Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Infect Immun ; 88(5)2020 04 20.
Article in English | MEDLINE | ID: mdl-32094251

ABSTRACT

Gamma interferon (IFN-γ)-induced innate immune responses play important roles in the inhibition of Toxoplasma gondii infection. It has been reported that IFN-γ stimulates non-acidification-dependent growth restriction of T. gondii in HeLa cells, but the mechanism remains unclear. Here, we found that γ-aminobutyric acid (GABA) receptor-associated protein-like 2 (GABARAPL2) plays a critical role in parasite restriction in IFN-γ-treated HeLa cells. GABARAPL2 is recruited to membrane structures surrounding parasitophorous vacuoles (PV). Autophagy adaptors are required for the proper localization and function of GABARAPL2 in the IFN-γ -induced immune response. These findings provide further understanding of a noncanonical autophagy pathway responsible for IFN-γ-dependent inhibition of T. gondii growth in human HeLa cells and demonstrate the critical role of GABARAPL2 in this response.


Subject(s)
Autophagy-Related Protein 8 Family/immunology , Interferon-gamma/immunology , Toxoplasma/immunology , Toxoplasmosis/immunology , Autophagy/immunology , Cell Line , Cell Line, Tumor , HeLa Cells , Humans , Immunity, Innate/immunology , Vacuoles/immunology
2.
Biochem Biophys Res Commun ; 494(1-2): 20-26, 2017 12 09.
Article in English | MEDLINE | ID: mdl-29056507

ABSTRACT

As a highly conserved mechanism, autophagy is responsible for the transport of cytoplasmic constituents in the vacuoles or lysosomes. Moreover, autophagy is essential for plant development and various stress responses. In this study, 34 MeATGs were systematically identified in cassava, and their transcripts were commonly regulated by Xanthomonas axonopodis pv manihotis (Xam). Through transient expression in Nicotiana benthamiana, the subcellular locations of 4 MeATG8s were revealed. Notably, MeWRKY20 was identified as physical interacting protein of MeATG8a/8f/8h and upstream transcriptional activator of MeATG8a. Through virus-induced gene silencing (VIGS) in cassava, we found that MeATG8-silenced and MeWRKY20-silenced plants resulted in disease sensitive, with less callose depositions and lower autophagic activity. This study may facilitate our understanding of the upstream MeWRKY20 and underlying target as well as interacting proteins of MeATG8s in immune response. Taken together, MeWRKY20 and MeATG8a/8f/8h are essential for disease resistance against bacterial blight by forming various transcriptional modules and interacting complex in cassava.


Subject(s)
Autophagy-Related Protein 8 Family/physiology , Manihot/physiology , Plant Proteins/physiology , Autophagy/genetics , Autophagy/physiology , Autophagy-Related Protein 8 Family/genetics , Autophagy-Related Protein 8 Family/immunology , Genes, Plant , Manihot/genetics , Manihot/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/immunology , Plants, Genetically Modified , Nicotiana/genetics , Trans-Activators/genetics , Trans-Activators/immunology , Trans-Activators/physiology , Xanthomonas axonopodis/pathogenicity
3.
Elife ; 72018 06 22.
Article in English | MEDLINE | ID: mdl-29932422

ABSTRACT

During plant cell invasion, the oomycete Phytophthora infestans remains enveloped by host-derived membranes whose functional properties are poorly understood. P. infestans secretes a myriad of effector proteins through these interfaces for plant colonization. Recently we showed that the effector protein PexRD54 reprograms host-selective autophagy by antagonising antimicrobial-autophagy receptor Joka2/NBR1 for ATG8CL binding (Dagdas et al., 2016). Here, we show that during infection, ATG8CL/Joka2 labelled defense-related autophagosomes are diverted toward the perimicrobial host membrane to restrict pathogen growth. PexRD54 also localizes to autophagosomes across the perimicrobial membrane, consistent with the view that the pathogen remodels host-microbe interface by co-opting the host autophagy machinery. Furthermore, we show that the host-pathogen interface is a hotspot for autophagosome biogenesis. Notably, overexpression of the early autophagosome biogenesis protein ATG9 enhances plant immunity. Our results implicate selective autophagy in polarized immune responses of plants and point to more complex functions for autophagy than the widely known degradative roles.


Subject(s)
Autophagy/genetics , Host-Pathogen Interactions , Phytophthora infestans/genetics , Plant Diseases/genetics , Plant Proteins/genetics , Solanum tuberosum/genetics , ATPases Associated with Diverse Cellular Activities/genetics , ATPases Associated with Diverse Cellular Activities/immunology , Autophagosomes/immunology , Autophagosomes/parasitology , Autophagy/immunology , Autophagy-Related Protein 8 Family/genetics , Autophagy-Related Protein 8 Family/immunology , Carrier Proteins/genetics , Carrier Proteins/immunology , Gene Expression Regulation , Membrane Proteins/genetics , Membrane Proteins/immunology , Phytophthora infestans/growth & development , Phytophthora infestans/pathogenicity , Plant Cells/immunology , Plant Cells/parasitology , Plant Diseases/immunology , Plant Diseases/parasitology , Plant Immunity/genetics , Plant Proteins/immunology , Protein Binding , Signal Transduction , Solanum tuberosum/immunology , Solanum tuberosum/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL