic signs, rescues mitochondrial swelling and axonal degeneration of cerebellar granule cells and dampens neuroinflammation in the cerebellum. The loss of SARM1 also prevents endoplasmic reticulum abnormalities in long spinal cord axons, but does not halt the degeneration of these axons. Our data thus reveal a neuron-specific interplay between SARM1 and mitochondrial dysfunction caused by lack of SPG7 in hereditary spastic paraplegia.


Subject(s)
Spastic Paraplegia, Hereditary , Animals , Humans , Mice , Armadillo Domain Proteins/genetics , ATPases Associated with Diverse Cellular Activities , Axons/pathology , Cerebellum , Cytoskeletal Proteins/genetics , Metalloendopeptidases/genetics , Metalloendopeptidases/metabolism , NAD , Spastic Paraplegia, Hereditary/genetics
19.
J Med Genet ; 60(2): 154-162, 2023 02.
Article in English | MEDLINE | ID: mdl-35534203

ABSTRACT

BACKGROUND: Asthenozoospermia is a major factor contributing to male infertility. The mitochondrial sheath (MS), an important organelle in the midpiece of spermatozoa, is crucial to sperm motility. ARMC12 is a mitochondrial peripheral membrane protein. Deletion of Armc12 impairs the arrangement of MS and causes infertility in mice. However, the role of ARMC12 in human asthenozoospermia remains unknown. OBJECTIVE: To study the genetic defects in patients with asthenozoospermia. METHODS: A total of 125 patients with asthenozoospermia and 120 men with proven fertility were recruited. Whole-exome sequencing and Sanger sequencing were performed for genetic analysis. Papanicolaou staining, HE staining, immunofluorescent staining, transmission electron microscopy and field emission scanning electron microscopy were employed to observe the morphological and structural defects of the spermatozoa and testes. Armc12-knockout mice were generated using the CRISPR-Cas9 system. Intracytoplasmic sperm injection was used to treat the patients. RESULTS: Biallelic ARMC12 mutations were identified in three patients, including homozygous mutations in two siblings from a consanguineous family and compound heterozygous mutations in one sporadic patient. ARMC12 is mainly expressed in the midpiece of elongated and late spermatids in the human testis. The patients' spermatozoa displayed multiple midpiece defects, including absent MS and central pair, scattered or forked axoneme and incomplete plasma membrane. Spermatozoa from Armc12-/- mice showed parallel defects in the midpiece. Moreover, two patients were treated with intracytoplasmic sperm injection and achieved good outcomes. CONCLUSION: Our findings prove for the first time that defects in ARMC12 cause asthenozoospermia and multiple midpiece defects in humans.


Subject(s)
Armadillo Domain Proteins , Asthenozoospermia , Infertility, Male , Animals , Humans , Male , Mice , Asthenozoospermia/genetics , Infertility, Male/genetics , Mice, Knockout , Mutation , Semen , Sperm Motility/genetics , Spermatozoa , Testis , Armadillo Domain Proteins/genetics
20.
Nucleic Acids Res ; 50(11): 6343-6367, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35687106

ABSTRACT

ARMC5 is implicated in several pathological conditions, but its function remains unknown. We have previously identified CUL3 and RPB1 (the largest subunit of RNA polymerase II (Pol II) as potential ARMC5-interacting proteins. Here, we show that ARMC5, CUL3 and RBX1 form an active E3 ligase complex specific for RPB1. ARMC5, CUL3, and RBX1 formed an active E3 specific for RPB1. Armc5 deletion caused a significant reduction in RPB1 ubiquitination and an increase in an accumulation of RPB1, and hence an enlarged Pol II pool in normal tissues and organs. The compromised RPB1 degradation did not cause generalized Pol II stalling nor depressed transcription in the adrenal glands but did result in dysregulation of a subset of genes, with most upregulated. We found RPB1 to be highly expressed in the adrenal nodules from patients with primary bilateral macronodular adrenal hyperplasia (PBMAH) harboring germline ARMC5 mutations. Mutant ARMC5 had altered binding with RPB1. In summary, we discovered that wildtype ARMC5 was part of a novel RPB1-specific E3. ARMC5 mutations resulted in an enlarged Pol II pool, which dysregulated a subset of effector genes. Such an enlarged Pol II pool and gene dysregulation was correlated to adrenal hyperplasia in humans and KO mice.


Subject(s)
Adrenal Hyperplasia, Congenital , Armadillo Domain Proteins , RNA Polymerase II , Ubiquitin-Protein Ligases , Adrenal Hyperplasia, Congenital/genetics , Adrenal Hyperplasia, Congenital/pathology , Animals , Armadillo Domain Proteins/genetics , DNA-Directed RNA Polymerases , Humans , Ligases , Mice , Mice, Knockout , RNA Polymerase II/genetics , Ubiquitin-Protein Ligases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL