Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 204.294
Filter
Add more filters

Uruguay Oncology Collection
Publication year range
1.
Cell ; 187(2): 345-359.e16, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38181787

ABSTRACT

Cells self-organize molecules in space and time to generate complex behaviors, but we lack synthetic strategies for engineering spatiotemporal signaling. We present a programmable reaction-diffusion platform for designing protein oscillations, patterns, and circuits in mammalian cells using two bacterial proteins, MinD and MinE (MinDE). MinDE circuits act like "single-cell radios," emitting frequency-barcoded fluorescence signals that can be spectrally isolated and analyzed using digital signal processing tools. We define how to genetically program these signals and connect their spatiotemporal dynamics to cell biology using engineerable protein-protein interactions. This enabled us to construct sensitive reporter circuits that broadcast endogenous cell signaling dynamics on a frequency-barcoded imaging channel and to build control signal circuits that synthetically pattern activities in the cell, such as protein condensate assembly and actin filamentation. Our work establishes a paradigm for visualizing, probing, and engineering cellular activities at length and timescales critical for biological function.


Subject(s)
Bacterial Proteins , Eukaryotic Cells , Signal Transduction , Animals , Mammals , Synthetic Biology/methods , Eukaryotic Cells/metabolism
2.
Cell ; 187(13): 3249-3261.e14, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38781968

ABSTRACT

Thermostable clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas9) enzymes could improve genome-editing efficiency and delivery due to extended protein lifetimes. However, initial experimentation demonstrated Geobacillus stearothermophilus Cas9 (GeoCas9) to be virtually inactive when used in cultured human cells. Laboratory-evolved variants of GeoCas9 overcome this natural limitation by acquiring mutations in the wedge (WED) domain that produce >100-fold-higher genome-editing levels. Cryoelectron microscopy (cryo-EM) structures of the wild-type and improved GeoCas9 (iGeoCas9) enzymes reveal extended contacts between the WED domain of iGeoCas9 and DNA substrates. Biochemical analysis shows that iGeoCas9 accelerates DNA unwinding to capture substrates under the magnesium-restricted conditions typical of mammalian but not bacterial cells. These findings enabled rational engineering of other Cas9 orthologs to enhance genome-editing levels, pointing to a general strategy for editing enzyme improvement. Together, these results uncover a new role for the Cas9 WED domain in DNA unwinding and demonstrate how accelerated target unwinding dramatically improves Cas9-induced genome-editing activity.


Subject(s)
CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Cryoelectron Microscopy , DNA , Gene Editing , Humans , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems/genetics , DNA/metabolism , DNA/genetics , Gene Editing/methods , Geobacillus stearothermophilus/genetics , Geobacillus stearothermophilus/metabolism , HEK293 Cells , Protein Domains , Genome, Human , Models, Molecular , Protein Structure, Tertiary , Nucleic Acid Conformation , Biocatalysis , Magnesium/chemistry , Magnesium/metabolism
3.
Cell ; 186(12): 2690-2704.e20, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37295405

ABSTRACT

Biofilm formation is generally recognized as a bacterial defense mechanism against environmental threats, including antibiotics, bacteriophages, and leukocytes of the human immune system. Here, we show that for the human pathogen Vibrio cholerae, biofilm formation is not only a protective trait but also an aggressive trait to collectively predate different immune cells. We find that V. cholerae forms biofilms on the eukaryotic cell surface using an extracellular matrix comprising primarily mannose-sensitive hemagglutinin pili, toxin-coregulated pili, and the secreted colonization factor TcpF, which differs from the matrix composition of biofilms on other surfaces. These biofilms encase immune cells and establish a high local concentration of a secreted hemolysin to kill the immune cells before the biofilms disperse in a c-di-GMP-dependent manner. Together, these results uncover how bacteria employ biofilm formation as a multicellular strategy to invert the typical relationship between human immune cells as the hunters and bacteria as the hunted.


Subject(s)
Vibrio cholerae , Animals , Humans , Vibrio cholerae/metabolism , Predatory Behavior , Biofilms , Fimbriae, Bacterial , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial
4.
Cell ; 186(11): 2410-2424.e18, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37160116

ABSTRACT

Bacteria use a wide range of immune pathways to counter phage infection. A subset of these genes shares homology with components of eukaryotic immune systems, suggesting that eukaryotes horizontally acquired certain innate immune genes from bacteria. Here, we show that proteins containing a NACHT module, the central feature of the animal nucleotide-binding domain and leucine-rich repeat containing gene family (NLRs), are found in bacteria and defend against phages. NACHT proteins are widespread in bacteria, provide immunity against both DNA and RNA phages, and display the characteristic C-terminal sensor, central NACHT, and N-terminal effector modules. Some bacterial NACHT proteins have domain architectures similar to the human NLRs that are critical components of inflammasomes. Human disease-associated NLR mutations that cause stimulus-independent activation of the inflammasome also activate bacterial NACHT proteins, supporting a shared signaling mechanism. This work establishes that NACHT module-containing proteins are ancient mediators of innate immunity across the tree of life.


Subject(s)
Bacteria , Bacteriophages , NLR Proteins , Animals , Humans , Bacteria/genetics , Bacteria/metabolism , Bacteria/virology , Bacteriophages/genetics , Bacteriophages/metabolism , Immunity, Innate , Inflammasomes/metabolism , NLR Proteins/genetics , Bacterial Proteins
5.
Cell ; 186(10): 2176-2192.e22, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37137307

ABSTRACT

The ClpC1:ClpP1P2 protease is a core component of the proteostasis system in mycobacteria. To improve the efficacy of antitubercular agents targeting the Clp protease, we characterized the mechanism of the antibiotics cyclomarin A and ecumicin. Quantitative proteomics revealed that the antibiotics cause massive proteome imbalances, including upregulation of two unannotated yet conserved stress response factors, ClpC2 and ClpC3. These proteins likely protect the Clp protease from excessive amounts of misfolded proteins or from cyclomarin A, which we show to mimic damaged proteins. To overcome the Clp security system, we developed a BacPROTAC that induces degradation of ClpC1 together with its ClpC2 caretaker. The dual Clp degrader, built from linked cyclomarin A heads, was highly efficient in killing pathogenic Mycobacterium tuberculosis, with >100-fold increased potency over the parent antibiotic. Together, our data reveal Clp scavenger proteins as important proteostasis safeguards and highlight the potential of BacPROTACs as future antibiotics.


Subject(s)
Antitubercular Agents , Mycobacterium tuberculosis , Antitubercular Agents/pharmacology , Bacterial Proteins/metabolism , Endopeptidase Clp/metabolism , Heat-Shock Proteins/metabolism , Mycobacterium tuberculosis/drug effects , Proteostasis
6.
Annu Rev Biochem ; 91: 353-380, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35303791

ABSTRACT

Subcellular compartmentalization is a defining feature of all cells. In prokaryotes, compartmentalization is generally achieved via protein-based strategies. The two main classes of microbial protein compartments are bacterial microcompartments and encapsulin nanocompartments. Encapsulins self-assemble into proteinaceous shells with diameters between 24 and 42 nm and are defined by the viral HK97-fold of their shell protein. Encapsulins have the ability to encapsulate dedicated cargo proteins, including ferritin-like proteins, peroxidases, and desulfurases. Encapsulation is mediated by targeting sequences present in all cargo proteins. Encapsulins are found in many bacterial and archaeal phyla and have been suggested to play roles in iron storage, stress resistance, sulfur metabolism, and natural product biosynthesis. Phylogenetic analyses indicate that they share a common ancestor with viral capsid proteins. Many pathogens encode encapsulins, and recent evidence suggests that they may contribute toward pathogenicity. The existing information on encapsulin structure, biochemistry, biological function, and biomedical relevance is reviewed here.


Subject(s)
Bacteria , Bacterial Proteins , Archaea/genetics , Archaea/metabolism , Bacteria/genetics , Bacteria/metabolism , Bacterial Proteins/metabolism , Iron/metabolism , Phylogeny
7.
Cell ; 185(13): 2338-2353.e18, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35662409

ABSTRACT

Hijacking the cellular protein degradation system offers unique opportunities for drug discovery, as exemplified by proteolysis-targeting chimeras. Despite their great promise for medical chemistry, so far, it has not been possible to reprogram the bacterial degradation machinery to interfere with microbial infections. Here, we develop small-molecule degraders, so-called BacPROTACs, that bind to the substrate receptor of the ClpC:ClpP protease, priming neo-substrates for degradation. In addition to their targeting function, BacPROTACs activate ClpC, transforming the resting unfoldase into its functional state. The induced higher-order oligomer was visualized by cryo-EM analysis, providing a structural snapshot of activated ClpC unfolding a protein substrate. Finally, drug susceptibility and degradation assays performed in mycobacteria demonstrate in vivo activity of BacPROTACs, allowing selective targeting of endogenous proteins via fusion to an established degron. In addition to guiding antibiotic discovery, the BacPROTAC technology presents a versatile research tool enabling the inducible degradation of bacterial proteins.


Subject(s)
Bacterial Proteins , Molecular Chaperones , Bacteria/metabolism , Bacterial Proteins/metabolism , Molecular Chaperones/metabolism , Proteolysis
8.
Cell ; 185(6): 980-994.e15, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35303428

ABSTRACT

The emergence of hypervirulent clade 2 Clostridioides difficile is associated with severe symptoms and accounts for >20% of global infections. TcdB is a dominant virulence factor of C. difficile, and clade 2 strains exclusively express two TcdB variants (TcdB2 and TcdB4) that use unknown receptors distinct from the classic TcdB. Here, we performed CRISPR/Cas9 screens for TcdB4 and identified tissue factor pathway inhibitor (TFPI) as its receptor. Using cryo-EM, we determined a complex structure of the full-length TcdB4 with TFPI, defining a common receptor-binding region for TcdB. Residue variations within this region divide major TcdB variants into 2 classes: one recognizes Frizzled (FZD), and the other recognizes TFPI. TFPI is highly expressed in the intestinal glands, and recombinant TFPI protects the colonic epithelium from TcdB2/4. These findings establish TFPI as a colonic crypt receptor for TcdB from clade 2 C. difficile and reveal new mechanisms for CDI pathogenesis.


Subject(s)
Bacterial Toxins , Clostridioides difficile , Bacterial Proteins/chemistry , Bacterial Toxins/chemistry , Clostridioides difficile/genetics , Lipoproteins/genetics
9.
Cell ; 185(26): 4999-5010.e17, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36435179

ABSTRACT

CRISPR-Cas systems have been co-opted by Tn7-like transposable elements to direct RNA-guided transposition. Type V-K CRISPR-associated transposons rely on the concerted activities of the pseudonuclease Cas12k, the AAA+ ATPase TnsC, the Zn-finger protein TniQ, and the transposase TnsB. Here we present a cryo-electron microscopic structure of a target DNA-bound Cas12k-transposon recruitment complex comprised of RNA-guided Cas12k, TniQ, a polymeric TnsC filament and, unexpectedly, the ribosomal protein S15. Complex assembly, mediated by a network of interactions involving the guide RNA, TniQ, and S15, results in R-loop completion. TniQ contacts two TnsC protomers at the Cas12k-proximal filament end, likely nucleating its polymerization. Transposition activity assays corroborate our structural findings, implying that S15 is a bona fide component of the type V crRNA-guided transposon machinery. Altogether, our work uncovers key mechanistic aspects underpinning RNA-mediated assembly of CRISPR-associated transposons to guide their development as programmable tools for site-specific insertion of large DNA payloads.


Subject(s)
CRISPR-Associated Proteins , DNA Transposable Elements , DNA Transposable Elements/genetics , CRISPR-Cas Systems , Transposases/genetics , DNA-Binding Proteins/metabolism , RNA , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , CRISPR-Associated Proteins/genetics
10.
Cell ; 185(21): 3966-3979.e13, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36167071

ABSTRACT

Bacterial colonies composed of genetically identical individuals can diversify to yield variant cells with distinct genotypes. Variant outgrowth manifests as sectors. Here, we show that Type VI secretion system (T6SS)-driven cell death in Vibrio cholerae colonies imposes a selective pressure for the emergence of variant strains that can evade T6SS-mediated killing. T6SS-mediated cell death occurs in two distinct spatiotemporal phases, and each phase is driven by a particular T6SS toxin. The first phase is regulated by quorum sensing and drives sectoring. The second phase does not require the T6SS-injection machinery. Variant V. cholerae strains isolated from colony sectors encode mutated quorum-sensing components that confer growth advantages by suppressing T6SS-killing activity while simultaneously boosting T6SS-killing defenses. Our findings show that the T6SS can eliminate sibling cells, suggesting a role in intra-specific antagonism. We propose that quorum-sensing-controlled T6SS-driven killing promotes V. cholerae genetic diversity, including in natural habitats and during disease.


Subject(s)
Type VI Secretion Systems , Vibrio cholerae , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Genetic Variation , Quorum Sensing , Type VI Secretion Systems/genetics , Type VI Secretion Systems/metabolism , Vibrio cholerae/metabolism
11.
Cell ; 185(24): 4507-4525.e18, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36356582

ABSTRACT

The human pathogen Mycobacterium tuberculosis typically causes lung disease but can also disseminate to other tissues. We identified a M. tuberculosis (Mtb) outbreak presenting with unusually high rates of extrapulmonary dissemination and bone disease. We found that the causal strain carried an ancestral full-length version of the type VII-secreted effector EsxM rather than the truncated version present in other modern Mtb lineages. The ancestral EsxM variant exacerbated dissemination through enhancement of macrophage motility, increased egress of macrophages from established granulomas, and alterations in macrophage actin dynamics. Reconstitution of the ancestral version of EsxM in an attenuated modern strain of Mtb altered the migratory mode of infected macrophages, enhancing their motility. In a zebrafish model, full-length EsxM promoted bone disease. The presence of a derived nonsense variant in EsxM throughout the major Mtb lineages 2, 3, and 4 is consistent with a role for EsxM in regulating the extent of dissemination.


Subject(s)
Bone Diseases , Mycobacterium marinum , Mycobacterium tuberculosis , Tuberculosis , Animals , Humans , Zebrafish , Tuberculosis/microbiology , Macrophages/microbiology , Bacterial Proteins/genetics
12.
Cell ; 185(22): 4039-4040, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36306729

ABSTRACT

Type VI secretion systems are molecular syringes used by Gram-negative bacteria to kill heterospecific (non-kin) niche competitors. In this issue of Cell, Mashruwala et al. show that colonies of the pathogen Vibrio cholera can also exhibit T6SS-mediated cell killing of kin cells and that this process benefits emerging resistant mutants, thereby increasing genetic diversity.


Subject(s)
Type VI Secretion Systems , Vibrio cholerae , Vibrio cholerae/genetics , Bacterial Secretion Systems/genetics , Cannibalism , Bacterial Proteins/genetics , Type VI Secretion Systems/genetics
13.
Annu Rev Biochem ; 90: 475-501, 2021 06 20.
Article in English | MEDLINE | ID: mdl-33781076

ABSTRACT

Optobiochemical control of protein activities allows the investigation of protein functions in living cells with high spatiotemporal resolution. Over the last two decades, numerous natural photosensory domains have been characterized and synthetic domains engineered and assembled into photoregulatory systems to control protein function with light. Here, we review the field of optobiochemistry, categorizing photosensory domains by chromophore, describing photoregulatory systems by mechanism of action, and discussing protein classes frequently investigated using optical methods. We also present examples of how spatial or temporal control of proteins in living cells has provided new insights not possible with traditional biochemical or cell biological techniques.


Subject(s)
Biochemistry/methods , Proteins/chemistry , Proteins/genetics , Proteins/metabolism , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cryptochromes/chemistry , Cryptochromes/metabolism , Flavin-Adenine Dinucleotide/chemistry , Flavin-Adenine Dinucleotide/metabolism , Light , Optogenetics/methods , Photochemical Processes , Photoreceptors, Microbial/chemistry , Photoreceptors, Microbial/metabolism , Phytochrome/chemistry , Phytochrome/metabolism , Protein Domains , Protein Engineering/methods , Vitamin B 12/metabolism
14.
Cell ; 184(9): 2430-2440.e16, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33784496

ABSTRACT

Genomically minimal cells, such as JCVI-syn3.0, offer a platform to clarify genes underlying core physiological processes. Although this minimal cell includes genes essential for population growth, the physiology of its single cells remained uncharacterized. To investigate striking morphological variation in JCVI-syn3.0 cells, we present an approach to characterize cell propagation and determine genes affecting cell morphology. Microfluidic chemostats allowed observation of intrinsic cell dynamics that result in irregular morphologies. A genome with 19 genes not retained in JCVI-syn3.0 generated JCVI-syn3A, which presents morphology similar to that of JCVI-syn1.0. We further identified seven of these 19 genes, including two known cell division genes, ftsZ and sepF, a hydrolase of unknown substrate, and four genes that encode membrane-associated proteins of unknown function, which are required together to restore a phenotype similar to that of JCVI-syn1.0. This result emphasizes the polygenic nature of cell division and morphology in a genomically minimal cell.


Subject(s)
Bacterial Proteins/genetics , Chromosomes, Bacterial/genetics , DNA, Bacterial/genetics , Genome, Bacterial , Mycoplasma/genetics , Synthetic Biology/methods , Bacterial Proteins/antagonists & inhibitors , CRISPR-Cas Systems , Genetic Engineering
15.
Cell ; 184(21): 5289-5292, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34562361

ABSTRACT

Being able to precisely turn on or off particular neurons in the brain at will was a major challenge for the neuroscience field, and few could have anticipated that the solution would come from algae. The 2021 Albert Lasker Basic Medical Research Award recognizes the contributions of Peter Hegemann, Dieter Oesterhelt, and Karl Deisseroth for their discovery of light-sensitive microbial proteins that can activate or silence brain cells. Cell editor Nicole Neuman had a conversation with Peter Hegemann about his role in bridging the two fields of microbial phototaxis and neuroscience and his perspective on the nature and future of interdisciplinary science. Excerpts from this conversation are presented below, and the full conversation is available with the article online.


Subject(s)
Awards and Prizes , Bacterial Proteins , Bacteriorhodopsins/metabolism , Channelrhodopsins/metabolism , Humans , Light , Optogenetics
16.
Cell ; 184(14): 3660-3673.e18, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34166615

ABSTRACT

Membrane remodeling and repair are essential for all cells. Proteins that perform these functions include Vipp1/IM30 in photosynthetic plastids, PspA in bacteria, and ESCRT-III in eukaryotes. Here, using a combination of evolutionary and structural analyses, we show that these protein families are homologous and share a common ancient evolutionary origin that likely predates the last universal common ancestor. This homology is evident in cryo-electron microscopy structures of Vipp1 rings from the cyanobacterium Nostoc punctiforme presented over a range of symmetries. Each ring is assembled from rungs that stack and progressively tilt to form dome-shaped curvature. Assembly is facilitated by hinges in the Vipp1 monomer, similar to those in ESCRT-III proteins, which allow the formation of flexible polymers. Rings have an inner lumen that is able to bind and deform membranes. Collectively, these data suggest conserved mechanistic principles that underlie Vipp1, PspA, and ESCRT-III-dependent membrane remodeling across all domains of life.


Subject(s)
Bacterial Proteins/metabolism , Cell Membrane/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Heat-Shock Proteins/metabolism , Multigene Family , Nostoc/metabolism , Amino Acid Sequence , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Bacterial Proteins/ultrastructure , Chickens , Cryoelectron Microscopy , Endosomal Sorting Complexes Required for Transport/chemistry , Evolution, Molecular , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/ultrastructure , Humans , Models, Molecular , Protein Structure, Secondary , Sequence Homology, Amino Acid , Thermodynamics
17.
Cell ; 184(9): 2302-2315.e12, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33838112

ABSTRACT

By following up the gut microbiome, 51 human phenotypes and plasma levels of 1,183 metabolites in 338 individuals after 4 years, we characterize microbial stability and variation in relation to host physiology. Using these individual-specific and temporally stable microbial profiles, including bacterial SNPs and structural variations, we develop a microbial fingerprinting method that shows up to 85% accuracy in classifying metagenomic samples taken 4 years apart. Application of our fingerprinting method to the independent HMP cohort results in 95% accuracy for samples taken 1 year apart. We further observe temporal changes in the abundance of multiple bacterial species, metabolic pathways, and structural variation, as well as strain replacement. We report 190 longitudinal microbial associations with host phenotypes and 519 associations with plasma metabolites. These associations are enriched for cardiometabolic traits, vitamin B, and uremic toxins. Finally, mediation analysis suggests that the gut microbiome may influence cardiometabolic health through its metabolites.


Subject(s)
Bacteria/genetics , Bacterial Proteins/metabolism , Gastrointestinal Microbiome , Metabolome , Metagenome , Microbiota , Adult , Aged , Aged, 80 and over , Bacteria/classification , Bacteria/isolation & purification , Bacteria/metabolism , Bacterial Proteins/genetics , Drug Resistance, Microbial , Feces/microbiology , Female , Genomic Instability , Humans , Longitudinal Studies , Male , Middle Aged , Phenotype , Polymorphism, Single Nucleotide , Virulence Factors/genetics , Virulence Factors/metabolism , Young Adult
18.
Cell ; 184(9): 2441-2453.e18, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33770501

ABSTRACT

Tn7-like transposons have co-opted CRISPR systems, including class 1 type I-F, I-B, and class 2 type V-K. Intriguingly, although these CRISPR-associated transposases (CASTs) undergo robust CRISPR RNA (crRNA)-guided transposition, they are almost never found in sites targeted by the crRNAs encoded by the cognate CRISPR array. To understand this paradox, we investigated CAST V-K and I-B systems and found two distinct modes of transposition: (1) crRNA-guided transposition and (2) CRISPR array-independent homing. We show distinct CAST systems utilize different molecular mechanisms to target their homing site. Type V-K CAST systems use a short, delocalized crRNA for RNA-guided homing, whereas type I-B CAST systems, which contain two distinct target selector proteins, use TniQ for RNA-guided DNA transposition and TnsD for homing to an attachment site. These observations illuminate a key step in the life cycle of CAST systems and highlight the diversity of molecular mechanisms mediating transposon homing.


Subject(s)
Bacteria/genetics , Bacterial Proteins/metabolism , CRISPR-Associated Proteins/metabolism , DNA Transposable Elements/physiology , DNA, Bacterial/metabolism , RNA, Guide, Kinetoplastida , Transposases/metabolism , Bacteria/metabolism , Bacterial Proteins/genetics , CRISPR-Associated Proteins/genetics , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , DNA, Bacterial/genetics , Gene Editing , Recombination, Genetic , Transposases/genetics
19.
Cell ; 184(21): 5279-5285, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34562367

ABSTRACT

On the occasion of the 2021 Lasker Basic Medical Research Award to Karl Deisseroth, Peter Hegemann, and Dieter Oesterhelt (for "the discovery of light-sensitive microbial proteins that can activate or deactivate individual brain cells-leading to the development of optogenetics and revolutionizing neuroscience"), Deisseroth reflects on this international collaboration, his basic mechanistic and structural discoveries regarding microbial channels that transduce photons into ion current, the causal exploration of brain cell function, and the pressing mysteries of psychiatry.


Subject(s)
Bacteria/metabolism , Bacterial Proteins/metabolism , Emotions , Membrane Proteins/metabolism , Bacteriorhodopsins/metabolism , Channelrhodopsins/metabolism , Humans , Optogenetics , Purple Membrane/metabolism
20.
Cell ; 184(14): 3643-3659.e23, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34166613

ABSTRACT

Vesicle-inducing protein in plastids 1 (VIPP1) is essential for the biogenesis and maintenance of thylakoid membranes, which transform light into life. However, it is unknown how VIPP1 performs its vital membrane-remodeling functions. Here, we use cryo-electron microscopy to determine structures of cyanobacterial VIPP1 rings, revealing how VIPP1 monomers flex and interweave to form basket-like assemblies of different symmetries. Three VIPP1 monomers together coordinate a non-canonical nucleotide binding pocket on one end of the ring. Inside the ring's lumen, amphipathic helices from each monomer align to form large hydrophobic columns, enabling VIPP1 to bind and curve membranes. In vivo mutations in these hydrophobic surfaces cause extreme thylakoid swelling under high light, indicating an essential role of VIPP1 lipid binding in resisting stress-induced damage. Using cryo-correlative light and electron microscopy (cryo-CLEM), we observe oligomeric VIPP1 coats encapsulating membrane tubules within the Chlamydomonas chloroplast. Our work provides a structural foundation for understanding how VIPP1 directs thylakoid biogenesis and maintenance.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Chlamydomonas/metabolism , Protein Multimerization , Synechocystis/metabolism , Thylakoids/metabolism , Amino Acid Sequence , Bacterial Proteins/ultrastructure , Binding Sites , Cell Membrane/metabolism , Chlamydomonas/ultrastructure , Cryoelectron Microscopy , Green Fluorescent Proteins/metabolism , Hydrophobic and Hydrophilic Interactions , Light , Lipids/chemistry , Models, Molecular , Nucleotides/metabolism , Protein Binding , Protein Structure, Secondary , Stress, Physiological/radiation effects , Synechocystis/ultrastructure , Thylakoids/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL