Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.896
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 20(5): 637-651, 2019 05.
Article in English | MEDLINE | ID: mdl-30962590

ABSTRACT

Respiratory infections are common precursors to asthma exacerbations in children, but molecular immune responses that determine whether and how an infection causes an exacerbation are poorly understood. By using systems-scale network analysis, we identify repertoires of cellular transcriptional pathways that lead to and underlie distinct patterns of asthma exacerbation. Specifically, in both virus-associated and nonviral exacerbations, we demonstrate a set of core exacerbation modules, among which epithelial-associated SMAD3 signaling is upregulated and lymphocyte response pathways are downregulated early in exacerbation, followed by later upregulation of effector pathways including epidermal growth factor receptor signaling, extracellular matrix production, mucus hypersecretion, and eosinophil activation. We show an additional set of multiple inflammatory cell pathways involved in virus-associated exacerbations, in contrast to squamous cell pathways associated with nonviral exacerbations. Our work introduces an in vivo molecular platform to investigate, in a clinical setting, both the mechanisms of disease pathogenesis and therapeutic targets to modify exacerbations.


Subject(s)
Asthma/immunology , Gene Regulatory Networks/immunology , Transcriptome/immunology , Virus Diseases/immunology , Adolescent , Asthma/genetics , Asthma/virology , Case-Control Studies , Child , Common Cold/genetics , Common Cold/immunology , Common Cold/virology , Female , Humans , Longitudinal Studies , Male , Prospective Studies , Signal Transduction/genetics , Signal Transduction/immunology , Virus Diseases/genetics , Virus Diseases/virology
2.
Mol Cell ; 82(16): 3089-3102.e7, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35931084

ABSTRACT

The ß2-adrenergic receptor (ß2AR), a prototypic G-protein-coupled receptor (GPCR), is a powerful driver of bronchorelaxation, but the effectiveness of ß-agonist drugs in asthma is limited by desensitization and tachyphylaxis. We find that during activation, the ß2AR is modified by S-nitrosylation, which is essential for both classic desensitization by PKA as well as desensitization of NO-based signaling that mediates bronchorelaxation. Strikingly, S-nitrosylation alone can drive ß2AR internalization in the absence of traditional agonist. Mutant ß2AR refractory to S-nitrosylation (Cys265Ser) exhibits reduced desensitization and internalization, thereby amplifying NO-based signaling, and mice with Cys265Ser mutation are resistant to bronchoconstriction, inflammation, and the development of asthma. S-nitrosylation is thus a central mechanism in ß2AR signaling that may be operative widely among GPCRs and targeted for therapeutic gain.


Subject(s)
Asthma , Animals , Asthma/chemically induced , Asthma/genetics , Mice , Signal Transduction
3.
Nature ; 611(7937): 794-800, 2022 11.
Article in English | MEDLINE | ID: mdl-36323785

ABSTRACT

Protective immunity relies on the interplay of innate and adaptive immune cells with complementary and redundant functions. Innate lymphoid cells (ILCs) have recently emerged as tissue-resident, innate mirror images of the T cell system, with which they share lineage-specifying transcription factors and effector machinery1. Located at barrier surfaces, ILCs are among the first responders against invading pathogens and thus could potentially determine the outcome of the immune response2. However, so far it has not been possible to dissect the unique contributions of ILCs to protective immunity owing to limitations in specific targeting of ILC subsets. Thus, all of the available data have been generated either in mice lacking the adaptive immune system or with tools that also affect other immune cell subsets. In addition, it has been proposed that ILCs might be dispensable for a proper immune response because other immune cells could compensate for their absence3-7. Here we report the generation of a mouse model based on the neuromedin U receptor 1 (Nmur1) promoter as a driver for simultaneous expression of Cre recombinase and green fluorescent protein, which enables gene targeting in group 2 ILCs (ILC2s) without affecting other innate and adaptive immune cells. Using Cre-mediated gene deletion of Id2 and Gata3 in Nmur1-expressing cells, we generated mice with a selective and specific deficiency in ILC2s. ILC2-deficient mice have decreased eosinophil counts at steady state and are unable to recruit eosinophils to the airways in models of allergic asthma. Further, ILC2-deficient mice do not mount an appropriate immune and epithelial type 2 response, resulting in a profound defect in worm expulsion and a non-protective type 3 immune response. In total, our data establish non-redundant functions for ILC2s in the presence of adaptive immune cells at steady state and during disease and argue for a multilayered organization of the immune system on the basis of a spatiotemporal division of labour.


Subject(s)
Immune System , Immunity, Innate , Lymphocytes , Animals , Mice , Asthma/genetics , Asthma/immunology , Asthma/pathology , Disease Models, Animal , Eosinophils/pathology , Immunity, Innate/immunology , Lymphocytes/classification , Lymphocytes/immunology , Green Fluorescent Proteins , Immune System/cytology , Immune System/immunology , Immune System/pathology
4.
Am J Hum Genet ; 111(5): 966-978, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38701746

ABSTRACT

Replicability is the cornerstone of modern scientific research. Reliable identifications of genotype-phenotype associations that are significant in multiple genome-wide association studies (GWASs) provide stronger evidence for the findings. Current replicability analysis relies on the independence assumption among single-nucleotide polymorphisms (SNPs) and ignores the linkage disequilibrium (LD) structure. We show that such a strategy may produce either overly liberal or overly conservative results in practice. We develop an efficient method, ReAD, to detect replicable SNPs associated with the phenotype from two GWASs accounting for the LD structure. The local dependence structure of SNPs across two heterogeneous studies is captured by a four-state hidden Markov model (HMM) built on two sequences of p values. By incorporating information from adjacent locations via the HMM, our approach provides more accurate SNP significance rankings. ReAD is scalable, platform independent, and more powerful than existing replicability analysis methods with effective false discovery rate control. Through analysis of datasets from two asthma GWASs and two ulcerative colitis GWASs, we show that ReAD can identify replicable genetic loci that existing methods might otherwise miss.


Subject(s)
Asthma , Genome-Wide Association Study , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Genome-Wide Association Study/methods , Humans , Asthma/genetics , Markov Chains , Colitis, Ulcerative/genetics , Reproducibility of Results , Phenotype , Genotype
5.
Nat Immunol ; 16(8): 859-70, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26098997

ABSTRACT

The receptor NLRP3 is involved in the formation of the NLRP3 inflammasome that activates caspase-1 and mediates the release of interleukin 1ß (IL-1ß) and IL-18. Whether NLRP3 can shape immunological function independently of inflammasomes is unclear. We found that NLRP3 expression in CD4(+) T cells specifically supported a T helper type 2 (TH2) transcriptional program in a cell-intrinsic manner. NLRP3, but not the inflammasome adaptor ASC or caspase-1, positively regulated a TH2 program. In TH2 cells, NLRP3 bound the Il4 promoter and transactivated it in conjunction with the transcription factor IRF4. Nlrp3-deficient TH2 cells supported melanoma tumor growth in an IL-4-dependent manner and also promoted asthma-like symptoms. Our results demonstrate the ability of NLRP3 to act as a key transcription factor in TH2 differentiation.


Subject(s)
Carrier Proteins/immunology , Cell Differentiation/immunology , Th2 Cells/immunology , Trans-Activators/immunology , Animals , Asthma/genetics , Asthma/immunology , Asthma/metabolism , Blotting, Western , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Differentiation/genetics , Cell Line, Tumor , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/immunology , Inflammasomes/genetics , Inflammasomes/immunology , Inflammasomes/metabolism , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/immunology , Interferon Regulatory Factors/metabolism , Interleukin-4/genetics , Interleukin-4/immunology , Interleukin-4/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NIH 3T3 Cells , NLR Family, Pyrin Domain-Containing 3 Protein , Neoplasms, Experimental/genetics , Neoplasms, Experimental/immunology , Neoplasms, Experimental/metabolism , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic/genetics , Promoter Regions, Genetic/immunology , Protein Binding/immunology , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , Signal Transduction/immunology , Th2 Cells/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism
6.
Nature ; 599(7886): 628-634, 2021 11.
Article in English | MEDLINE | ID: mdl-34662886

ABSTRACT

A major goal in human genetics is to use natural variation to understand the phenotypic consequences of altering each protein-coding gene in the genome. Here we used exome sequencing1 to explore protein-altering variants and their consequences in 454,787 participants in the UK Biobank study2. We identified 12 million coding variants, including around 1 million loss-of-function and around 1.8 million deleterious missense variants. When these were tested for association with 3,994 health-related traits, we found 564 genes with trait associations at P ≤ 2.18 × 10-11. Rare variant associations were enriched in loci from genome-wide association studies (GWAS), but most (91%) were independent of common variant signals. We discovered several risk-increasing associations with traits related to liver disease, eye disease and cancer, among others, as well as risk-lowering associations for hypertension (SLC9A3R2), diabetes (MAP3K15, FAM234A) and asthma (SLC27A3). Six genes were associated with brain imaging phenotypes, including two involved in neural development (GBE1, PLD1). Of the signals available and powered for replication in an independent cohort, 81% were confirmed; furthermore, association signals were generally consistent across individuals of European, Asian and African ancestry. We illustrate the ability of exome sequencing to identify gene-trait associations, elucidate gene function and pinpoint effector genes that underlie GWAS signals at scale.


Subject(s)
Biological Specimen Banks , Databases, Genetic , Exome Sequencing , Exome/genetics , Africa/ethnology , Asia/ethnology , Asthma/genetics , Diabetes Mellitus/genetics , Europe/ethnology , Eye Diseases/genetics , Female , Genetic Predisposition to Disease/genetics , Genetic Variation , Genome-Wide Association Study , Humans , Hypertension/genetics , Liver Diseases/genetics , Male , Mutation , Neoplasms/genetics , Quantitative Trait, Heritable , United Kingdom
7.
Proc Natl Acad Sci U S A ; 121(27): e2320727121, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38923989

ABSTRACT

Asthma is a widespread airway disorder where GATA3-dependent Type-2 helper T (Th2) cells and group 2 innate lymphoid cells (ILC2s) play vital roles. Asthma-associated single nucleotide polymorphisms (SNPs) are enriched in a region located 926-970 kb downstream from GATA3 in the 10p14 (hG900). However, it is unknown how hG900 affects the pathogenesis of allergic airway inflammation. To investigate the roles of the asthma-associated GATA3 enhancer region in experimental allergic airway inflammation, we first examined the correlation between GATA3 expression and the activation of the hG900 region was analyzed by flow cytometry and ChIP-qPCR. We found that The activation of enhancers in the hG900 region was strongly correlated to the levels of GATA3 in human peripheral T cell subsets. We next generated mice lacking the mG900 region (mG900KO mice) were generated by the CRISPR-Cas9 system, and the development and function of helper T cells and ILCs in mG900KO mice were analyzed in steady-state conditions and allergic airway inflammation induced by papain or house dust mite (HDM). The deletion of the mG900 did not affect the development of lymphocytes in steady-state conditions or allergic airway inflammation induced by papain. However, mG900KO mice exhibited reduced allergic inflammation and Th2 differentiation in the HDM-induced allergic airway inflammation. The analysis of the chromatin conformation around Gata3 by circular chromosome conformation capture coupled to high-throughput sequencing (4C-seq) revealed that the mG900 region interacted with the transcription start site of Gata3 with an influencing chromatin conformation in Th2 cells. These findings indicate that the mG900 region plays a pivotal role in Th2 differentiation and thus enhances allergic airway inflammation.


Subject(s)
Asthma , Cell Differentiation , Enhancer Elements, Genetic , GATA3 Transcription Factor , Th2 Cells , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Animals , Th2 Cells/immunology , Mice , Cell Differentiation/immunology , Asthma/immunology , Asthma/genetics , Asthma/pathology , Humans , Mice, Knockout , Inflammation/immunology , Inflammation/genetics , Hypersensitivity/immunology , Hypersensitivity/genetics , Polymorphism, Single Nucleotide , Mice, Inbred C57BL
8.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38807262

ABSTRACT

Sexual dimorphism in prevalence, severity and genetic susceptibility exists for most common diseases. However, most genetic and clinical outcome studies are designed in sex-combined framework considering sex as a covariate. Few sex-specific studies have analyzed males and females separately, which failed to identify gene-by-sex interaction. Here, we propose a novel unified biologically interpretable deep learning-based framework (named SPIN) for sexual dimorphism analysis. We demonstrate that SPIN significantly improved the C-index up to 23.6% in TCGA cancer datasets, and it was further validated using asthma datasets. In addition, SPIN identifies sex-specific and -shared risk loci that are often missed in previous sex-combined/-separate analysis. We also show that SPIN is interpretable for explaining how biological pathways contribute to sexual dimorphism and improve risk prediction in an individual level, which can result in the development of precision medicine tailored to a specific individual's characteristics.


Subject(s)
Neural Networks, Computer , Sex Characteristics , Humans , Female , Male , Deep Learning , Neoplasms/genetics , Neoplasms/metabolism , Asthma/genetics , Genetic Predisposition to Disease
9.
Nat Immunol ; 15(12): 1162-70, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25362490

ABSTRACT

MicroRNAs (miRNAs) exert powerful effects on immunological function by tuning networks of target genes that orchestrate cell activity. We sought to identify miRNAs and miRNA-regulated pathways that control the type 2 helper T cell (TH2 cell) responses that drive pathogenic inflammation in asthma. Profiling miRNA expression in human airway-infiltrating T cells revealed elevated expression of the miRNA miR-19a in asthma. Modulating miR-19 activity altered TH2 cytokine production in both human and mouse T cells, and TH2 cell responses were markedly impaired in cells lacking the entire miR-17∼92 cluster. miR-19 promoted TH2 cytokine production and amplified inflammatory signaling by direct targeting of the inositol phosphatase PTEN, the signaling inhibitor SOCS1 and the deubiquitinase A20. Thus, upregulation of miR-19a in asthma may be an indicator and a cause of increased TH2 cytokine production in the airways.


Subject(s)
Asthma/immunology , Cytokines/biosynthesis , MicroRNAs/immunology , Th2 Cells/immunology , Animals , Asthma/genetics , Asthma/metabolism , Bronchoalveolar Lavage Fluid/cytology , Clinical Trials as Topic , Flow Cytometry , High-Throughput Screening Assays , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Mice , Mice, Transgenic , Multiplex Polymerase Chain Reaction , Th2 Cells/metabolism , Up-Regulation
10.
Nat Immunol ; 15(8): 777-88, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24997565

ABSTRACT

A characteristic feature of asthma is the aberrant accumulation, differentiation or function of memory CD4(+) T cells that produce type 2 cytokines (TH2 cells). By mapping genome-wide histone modification profiles for subsets of T cells isolated from peripheral blood of healthy and asthmatic individuals, we identified enhancers with known and potential roles in the normal differentiation of human TH1 cells and TH2 cells. We discovered disease-specific enhancers in T cells that differ between healthy and asthmatic individuals. Enhancers that gained the histone H3 Lys4 dimethyl (H3K4me2) mark during TH2 cell development showed the highest enrichment for asthma-associated single nucleotide polymorphisms (SNPs), which supported a pathogenic role for TH2 cells in asthma. In silico analysis of cell-specific enhancers revealed transcription factors, microRNAs and genes potentially linked to human TH2 cell differentiation. Our results establish the feasibility and utility of enhancer profiling in well-defined populations of specialized cell types involved in disease pathogenesis.


Subject(s)
Asthma/genetics , Asthma/immunology , Genetic Predisposition to Disease , Th1 Cells/immunology , Th2 Cells/immunology , Adolescent , Adult , Aged , Binding Sites/genetics , Binding Sites/immunology , Cell Differentiation/immunology , Cells, Cultured , Core Binding Factor Alpha 3 Subunit/genetics , DNA Methylation/genetics , Epigenomics , Female , GATA3 Transcription Factor/genetics , Genome-Wide Association Study , Histones/genetics , Histones/immunology , Humans , Immunologic Memory/immunology , Male , MicroRNAs/genetics , Middle Aged , Polymorphism, Single Nucleotide , Promoter Regions, Genetic/genetics , Protein Binding/genetics , Protein Binding/immunology , Sequence Analysis, RNA , T-Box Domain Proteins/genetics , Young Adult
11.
Nat Immunol ; 15(1): 36-44, 2014 01.
Article in English | MEDLINE | ID: mdl-24212998

ABSTRACT

Eosinophilia is a hallmark characteristic of T helper type 2 (TH2) cell-associated diseases and is critically regulated by the central eosinophil growth factor interleukin 5 (IL-5). Here we demonstrate that IL-5 activity in eosinophils was regulated by paired immunoglobulin-like receptors PIR-A and PIR-B. Upon self-recognition of ß2-microglobulin (ß2M) molecules, PIR-B served as a permissive checkpoint for IL-5-induced development of eosinophils by suppressing the proapoptotic activities of PIR-A, which were mediated by the Grb2-Erk-Bim pathway. PIR-B-deficient bone marrow eosinophils underwent compartmentalized apoptosis, resulting in decreased blood eosinophilia in naive mice and in mice challenged with IL-5. Subsequently, Pirb(-/-) mice displayed impaired aeroallergen-induced lung eosinophilia and induction of lung TH2 cell responses. Collectively, these data uncover an intrinsic, self-limiting pathway regulating IL-5-induced expansion of eosinophils, which has broad implications for eosinophil-associated diseases.


Subject(s)
Cell Differentiation/immunology , Eosinophils/immunology , Interleukin-5/immunology , Receptors, Immunologic/immunology , Animals , Apoptosis/genetics , Apoptosis/immunology , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/immunology , Apoptosis Regulatory Proteins/metabolism , Asthma/genetics , Asthma/immunology , Asthma/metabolism , Bcl-2-Like Protein 11 , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cells, Cultured , Colony-Forming Units Assay/methods , Eosinophils/cytology , Eosinophils/metabolism , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/immunology , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Flow Cytometry , GRB2 Adaptor Protein/genetics , GRB2 Adaptor Protein/immunology , GRB2 Adaptor Protein/metabolism , Gene Expression/immunology , Interleukin-5/pharmacology , Male , Membrane Proteins/genetics , Membrane Proteins/immunology , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/immunology , Proto-Oncogene Proteins/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , Signal Transduction/immunology , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/immunology
12.
J Immunol ; 212(8): 1277-1286, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38381001

ABSTRACT

IL-33 is an inflammatory cytokine that promotes allergic disease by activating group 2 innate lymphoid cells, Th2 cells, and mast cells. IL-33 is increased in asthmatics, and its blockade suppresses asthma-like inflammation in mouse models. Homeostatic control of IL-33 signaling is poorly understood. Because the IL-33 receptor, ST2, acts via cascades used by the TLR family, similar feedback mechanisms may exist. MicroRNA (miR)-146a is induced by LPS-mediated TLR4 signaling and serves as a feedback inhibitor. Therefore, we explored whether miR-146a has a role in IL-33 signaling. IL-33 induced cellular and exosomal miR-146a expression in mouse bone marrow-derived mast cells (BMMCs). BMMCs transfected with a miR-146a antagonist or derived from miR-146a knockout mice showed enhanced cytokine expression in response to IL-33, suggesting that miR-146a is a negative regulator of IL-33-ST2 signaling. In vivo, miR-146a expression in plasma exosomes was elevated after i.p. injection of IL-33 in wild-type but not mast cell-deficient KitW-sh/W-sh mice. Finally, KitW-sh/W-sh mice acutely reconstituted with miR-146a knockout BMMCs prior to IL-33 challenge had elevated plasma IL-6 levels compared with littermates receiving wild-type BMMCs. These results support the hypothesis that miR-146a is a feedback regulator of IL-33-mediated mast cell functions associated with allergic disease.


Subject(s)
Asthma , MicroRNAs , Animals , Mice , Asthma/genetics , Cytokines/genetics , Feedback , Immunity, Innate , Interleukin-1 Receptor-Like 1 Protein/genetics , Interleukin-33 , Lymphocytes/metabolism , Mast Cells/metabolism , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism
13.
J Biol Chem ; 300(4): 107127, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432633

ABSTRACT

Regulators of G protein signaling (RGS) proteins constrain G protein-coupled receptor (GPCR)-mediated and other responses throughout the body primarily, but not exclusively, through their GTPase-activating protein activity. Asthma is a highly prevalent condition characterized by airway hyper-responsiveness (AHR) to environmental stimuli resulting in part from amplified GPCR-mediated airway smooth muscle contraction. Rgs2 or Rgs5 gene deletion in mice enhances AHR and airway smooth muscle contraction, whereas RGS4 KO mice unexpectedly have decreased AHR because of increased production of the bronchodilator prostaglandin E2 (PGE2) by lung epithelial cells. Here, we found that knockin mice harboring Rgs4 alleles encoding a point mutation (N128A) that sharply curtails RGS4 GTPase-activating protein activity had increased AHR, reduced airway PGE2 levels, and augmented GPCR-induced bronchoconstriction compared with either RGS4 KO mice or WT controls. RGS4 interacted with the p85α subunit of PI3K and inhibited PI3K-dependent PGE2 secretion elicited by transforming growth factor beta in airway epithelial cells. Together, these findings suggest that RGS4 affects asthma severity in part by regulating the airway inflammatory milieu in a G protein-independent manner.


Subject(s)
Asthma , RGS Proteins , Animals , Humans , Mice , Asthma/metabolism , Asthma/genetics , Asthma/pathology , Bronchoconstriction/genetics , Dinoprostone/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Mice, Knockout , Phosphatidylinositol 3-Kinases/metabolism , Respiratory Hypersensitivity/metabolism , Respiratory Hypersensitivity/genetics , Respiratory Hypersensitivity/pathology , RGS Proteins/metabolism , RGS Proteins/genetics , Cell Line
14.
Hum Mol Genet ; 32(4): 696-707, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36255742

ABSTRACT

BACKGROUND: Asthma is a heterogeneous common respiratory disease that remains poorly understood. The established genetic associations fail to explain the high estimated heritability, and the prevalence of asthma differs between populations and geographic regions. Robust association analyses incorporating different genetic ancestries and whole-genome sequencing data may identify novel genetic associations. METHODS: We performed family-based genome-wide association analyses of childhood-onset asthma based on whole-genome sequencing (WGS) data for the 'The Genetic Epidemiology of Asthma in Costa Rica' study (GACRS) and the Childhood Asthma Management Program (CAMP). Based on parent-child trios with children diagnosed with asthma, we performed a single variant analysis using an additive and a recessive genetic model and a region-based association analysis of low-frequency and rare variants. RESULTS: Based on 1180 asthmatic trios (894 GACRS trios and 286 CAMP trios, a total of 3540 samples with WGS data), we identified three novel genetic loci associated with childhood-onset asthma: rs4832738 on 4p14 ($P=1.72\ast{10}^{-9}$, recessive model), rs1581479 on 8p22 ($P=1.47\ast{10}^{-8}$, additive model) and rs73367537 on 10q26 ($P=1.21\ast{10}^{-8}$, additive model in GACRS only). Integrative analyses suggested potential novel candidate genes underlying these associations: PGM2 on 4p14 and FGF20 on 8p22. CONCLUSION: Our family-based whole-genome sequencing analysis identified three novel genetic loci for childhood-onset asthma. Gene expression data and integrative analyses point to PGM2 on 4p14 and FGF20 on 8p22 as linked genes. Furthermore, region-based analyses suggest independent potential low-frequency/rare variant associations on 8p22. Follow-up analyses are needed to understand the functional mechanisms and generalizability of these associations.


Subject(s)
Asthma , Genome-Wide Association Study , Humans , Genetic Predisposition to Disease , Asthma/genetics , Genetic Loci , Whole Genome Sequencing , Polymorphism, Single Nucleotide/genetics , Fibroblast Growth Factors/genetics
15.
Am J Hum Genet ; 109(6): 989-1006, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35477001

ABSTRACT

Most disease-associated genetic variants are pleiotropic, affecting multiple genetically correlated traits. Their pleiotropic associations can be mechanistically informative: if many variants have similar patterns of association, they may act via similar pleiotropic mechanisms, forming a shared component of heritability. We developed pleiotropic decomposition regression (PDR) to identify shared components and their underlying genetic variants. We validated PDR on simulated data and identified limitations of existing methods in recovering the true components. We applied PDR to three clusters of five to six traits genetically correlated with coronary artery disease (CAD), asthma, and type II diabetes (T2D), producing biologically interpretable components. For CAD, PDR identified components related to BMI, hypertension, and cholesterol, and it clarified the relationship among these highly correlated risk factors. We assigned variants to components, calculated their posterior-mean effect sizes, and performed out-of-sample validation. Our posterior-mean effect sizes pool statistical power across traits and substantially boost the correlation (r2) between true and estimated effect sizes (compared with the original summary statistics) by 94% and 70% for asthma and T2D out of sample, respectively, and by a predicted 300% for CAD.


Subject(s)
Asthma , Coronary Artery Disease , Diabetes Mellitus, Type 2 , Asthma/genetics , Coronary Artery Disease/genetics , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study/methods , Humans , Phenotype , Polymorphism, Single Nucleotide
16.
Brief Bioinform ; 25(1)2023 11 22.
Article in English | MEDLINE | ID: mdl-38205966

ABSTRACT

Multi-omics data integration is a complex and challenging task in biomedical research. Consensus clustering, also known as meta-clustering or cluster ensembles, has become an increasingly popular downstream tool for phenotyping and endotyping using multiple omics and clinical data. However, current consensus clustering methods typically rely on ensembling clustering outputs with similar sample coverages (mathematical replicates), which may not reflect real-world data with varying sample coverages (biological replicates). To address this issue, we propose a new consensus clustering with missing labels (ccml) strategy termed ccml, an R protocol for two-step consensus clustering that can handle unequal missing labels (i.e. multiple predictive labels with different sample coverages). Initially, the regular consensus weights are adjusted (normalized) by sample coverage, then a regular consensus clustering is performed to predict the optimal final cluster. We applied the ccml method to predict molecularly distinct groups based on 9-omics integration in the Karolinska COSMIC cohort, which investigates chronic obstructive pulmonary disease, and 24-omics handprint integrative subgrouping of adult asthma patients of the U-BIOPRED cohort. We propose ccml as a downstream toolkit for multi-omics integration analysis algorithms such as Similarity Network Fusion and robust clustering of clinical data to overcome the limitations posed by missing data, which is inevitable in human cohorts consisting of multiple data modalities. The ccml tool is available in the R language (https://CRAN.R-project.org/package=ccml, https://github.com/pulmonomics-lab/ccml, or https://github.com/ZhoulabCPH/ccml).


Subject(s)
Asthma , Multiomics , Adult , Humans , Consensus , Cluster Analysis , Algorithms , Asthma/genetics
17.
FASEB J ; 38(6): e23576, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38530238

ABSTRACT

High level expression of the pro-inflammatory cytokine macrophage migration inhibitory factor (MIF) has been associated with severe asthma. The role of MIF and its functional promotor polymorphism in innate immune training is currently unknown. Using novel humanized CATT7 MIF mice, this study is the first to investigate the effect of MIF on bone marrow-derived macrophage (BMDM) memory after house dust mite (HDM) challenge. CATT7 BMDMs demonstrated a significant primed increase in M1 markers following HDM and LPS stimulation, compared to naive mice. This M1 signature was found to be MIF-dependent, as administration of a small molecule MIF inhibitor, SCD-19, blocked the induction of this pro-inflammatory M1-like phenotype in BMDMs from CATT7 mice challenged with HDM. Training naive BMDMs in vitro with HDM for 24 h followed by a rest period and subsequent stimulation with LPS led to significantly increased production of the pro-inflammatory cytokine TNFα in BMDMs from CATT7 mice but not WT mice. Addition of the pan methyltransferase inhibitor MTA before HDM training significantly abrogated this effect in BMDMs from CATT7 mice, suggesting that HDM-induced training is associated with epigenetic remodelling. These findings suggest that trained immunity induced by HDM is under genetic control, playing an important role in asthma patients with the high MIF genotypes (CATT6/7/8).


Subject(s)
Asthma , Macrophage Migration-Inhibitory Factors , Humans , Animals , Mice , Macrophage Migration-Inhibitory Factors/genetics , Lipopolysaccharides/toxicity , Pyroglyphidae , Asthma/genetics , Inflammation , Intramolecular Oxidoreductases/genetics
18.
Arterioscler Thromb Vasc Biol ; 44(3): e99-e115, 2024 03.
Article in English | MEDLINE | ID: mdl-38235556

ABSTRACT

BACKGROUND: IgE has been known for mediating endothelial cell dysfunction and mast cell (MC) activation to fuel asthma-aggravated high-fat diet-induced atherosclerosis. However, it remains unclear for the mechanism of asthma-mediated atherosclerosis, especially the potential involvement of IgE in the exacerbation of asthma-mediated atherosclerosis with a standard laboratory diet, and the cross talk between endothelial cells and MCs. METHODS: Asthma-mediated atherosclerosis mice models under a standard laboratory diet and FcεR1 knock-out mice were used to determine the role of IgE-FcεR1 signaling in asthma-mediated atherosclerosis, which was assessed by Oil Red O staining and immunohistochemistry. Various in vitro assays including nanoparticle tracking analysis and transmission electron microscopy were used to evaluate exosome characteristics. Immunofluorescence and fluorescent in situ hybridization approaches were used to evaluate the effect and mechanism of MC-secreted exosomes encapsulated circular RNA CDR1as (cerebellar degeneration-related 1 antisense) on endothelial cells in vivo and in vitro. Finally, cohort studies examined the plasma CDR1as levels in patients with atherosclerosis with or without allergies. RESULTS: Asthma mice with a standard laboratory diet showed increased atherosclerotic lesions and inflammatory infiltration depending on IgE-FcεR1 signal. FcεR1 knockout mice and blockage of IgE-FcεR1 signaling with IgE monoclonal antibody, omalizumab, all significantly alleviated asthma-mediated atherosclerosis and vascular inflammatory remodeling. Anti-inflammation with dexamethasone and stabilization of MC with cromolyn partially alleviated atherosclerotic lesions and mitigated the inflammatory infiltration in arteries. Mechanistically, IgE stimulation upregulates MC CDR1as expression in exosomes and upregulates the endothelial cell adhesive factors VCAM-1 (vascular cell adhesion molecule-1) and ICAM-1 (intercellular adhesion molecule-1) via the CDR1as-FUS (fused in sarcoma)-phos-p65 axis. Knockdown of CDR1as in vivo significantly decreased the endothelial adhesion function and mitigated asthma-mediated atherosclerosis. Furthermore, a cohort study indicated higher plasma CDR1as levels in patients with atherosclerosis with allergies than in patients with atherosclerosis and healthy controls. CONCLUSIONS: Exosomes from IgE-stimulated MCs aggravated atherosclerosis through circular RNA CDR1as-mediated endothelial dysfunction, providing a novel insight into asthma-mediated atherosclerosis and potential diagnostic and therapeutic targets.


Subject(s)
Asthma , Atherosclerosis , Exosomes , Animals , Humans , Mice , Asthma/genetics , Asthma/metabolism , Atherosclerosis/genetics , Atherosclerosis/metabolism , Cohort Studies , Endothelial Cells/metabolism , Exosomes/metabolism , Exosomes/pathology , Immunoglobulin E/genetics , In Situ Hybridization, Fluorescence , Mast Cells/metabolism , Mice, Knockout , RNA, Circular/metabolism
19.
Proc Natl Acad Sci U S A ; 119(24): e2116467119, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35666868

ABSTRACT

Maternal asthma (MA) is among the most consistent risk factors for asthma in children. Possible mechanisms for this observation are epigenetic modifications in utero that have lasting effects on developmental programs in children of mothers with asthma. To test this hypothesis, we performed differential DNA methylation analyses of 398,186 individual CpG sites in primary bronchial epithelial cells (BECs) from 42 nonasthma controls and 88 asthma cases, including 56 without MA (NMA) and 32 with MA. We used weighted gene coexpression network analysis (WGCNA) of 69 and 554 differentially methylated CpGs (DMCs) that were specific to NMA and MA cases, respectively, compared with controls. WGCNA grouped 66 NMA-DMCs and 203 MA-DMCs into two and five comethylation modules, respectively. The eigenvector of one MA-associated module (turquoise) was uniquely correlated with 85 genes expressed in BECs and enriched for 36 pathways, 16 of which discriminated between NMA and MA using machine learning. Genes in all 16 pathways were decreased in MA compared with NMA cases (P = 7.1 × 10−3), a finding that replicated in nasal epithelial cells from an independent cohort (P = 0.02). Functional interpretation of these pathways suggested impaired T cell signaling and responses to viral and bacterial pathogens. The MA-associated turquoise module eigenvector was additionally correlated with clinical features of severe asthma and reflective of type 2 (T2)-low asthma (i.e., low total serum immunoglobulin E, fractional exhaled nitric oxide, and eosinophilia). Overall, these data suggest that MA alters diverse epigenetically mediated pathways that lead to distinct subtypes of severe asthma in adults, including hard-to-treat T2-low asthma.


Subject(s)
Asthma , DNA Methylation , Gene Expression Regulation , Adult , Female , Humans , Adult Children , Asthma/genetics , Asthma/metabolism , CpG Islands , Epigenesis, Genetic , Mothers , Patient Acuity , Risk Factors
20.
Proc Natl Acad Sci U S A ; 119(26): e2121513119, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35737832

ABSTRACT

Both chronic obstructive pulmonary disease (COPD) and asthma are severe respiratory diseases. Bitter receptor-mediated bronchodilation is a potential therapy for asthma, but the mechanism underlying the agonistic relaxation of airway smooth muscle (ASM) is not well defined. By exploring the ASM relaxation mechanism of bitter substances, we observed that pretreatment with the bitter substances nearly abolished the methacholine (MCh)-induced increase in the ASM cell (ASMC) calcium concentration, thereby suppressing the calcium-induced contraction release. The ASM relaxation was significantly inhibited by simultaneous deletion of three Gαt proteins, suggesting an interaction between Tas2R and AChR signaling cascades in the relaxation process. Biochemically, the Gαt released by Tas2R activation complexes with AChR and blocks the Gαq cycling of AChR signal transduction. More importantly, a bitter substance, kudinoside A, not only attenuates airway constriction but also significantly inhibits pulmonary inflammation and tissue remodeling in COPD rats, indicating its modulation of additional Gαq-associated pathological processes. Thus, our results suggest that Tas2R activation may be an ideal strategy for halting multiple pathological processes of COPD.


Subject(s)
Asthma , Muscle, Smooth , Pulmonary Disease, Chronic Obstructive , Receptors, G-Protein-Coupled , Transcriptional Activation , Animals , Asthma/genetics , Asthma/metabolism , Asthma/physiopathology , Bronchodilator Agents/pharmacology , Calcium/metabolism , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/physiopathology , Rats , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL