Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.654
Filter
Add more filters

Uruguay Oncology Collection
Publication year range
1.
Annu Rev Immunol ; 42(1): 153-178, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38941602

ABSTRACT

The intestine is the largest peripheral lymphoid organ in animals, including humans, and interacts with a vast array of microorganisms called the gut microbiota. Comprehending the symbiotic relationship between the gut microbiota and our immune system is essential not only for the field of immunology but also for understanding the pathogenesis of various systemic diseases, including cancer, cardiometabolic disorders, and extraintestinal autoimmune conditions. Whereas microbe-derived antigens are crucial for activating the intestinal immune system, particularly T and B cells, as environmental cues, microbes and their metabolites play a critical role in directing the differentiation of these immune cells. Microbial metabolites are regarded as messengers from the gut microbiota, since bacteria have the ability to produce unique molecules that humans cannot, and many immune cells in the intestine express receptors for these molecules. This review highlights the distinct relationships between microbial metabolites and the differentiation and function of the immune system.


Subject(s)
Gastrointestinal Microbiome , Humans , Animals , Gastrointestinal Microbiome/immunology , Cell Differentiation , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Bacteria/immunology , Bacteria/metabolism
2.
Annu Rev Immunol ; 42(1): 375-399, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38360545

ABSTRACT

The liver's unique characteristics have a profound impact on the priming and maintenance of adaptive immunity. This review delves into the cellular circuits that regulate adaptive immune responses in the liver, with a specific focus on hepatitis B virus infection as an illustrative example. A key aspect highlighted is the liver's specialized role in priming CD8+ T cells, leading to a distinct state of immune hyporesponsiveness. Additionally, the influence of the liver's hemodynamics and anatomical features, particularly during liver fibrosis and cirrhosis, on the differentiation and function of adaptive immune cells is discussed. While the primary emphasis is on CD8+ T cells, recent findings regarding the involvement of B cells and CD4+ T cells in hepatic immunity are also reviewed. Furthermore, we address the challenges ahead and propose integrating cutting-edge techniques, such as spatial biology, and combining mouse models with human sample analyses to gain comprehensive insights into the liver's adaptive immunity. This understanding could pave the way for novel therapeutic strategies targeting infectious diseases, malignancies, and inflammatory liver conditions like metabolic dysfunction-associated steatohepatitis and autoimmune hepatitis.


Subject(s)
Adaptive Immunity , Liver , Humans , Animals , Liver/immunology , Liver/metabolism , Liver/pathology , CD8-Positive T-Lymphocytes/immunology , Hepatitis B virus/immunology , Hepatitis B virus/physiology , Hepatitis B/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology
3.
Annu Rev Immunol ; 39: 345-368, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33556247

ABSTRACT

For many infections and almost all vaccines, neutralizing-antibody-mediated immunity is the primary basis and best functional correlate of immunological protection. Durable long-term humoral immunity is mediated by antibodies secreted by plasma cells that preexist subsequent exposures and by memory B cells that rapidly respond to infections once they have occurred. In the midst of the current pandemic of coronavirus disease 2019, it is important to define our current understanding of the unique roles of memory B cells and plasma cells in immunity and the factors that control the formation and persistence of these cell types. This fundamental knowledge is the basis to interpret findings from natural infections and vaccines. Here, we review transcriptional and metabolic programs that promote and support B cell fates and functions, suggesting points at which these pathways do and do not intersect.


Subject(s)
B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Energy Metabolism , Gene Expression Regulation , Immunologic Memory , Plasma Cells/immunology , Plasma Cells/metabolism , Animals , Biomarkers , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Survival/genetics , Cell Survival/immunology , Germinal Center/immunology , Germinal Center/metabolism , Humans , Immunologic Memory/genetics , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Transcription, Genetic
4.
Annu Rev Immunol ; 38: 99-121, 2020 04 26.
Article in English | MEDLINE | ID: mdl-32340574

ABSTRACT

B cells are traditionally known for their ability to produce antibodies in the context of adaptive immune responses. However, over the last decade B cells have been increasingly recognized as modulators of both adaptive and innate immune responses, as well as players in an important role in the pathogenesis of a variety of human diseases. Here, after briefly summarizing our current understanding of B cell biology, we present a systematic review of the literature from both animal models and human studies that highlight the important role that B lymphocytes play in cardiac and vascular disease. While many aspects of B cell biology in the vasculature and, to an even greater extent, in the heart remain unclear, B cells are emerging as key regulators of cardiovascular adaptation to injury.


Subject(s)
B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , Disease Susceptibility , Adaptive Immunity , Animals , Cardiovascular Diseases/diagnosis , Cytokines/metabolism , Humans , Immunity, Innate , Inflammation Mediators/metabolism
5.
Annu Rev Immunol ; 38: 785-808, 2020 04 26.
Article in English | MEDLINE | ID: mdl-32126183

ABSTRACT

Primary atopic disorders describes a series of monogenic diseases that have allergy- or atopic effector-related symptoms as a substantial feature. The underlying pathogenic genetic lesions help illustrate fundamental pathways in atopy, opening up diagnostic and therapeutic options for further study in those patients, but ultimately for common allergic diseases as well. Key pathways affected in these disorders include T cell receptor and B cell receptor signaling, cytokine signaling, skin barrier function, and mast cell function, as well as pathways that have not yet been elucidated. While comorbidities such as classically syndromic presentation or immune deficiency are often present, in some cases allergy alone is the presenting symptom, suggesting that commonly encountered allergic diseases exist on a spectrum of monogenic and complex genetic etiologies that are impacted by environmental risk factors.


Subject(s)
Disease Susceptibility , Hypersensitivity, Immediate/etiology , Hypersensitivity, Immediate/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Biomarkers , Cytokines/metabolism , Disease Management , Environment , Genetic Predisposition to Disease , Humans , Hypersensitivity, Immediate/diagnosis , Mast Cells/immunology , Mast Cells/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
6.
Annu Rev Immunol ; 38: 315-340, 2020 04 26.
Article in English | MEDLINE | ID: mdl-31986068

ABSTRACT

The age-associated B cell subset has been the focus of increasing interest over the last decade. These cells have a unique cell surface phenotype and transcriptional signature, and they rely on TLR7 or TLR9 signals in the context of Th1 cytokines for their formation and activation. Most are antigen-experienced memory B cells that arise during responses to microbial infections and are key to pathogen clearance and control. Their increasing prevalence with age contributes to several well-established features of immunosenescence, including reduced B cell genesis and damped immune responses. In addition, they are elevated in autoimmune and autoinflammatory diseases, and in these settings they are enriched for characteristic autoantibody specificities. Together, these features identify age-associated B cells as a subset with pivotal roles in immunological health, disease, and aging. Accordingly, a detailed understanding of their origins, functions, and physiology should make them tractable translational targets in each of these settings.


Subject(s)
Aging/physiology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Animals , Autoimmunity , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , Biomarkers , Cytokines/metabolism , Disease Susceptibility , Homeostasis , Humans , Immunologic Memory , Immunosenescence , Lymphocyte Activation/immunology
7.
Annu Rev Immunol ; 38: 705-725, 2020 04 26.
Article in English | MEDLINE | ID: mdl-32340571

ABSTRACT

The discovery of CD4+ T cell subset-defining master transcription factors and framing of the Th1/Th2 paradigm ignited the CD4+ T cell field. Advances in in vivo experimental systems, however, have revealed that more complex lineage-defining transcriptional networks direct CD4+ T cell differentiation in the lymphoid organs and tissues. This review focuses on the layers of fate decisions that inform CD4+ T cell differentiation in vivo. Cytokine production by antigen-presenting cells and other innate cells influences the CD4+ T cell effector program [e.g., T helper type 1 (Th1), Th2, Th17]. Signals downstream of the T cell receptor influence whether individual clones bearing hallmarks of this effector program become T follicular helper cells, supporting development of B cells expressing specific antibody isotypes, or T effector cells, which activate microbicidal innate cells in tissues. These bifurcated, parallel axes allow CD4+ T cells to augment their particular effector program and prevent disease.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation/immunology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/cytology , Cell Differentiation/genetics , Cytokines/metabolism , Humans , Lymphocyte Activation/immunology , Receptors, Antigen, T-Cell/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Th1 Cells/immunology , Th1 Cells/metabolism , Th2 Cells/immunology , Th2 Cells/metabolism
8.
Annu Rev Immunol ; 36: 843-864, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29490162

ABSTRACT

Recent progress in both conceptual and technological approaches to human immunology have rejuvenated a field that has long been in the shadow of the inbred mouse model. This is a healthy development both for the clinical relevance of immunology and for the fact that it is a way to gain access to the wealth of phenomenology in the many human diseases that involve the immune system. This is where we are likely to discover new immunological mechanisms and principals, especially those involving genetic heterogeneity or environmental influences that are difficult to model effectively in inbred mice. We also suggest that there are likely to be novel immunological mechanisms in long-lived, less fecund mammals such as human beings since they must remain healthy far longer than short-lived rodents in order for the species to survive.


Subject(s)
Immune System/physiology , Immunity , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Biological Evolution , Biological Variation, Population , Clonal Deletion/immunology , Host-Pathogen Interactions/immunology , Humans , Immunologic Memory , Models, Animal , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
9.
Annu Rev Immunol ; 36: 339-357, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29356584

ABSTRACT

Maintenance of immunological self-tolerance requires lymphocytes carrying self-reactive antigen receptors to be selectively prevented from mounting destructive or inflammatory effector responses. Classically, self-tolerance is viewed in terms of the removal, editing, or silencing of B and T cells that have formed self-reactive antigen receptors during their early development. However, B cells activated by foreign antigen can enter germinal centers (GCs), where they further modify their antigen receptor by somatic hypermutation (SHM) of their immunoglobulin genes. The inevitable emergence of activated, self-reactive GC B cells presents a unique challenge to the maintenance of self-tolerance that must be rapidly countered to avoid autoantibody production. Here we discuss current knowledge of the mechanisms that enforce B cell self-tolerance, with particular focus on the control of self-reactive GC B cells. We also consider how self-reactive GC B cells can escape self-tolerance to initiate autoantibody production or instead be redeemed via SHM and used in productive antibody responses.


Subject(s)
Autoimmunity , B-Lymphocytes/immunology , Germinal Center/immunology , Animals , Autoantibodies/immunology , Autoantigens/immunology , B-Lymphocytes/metabolism , Germinal Center/metabolism , Humans , Immune Tolerance , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Plasma Cells/immunology , Plasma Cells/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
10.
Annu Rev Immunol ; 36: 309-338, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29677470

ABSTRACT

The complement system is an evolutionarily ancient key component of innate immunity required for the detection and removal of invading pathogens. It was discovered more than 100 years ago and was originally defined as a liver-derived, blood-circulating sentinel system that classically mediates the opsonization and lytic killing of dangerous microbes and the initiation of the general inflammatory reaction. More recently, complement has also emerged as a critical player in adaptive immunity via its ability to instruct both B and T cell responses. In particular, work on the impact of complement on T cell responses led to the surprising discoveries that the complement system also functions within cells and is involved in regulating basic cellular processes, predominantly those of metabolic nature. Here, we review current knowledge about complement's role in T cell biology, with a focus on the novel intracellular and noncanonical activities of this ancient system.


Subject(s)
Complement System Proteins/immunology , Immunomodulation , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Adaptive Immunity , Animals , Autoimmunity , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Complement Activation/immunology , Energy Metabolism , Host-Pathogen Interactions/immunology , Humans , Immunity, Cellular , Membrane Cofactor Protein/metabolism , Th1 Cells/immunology , Th1 Cells/metabolism
11.
Annu Rev Immunol ; 36: 19-42, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29144837

ABSTRACT

Adaptive immunity in jawless fishes is based on antigen recognition by three types of variable lymphocyte receptors (VLRs) composed of variable leucine-rich repeats, which are differentially expressed by two T-like lymphocyte lineages and one B-like lymphocyte lineage. The T-like cells express either VLRAs or VLRCs of yet undefined antigen specificity, whereas the VLRB antibodies secreted by B-like cells bind proteinaceous and carbohydrate antigens. The incomplete VLR germline genes are assembled into functional units by a gene conversion-like mechanism that employs flanking variable leucine-rich repeat sequences as templates in association with lineage-specific expression of cytidine deaminases. B-like cells develop in the hematopoietic typhlosole and kidneys, whereas T-like cells develop in the thymoid, a thymus-equivalent region at the gill fold tips. Thus, the dichotomy between T-like and B-like cells and the presence of dedicated lymphopoietic tissues emerge as ancestral vertebrate features, whereas the somatic diversification of structurally distinct antigen receptor genes evolved independently in jawless and jawed vertebrates.


Subject(s)
Adaptive Immunity , Biological Evolution , Vertebrates/immunology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Lineage , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , Humans , Immunity, Innate , Multigene Family , Receptors, Antigen, B-Cell/chemistry , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Structure-Activity Relationship , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Vertebrates/metabolism
12.
Annu Rev Immunol ; 36: 435-459, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29400984

ABSTRACT

The initiation and maintenance of adaptive immunity require multifaceted modes of communication between different types of immune cells, including direct intercellular contact, secreted soluble signaling molecules, and extracellular vesicles (EVs). EVs can be formed as microvesicles directly pinched off from the plasma membrane or as exosomes secreted by multivesicular endosomes. Membrane receptors guide EVs to specific target cells, allowing directional transfer of specific and complex signaling cues. EVs are released by most, if not all, immune cells. Depending on the type and status of their originating cell, EVs may facilitate the initiation, expansion, maintenance, or silencing of adaptive immune responses. This review focusses on EVs from professional antigen-presenting cells, their demonstrated and speculated roles, and their potential for cancer immunotherapy.


Subject(s)
Antigen Presentation/immunology , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Extracellular Vesicles/metabolism , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Biological Transport , Cell-Derived Microparticles/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Epithelial Cells/metabolism , Exosomes/metabolism , Histocompatibility Antigens/genetics , Histocompatibility Antigens/immunology , Humans , Immune Tolerance , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Macrophages/immunology , Macrophages/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
13.
Cell ; 187(11): 2817-2837.e31, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38701783

ABSTRACT

FMS-related tyrosine kinase 3 ligand (FLT3L), encoded by FLT3LG, is a hematopoietic factor essential for the development of natural killer (NK) cells, B cells, and dendritic cells (DCs) in mice. We describe three humans homozygous for a loss-of-function FLT3LG variant with a history of various recurrent infections, including severe cutaneous warts. The patients' bone marrow (BM) was hypoplastic, with low levels of hematopoietic progenitors, particularly myeloid and B cell precursors. Counts of B cells, monocytes, and DCs were low in the patients' blood, whereas the other blood subsets, including NK cells, were affected only moderately, if at all. The patients had normal counts of Langerhans cells (LCs) and dermal macrophages in the skin but lacked dermal DCs. Thus, FLT3L is required for B cell and DC development in mice and humans. However, unlike its murine counterpart, human FLT3L is required for the development of monocytes but not NK cells.


Subject(s)
Killer Cells, Natural , Membrane Proteins , Animals , Female , Humans , Male , Mice , B-Lymphocytes/metabolism , B-Lymphocytes/cytology , Bone Marrow/metabolism , Cell Lineage , Dendritic Cells/metabolism , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Killer Cells, Natural/metabolism , Killer Cells, Natural/immunology , Langerhans Cells/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Monocytes/metabolism , Skin/metabolism , Mice, Inbred C57BL
14.
Cell ; 187(12): 2935-2951.e19, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38772371

ABSTRACT

Peripheral sensory neurons widely innervate various tissues to continuously monitor and respond to environmental stimuli. Whether peripheral sensory neurons innervate the spleen and modulate splenic immune response remains poorly defined. Here, we demonstrate that nociceptive sensory nerve fibers extensively innervate the spleen along blood vessels and reach B cell zones. The spleen-innervating nociceptors predominantly originate from left T8-T13 dorsal root ganglia (DRGs), promoting the splenic germinal center (GC) response and humoral immunity. Nociceptors can be activated by antigen-induced accumulation of splenic prostaglandin E2 (PGE2) and then release calcitonin gene-related peptide (CGRP), which further promotes the splenic GC response at the early stage. Mechanistically, CGRP directly acts on B cells through its receptor CALCRL-RAMP1 via the cyclic AMP (cAMP) signaling pathway. Activating nociceptors by ingesting capsaicin enhances the splenic GC response and anti-influenza immunity. Collectively, our study establishes a specific DRG-spleen sensory neural connection that promotes humoral immunity, suggesting a promising approach for improving host defense by targeting the nociceptive nervous system.


Subject(s)
Calcitonin Gene-Related Peptide , Germinal Center , Immunity, Humoral , Spleen , Animals , Male , Mice , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Calcitonin Gene-Related Peptide/metabolism , Capsaicin/pharmacology , Cyclic AMP/metabolism , Dinoprostone/metabolism , Ganglia, Spinal/metabolism , Germinal Center/immunology , Mice, Inbred C57BL , Nociceptors/metabolism , Receptor Activity-Modifying Protein 1/metabolism , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/drug effects , Signal Transduction , Spleen/innervation , Spleen/immunology , Female
15.
Cell ; 186(24): 5269-5289.e22, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37995656

ABSTRACT

A generic level of chromatin organization generated by the interplay between cohesin and CTCF suffices to limit promiscuous interactions between regulatory elements, but a lineage-specific chromatin assembly that supersedes these constraints is required to configure the genome to guide gene expression changes that drive faithful lineage progression. Loss-of-function approaches in B cell precursors show that IKAROS assembles interactions across megabase distances in preparation for lymphoid development. Interactions emanating from IKAROS-bound enhancers override CTCF-imposed boundaries to assemble lineage-specific regulatory units built on a backbone of smaller invariant topological domains. Gain of function in epithelial cells confirms IKAROS' ability to reconfigure chromatin architecture at multiple scales. Although the compaction of the Igκ locus required for genome editing represents a function of IKAROS unique to lymphocytes, the more general function to preconfigure the genome to support lineage-specific gene expression and suppress activation of extra-lineage genes provides a paradigm for lineage restriction.


Subject(s)
Chromatin , Genome , B-Lymphocytes/metabolism , CCCTC-Binding Factor/metabolism , Chromatin/metabolism , Chromatin Assembly and Disassembly , Humans , Animals , Mice
16.
Annu Rev Immunol ; 33: 475-504, 2015.
Article in English | MEDLINE | ID: mdl-25622195

ABSTRACT

In this review we discuss the effects of microbial exposure on the B cell repertoire. Neonatal exposure to conserved bacterial carbohydrates and phospholipids permanently reprograms the natural antibody repertoire directed toward these antigens by clonal expansion, alterations in clonal dominance, and increased serum antibody levels. These epitopes are present not only in bacterial cell walls, but also in common environmental allergens. Neonatal immunization with bacterial polysaccharide vaccines results in attenuated allergic airway responses to fungi-, house dust mite-, and cockroach-associated allergens in mouse models. The similarities between mouse and human natural antibody repertoires suggest that reduced microbial exposure in children may have the opposite effect, providing a potential mechanistic explanation for the hygiene hypothesis. We propose that understanding the effects of childhood infections on the natural antibody repertoire and the mechanisms of antibody-mediated immunoregulation observed in allergy models will lead to the development of prevention/interventional strategies for treatment of allergic asthma.


Subject(s)
Allergens/immunology , Antibodies/immunology , Respiratory Hypersensitivity/immunology , Animals , Antibodies/blood , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Bacteria/immunology , Host-Pathogen Interactions/immunology , Humans , Respiratory Hypersensitivity/blood , Respiratory Hypersensitivity/metabolism , Respiratory Hypersensitivity/microbiology
17.
Cell ; 185(5): 896-915.e19, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35180381

ABSTRACT

The emerging SARS-CoV-2 variants of concern (VOCs) threaten the effectiveness of current COVID-19 vaccines administered intramuscularly and designed to only target the spike protein. There is a pressing need to develop next-generation vaccine strategies for broader and long-lasting protection. Using adenoviral vectors (Ad) of human and chimpanzee origin, we evaluated Ad-vectored trivalent COVID-19 vaccines expressing spike-1, nucleocapsid, and RdRp antigens in murine models. We show that single-dose intranasal immunization, particularly with chimpanzee Ad-vectored vaccine, is superior to intramuscular immunization in induction of the tripartite protective immunity consisting of local and systemic antibody responses, mucosal tissue-resident memory T cells and mucosal trained innate immunity. We further show that intranasal immunization provides protection against both the ancestral SARS-CoV-2 and two VOC, B.1.1.7 and B.1.351. Our findings indicate that respiratory mucosal delivery of Ad-vectored multivalent vaccine represents an effective next-generation COVID-19 vaccine strategy to induce all-around mucosal immunity against current and future VOC.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunity, Mucosal , Administration, Intranasal , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , COVID-19/virology , COVID-19 Vaccines/immunology , Cytokines/blood , Genetic Vectors/genetics , Genetic Vectors/immunology , Genetic Vectors/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neutralization Tests , Nucleocapsid/genetics , Nucleocapsid/immunology , Nucleocapsid/metabolism , Pan troglodytes , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
18.
Nat Immunol ; 25(6): 969-980, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38831104

ABSTRACT

Rare genetic variants in toll-like receptor 7 (TLR7) are known to cause lupus in humans and mice. UNC93B1 is a transmembrane protein that regulates TLR7 localization into endosomes. In the present study, we identify two new variants in UNC93B1 (T314A, located proximally to the TLR7 transmembrane domain, and V117L) in a cohort of east Asian patients with childhood-onset systemic lupus erythematosus. The V117L variant was associated with increased expression of type I interferons and NF-κB-dependent cytokines in patient plasma and immortalized B cells. THP-1 cells expressing the variant UNC93B1 alleles exhibited exaggerated responses to stimulation of TLR7/-8, but not TLR3 or TLR9, which could be inhibited by targeting the downstream signaling molecules, IRAK1/-4. Heterozygous mice expressing the orthologous Unc93b1V117L variant developed a spontaneous lupus-like disease that was more severe in homozygotes and again hyperresponsive to TLR7 stimulation. Together, this work formally identifies genetic variants in UNC93B1 that can predispose to childhood-onset systemic lupus erythematosus.


Subject(s)
Genetic Predisposition to Disease , Lupus Erythematosus, Systemic , Toll-Like Receptor 7 , Lupus Erythematosus, Systemic/genetics , Humans , Animals , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Mice , Child , Female , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Male , Age of Onset , Genetic Variation , NF-kappa B/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Adolescent , THP-1 Cells , Interferon Type I/metabolism
19.
Nat Immunol ; 25(7): 1283-1295, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38862796

ABSTRACT

While some infections elicit germinal centers, others produce only extrafollicular responses. The mechanisms controlling these dichotomous fates are poorly understood. We identify IL-12 as a cytokine switch, acting directly on B cells to promote extrafollicular and suppress germinal center responses. IL-12 initiates a B cell-intrinsic feed-forward loop between IL-12 and IFNγ, amplifying IFNγ production, which promotes proliferation and plasmablast differentiation from mouse and human B cells, in synergy with IL-12. IL-12 sustains the expression of a portion of IFNγ-inducible genes. Together, they also induce unique gene changes, reflecting both IFNγ amplification and cooperative effects between both cytokines. In vivo, cells lacking both IL-12 and IFNγ receptors are more impaired in plasmablast production than those lacking either receptor alone. Further, B cell-derived IL-12 enhances both plasmablast responses and T helper 1 cell commitment. Thus, B cell-derived IL-12, acting on T and B cells, determines the immune response mode, with implications for vaccines, pathogen protection and autoimmunity.


Subject(s)
B-Lymphocytes , Cell Differentiation , Germinal Center , Interferon-gamma , Interleukin-12 , Animals , Interleukin-12/immunology , Interleukin-12/metabolism , Mice , Interferon-gamma/metabolism , Interferon-gamma/immunology , Germinal Center/immunology , Humans , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Differentiation/immunology , Mice, Knockout , Mice, Inbred C57BL , Plasma Cells/immunology , Plasma Cells/metabolism , Lymphocyte Activation/immunology , Receptors, Interferon/metabolism , Receptors, Interferon/genetics , Cells, Cultured , Cell Proliferation
20.
Annu Rev Immunol ; 32: 283-321, 2014.
Article in English | MEDLINE | ID: mdl-24471430

ABSTRACT

T and B cells share a common somatic gene rearrangement mechanism for assembling the genes that code for their antigen receptors; they also have developmental pathways with many parallels. Shared usage of basic helix-loop-helix E proteins as transcriptional drivers underlies these common features. However, the transcription factor networks in which these E proteins are embedded are different both in membership and in architecture for T and B cell gene regulatory programs. These differences permit lineage commitment decisions to be made in different hierarchical orders. Furthermore, in contrast to B cell gene networks, the T cell gene network architecture for effector differentiation is sufficiently modular so that E protein inputs can be removed. Complete T cell-like effector differentiation can proceed without T cell receptor rearrangement or selection when E proteins are neutralized, yielding natural killer and other innate lymphoid cells.


Subject(s)
B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Cell Differentiation/genetics , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Transcription, Genetic , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation/immunology , Cell Lineage , Gene Expression Regulation, Developmental , Humans , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/metabolism , Lymphopoiesis/physiology , Phenotype , Receptors, Notch/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL