Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 449.819
Filter
Add more filters

Publication year range
1.
Cell ; 187(6): 1547-1562.e13, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38428424

ABSTRACT

We sequenced and assembled using multiple long-read sequencing technologies the genomes of chimpanzee, bonobo, gorilla, orangutan, gibbon, macaque, owl monkey, and marmoset. We identified 1,338,997 lineage-specific fixed structural variants (SVs) disrupting 1,561 protein-coding genes and 136,932 regulatory elements, including the most complete set of human-specific fixed differences. We estimate that 819.47 Mbp or ∼27% of the genome has been affected by SVs across primate evolution. We identify 1,607 structurally divergent regions wherein recurrent structural variation contributes to creating SV hotspots where genes are recurrently lost (e.g., CARD, C4, and OLAH gene families) and additional lineage-specific genes are generated (e.g., CKAP2, VPS36, ACBD7, and NEK5 paralogs), becoming targets of rapid chromosomal diversification and positive selection (e.g., RGPD gene family). High-fidelity long-read sequencing has made these dynamic regions of the genome accessible for sequence-level analyses within and between primate species.


Subject(s)
Genome , Primates , Animals , Humans , Base Sequence , Primates/classification , Primates/genetics , Biological Evolution , Sequence Analysis, DNA , Genomic Structural Variation
2.
Cell ; 186(24): 5220-5236.e16, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37944511

ABSTRACT

The Sc2.0 project is building a eukaryotic synthetic genome from scratch. A major milestone has been achieved with all individual Sc2.0 chromosomes assembled. Here, we describe the consolidation of multiple synthetic chromosomes using advanced endoreduplication intercrossing with tRNA expression cassettes to generate a strain with 6.5 synthetic chromosomes. The 3D chromosome organization and transcript isoform profiles were evaluated using Hi-C and long-read direct RNA sequencing. We developed CRISPR Directed Biallelic URA3-assisted Genome Scan, or "CRISPR D-BUGS," to map phenotypic variants caused by specific designer modifications, known as "bugs." We first fine-mapped a bug in synthetic chromosome II (synII) and then discovered a combinatorial interaction associated with synIII and synX, revealing an unexpected genetic interaction that links transcriptional regulation, inositol metabolism, and tRNASerCGA abundance. Finally, to expedite consolidation, we employed chromosome substitution to incorporate the largest chromosome (synIV), thereby consolidating >50% of the Sc2.0 genome in one strain.


Subject(s)
Chromosomes, Artificial, Yeast , Genome, Fungal , Saccharomyces cerevisiae , Base Sequence , Chromosomes/genetics , Saccharomyces cerevisiae/genetics , Synthetic Biology
3.
Cell ; 186(15): 3291-3306.e21, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37413987

ABSTRACT

The number of sequenced viral genomes has surged recently, presenting an opportunity to understand viral diversity and uncover unknown regulatory mechanisms. Here, we conducted a screening of 30,367 viral segments from 143 species representing 96 genera and 37 families. Using a library of viral segments in 3' UTR, we identified hundreds of elements impacting RNA abundance, translation, and nucleocytoplasmic distribution. To illustrate the power of this approach, we investigated K5, an element conserved in kobuviruses, and found its potent ability to enhance mRNA stability and translation in various contexts, including adeno-associated viral vectors and synthetic mRNAs. Moreover, we identified a previously uncharacterized protein, ZCCHC2, as a critical host factor for K5. ZCCHC2 recruits the terminal nucleotidyl transferase TENT4 to elongate poly(A) tails with mixed sequences, delaying deadenylation. This study provides a unique resource for virus and RNA research and highlights the potential of the virosphere for biological discoveries.


Subject(s)
RNA , Regulatory Sequences, Nucleic Acid , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , Base Sequence , Proteins/genetics , DNA-Directed DNA Polymerase/metabolism , RNA Stability , RNA, Viral/genetics , RNA, Viral/metabolism
4.
Cell ; 185(2): 250-265.e16, 2022 01 20.
Article in English | MEDLINE | ID: mdl-35021064

ABSTRACT

Methods to deliver gene editing agents in vivo as ribonucleoproteins could offer safety advantages over nucleic acid delivery approaches. We report the development and application of engineered DNA-free virus-like particles (eVLPs) that efficiently package and deliver base editor or Cas9 ribonucleoproteins. By engineering VLPs to overcome cargo packaging, release, and localization bottlenecks, we developed fourth-generation eVLPs that mediate efficient base editing in several primary mouse and human cell types. Using different glycoproteins in eVLPs alters their cellular tropism. Single injections of eVLPs into mice support therapeutic levels of base editing in multiple tissues, reducing serum Pcsk9 levels 78% following 63% liver editing, and partially restoring visual function in a mouse model of genetic blindness. In vitro and in vivo off-target editing from eVLPs was virtually undetected, an improvement over AAV or plasmid delivery. These results establish eVLPs as promising vehicles for therapeutic macromolecule delivery that combine key advantages of both viral and nonviral delivery.


Subject(s)
Drug Delivery Systems , Genetic Engineering , Proteins/therapeutic use , Virion/genetics , Animals , Base Sequence , Blindness/genetics , Blindness/therapy , Brain/metabolism , DNA/metabolism , Disease Models, Animal , Fibroblasts/metabolism , Gene Editing , HEK293 Cells , Humans , Liver/pathology , Mice , Mice, Inbred C57BL , Proprotein Convertase 9/metabolism , Retinal Pigment Epithelium/pathology , Retroviridae , Virion/ultrastructure , Vision, Ocular
5.
Cell ; 185(2): 266-282.e15, 2022 01 20.
Article in English | MEDLINE | ID: mdl-35026153

ABSTRACT

HIV-1-infected cells that persist despite antiretroviral therapy (ART) are frequently considered "transcriptionally silent," but active viral gene expression may occur in some cells, challenging the concept of viral latency. Applying an assay for profiling the transcriptional activity and the chromosomal locations of individual proviruses, we describe a global genomic and epigenetic map of transcriptionally active and silent proviral species and evaluate their longitudinal evolution in persons receiving suppressive ART. Using genome-wide epigenetic reference data, we show that proviral transcriptional activity is associated with activating epigenetic chromatin features in linear proximity of integration sites and in their inter- and intrachromosomal contact regions. Transcriptionally active proviruses were actively selected against during prolonged ART; however, this pattern was violated by large clones of virally infected cells that may outcompete negative selection forces through elevated intrinsic proliferative activity. Our results suggest that transcriptionally active proviruses are dynamically evolving under selection pressure by host factors.


Subject(s)
HIV-1/genetics , Proviruses/genetics , Transcription, Genetic , Aged , Base Sequence , Biological Evolution , Chromatin/metabolism , Clone Cells , DNA, Viral/genetics , Epigenesis, Genetic/drug effects , Female , Humans , Ionomycin/pharmacology , Male , Middle Aged , Phylogeny , Proviruses/drug effects , RNA, Viral/genetics , Tetradecanoylphorbol Acetate/pharmacology , Transcription, Genetic/drug effects , Virus Integration/genetics , Virus Latency/drug effects , Virus Latency/genetics
6.
Cell ; 185(2): 283-298.e17, 2022 01 20.
Article in English | MEDLINE | ID: mdl-35021065

ABSTRACT

Gasdermins are a family of structurally related proteins originally described for their role in pyroptosis. Gasdermin B (GSDMB) is currently the least studied, and while its association with genetic susceptibility to chronic mucosal inflammatory disorders is well established, little is known about its functional relevance during active disease states. Herein, we report increased GSDMB in inflammatory bowel disease, with single-cell analysis identifying epithelial specificity to inflamed colonocytes/crypt top colonocytes. Surprisingly, mechanistic experiments and transcriptome profiling reveal lack of inherent GSDMB-dependent pyroptosis in activated epithelial cells and organoids but instead point to increased proliferation and migration during in vitro wound closure, which arrests in GSDMB-deficient cells that display hyper-adhesiveness and enhanced formation of vinculin-based focal adhesions dependent on PDGF-A-mediated FAK phosphorylation. Importantly, carriage of disease-associated GSDMB SNPs confers functional defects, disrupting epithelial restitution/repair, which, altogether, establishes GSDMB as a critical factor for restoration of epithelial barrier function and the resolution of inflammation.


Subject(s)
Epithelial Cells/metabolism , Epithelial Cells/pathology , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Pore Forming Cytotoxic Proteins/metabolism , Pyroptosis , Base Sequence , Case-Control Studies , Cell Adhesion/drug effects , Cell Adhesion/genetics , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Movement/drug effects , Cell Movement/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Epithelial Cells/drug effects , Focal Adhesion Protein-Tyrosine Kinases/metabolism , HEK293 Cells , HT29 Cells , Humans , Inflammatory Bowel Diseases/genetics , Methotrexate/pharmacology , Mutation/genetics , Phosphorylation/drug effects , Polymorphism, Single Nucleotide/genetics , Pyroptosis/drug effects , Pyroptosis/genetics , Reproducibility of Results , Transcriptome/drug effects , Transcriptome/genetics , Up-Regulation/drug effects , Wound Healing/drug effects , Wound Healing/genetics
7.
Cell ; 184(4): 1047-1063.e23, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33539780

ABSTRACT

DNA has not been utilized to record temporal information, although DNA has been used to record biological information and to compute mathematical problems. Here, we found that indel generation by Cas9 and guide RNA can occur at steady rates, in contrast to typical dynamic biological reactions, and the accumulated indel frequency can be a function of time. By measuring indel frequencies, we developed a method for recording and measuring absolute time periods over hours to weeks in mammalian cells. These time-recordings were conducted in several cell types, with different promoters and delivery vectors for Cas9, and in both cultured cells and cells of living mice. As applications, we recorded the duration of chemical exposure and the lengths of elapsed time since the onset of biological events (e.g., heat exposure and inflammation). We propose that our systems could serve as synthetic "DNA clocks."


Subject(s)
CRISPR-Associated Protein 9/metabolism , Animals , Base Sequence , Cellular Microenvironment , Computer Simulation , HEK293 Cells , Half-Life , Humans , INDEL Mutation/genetics , Inflammation/pathology , Integrases/metabolism , Male , Mice, Nude , Promoter Regions, Genetic/genetics , RNA, Guide, Kinetoplastida/genetics , Reproducibility of Results , Time Factors
8.
Cell ; 184(3): 723-740.e21, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33508230

ABSTRACT

Elucidating the regulatory mechanisms of human brain evolution is essential to understanding human cognition and mental disorders. We generated multi-omics profiles and constructed a high-resolution map of 3D genome architecture of rhesus macaque during corticogenesis. By comparing the 3D genomes of human, macaque, and mouse brains, we identified many human-specific chromatin structure changes, including 499 topologically associating domains (TADs) and 1,266 chromatin loops. The human-specific loops are significantly enriched in enhancer-enhancer interactions, and the regulated genes show human-specific expression changes in the subplate, a transient zone of the developing brain critical for neural circuit formation and plasticity. Notably, many human-specific sequence changes are located in the human-specific TAD boundaries and loop anchors, which may generate new transcription factor binding sites and chromatin structures in human. Collectively, the presented data highlight the value of comparative 3D genome analyses in dissecting the regulatory mechanisms of brain development and evolution.


Subject(s)
Brain/embryology , Evolution, Molecular , Fetus/embryology , Genome , Organogenesis/genetics , Animals , Base Sequence , Chromatin/metabolism , DNA Transposable Elements/genetics , Enhancer Elements, Genetic/genetics , Gene Expression Regulation, Developmental , Humans , Macaca mulatta , Mice , Species Specificity , Synteny/genetics , Transcription Factors/metabolism
9.
Cell ; 184(24): 5970-5984.e18, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34793701

ABSTRACT

Numerous DNA double-strand breaks (DSBs) arise during meiosis to initiate homologous recombination. These DSBs are usually repaired faithfully, but here, we uncover a distinct type of mutational event in which deletions form via joining of ends from two closely spaced DSBs (double cuts) within a single hotspot or at adjacent hotspots on the same or different chromatids. Deletions occur in normal meiosis but are much more frequent when DSB formation is dysregulated in the absence of the ATM kinase. Events between chromosome homologs point to multi-chromatid damage and aborted gap repair. Some deletions contain DNA from other hotspots, indicating that double cutting at distant sites creates substrates for insertional mutagenesis. End joining at double cuts can also yield tandem duplications or extrachromosomal circles. Our findings highlight the importance of DSB regulation and reveal a previously hidden potential for meiotic mutagenesis that is likely to affect human health and genome evolution.


Subject(s)
Gene Deletion , Gene Duplication , Germ Cells/metabolism , Recombination, Genetic/genetics , Animals , Ataxia Telangiectasia Mutated Proteins/deficiency , Ataxia Telangiectasia Mutated Proteins/metabolism , Base Sequence , Chromatids/metabolism , Chromosomes, Mammalian/genetics , Crosses, Genetic , DNA Breaks, Double-Stranded , DNA, Circular/genetics , Female , Genome , Haplotypes/genetics , Homologous Recombination/genetics , Male , Mice, Inbred C57BL , Mice, Inbred DBA , Mutagenesis, Insertional/genetics , Mutation/genetics
10.
Cell ; 184(3): 675-688.e19, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33421369

ABSTRACT

CRISPR-Cas systems provide prokaryotes with acquired immunity against viruses and plasmids, but how these systems are regulated to prevent autoimmunity is poorly understood. Here, we show that in the S. pyogenes CRISPR-Cas system, a long-form transactivating CRISPR RNA (tracr-L) folds into a natural single guide that directs Cas9 to transcriptionally repress its own promoter (Pcas). Further, we demonstrate that Pcas serves as a critical regulatory node. De-repression causes a dramatic 3,000-fold increase in immunization rates against viruses; however, heightened immunity comes at the cost of increased autoimmune toxicity. Using bioinformatic analyses, we provide evidence that tracrRNA-mediated autoregulation is widespread in type II-A CRISPR-Cas systems. Collectively, we unveil a new paradigm for the intrinsic regulation of CRISPR-Cas systems by natural single guides, which may facilitate the frequent horizontal transfer of these systems into new hosts that have not yet evolved their own regulatory strategies.


Subject(s)
CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/genetics , Gene Expression , Homeostasis/genetics , RNA, Guide, Kinetoplastida/genetics , Autoimmunity/genetics , Base Sequence , Conserved Sequence , Down-Regulation/genetics , Models, Genetic , Mutation/genetics , Operon/genetics , Promoter Regions, Genetic/genetics , Streptococcus pyogenes/genetics , Stress, Physiological/genetics , Transcription, Genetic , Transcriptional Activation/genetics
11.
Cell ; 184(12): 3109-3124.e22, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34004145

ABSTRACT

Glycans modify lipids and proteins to mediate inter- and intramolecular interactions across all domains of life. RNA is not thought to be a major target of glycosylation. Here, we challenge this view with evidence that mammals use RNA as a third scaffold for glycosylation. Using a battery of chemical and biochemical approaches, we found that conserved small noncoding RNAs bear sialylated glycans. These "glycoRNAs" were present in multiple cell types and mammalian species, in cultured cells, and in vivo. GlycoRNA assembly depends on canonical N-glycan biosynthetic machinery and results in structures enriched in sialic acid and fucose. Analysis of living cells revealed that the majority of glycoRNAs were present on the cell surface and can interact with anti-dsRNA antibodies and members of the Siglec receptor family. Collectively, these findings suggest the existence of a direct interface between RNA biology and glycobiology, and an expanded role for RNA in extracellular biology.


Subject(s)
Cell Membrane/metabolism , Polysaccharides/metabolism , RNA/metabolism , Animals , Antibodies/metabolism , Base Sequence , Biosynthetic Pathways , Cell Line , Cell Survival , Humans , Mass Spectrometry , N-Acetylneuraminic Acid/metabolism , Polyadenylation , Polysaccharides/chemistry , RNA/chemistry , RNA/genetics , RNA, Untranslated/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Staining and Labeling
12.
Cell ; 184(12): 3267-3280.e18, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34043941

ABSTRACT

Searching for factors to improve knockin efficiency for therapeutic applications, biotechnology, and generation of non-human primate models of disease, we found that the strand exchange protein RAD51 can significantly increase Cas9-mediated homozygous knockin in mouse embryos through an interhomolog repair (IHR) mechanism. IHR is a hallmark of meiosis but only occurs at low frequencies in somatic cells, and its occurrence in zygotes is controversial. Using multiple approaches, we provide evidence for an endogenous IHR mechanism in the early embryo that can be enhanced by RAD51. This process can be harnessed to generate homozygotes from wild-type zygotes using exogenous donors and to convert heterozygous alleles into homozygous alleles without exogenous templates. Furthermore, we identify additional IHR-promoting factors and describe features of IHR events. Together, our findings show conclusive evidence for IHR in mouse embryos and describe an efficient method for enhanced gene conversion.


Subject(s)
DNA Repair/genetics , Gene Conversion , Rad51 Recombinase/metabolism , Alleles , Animals , Base Sequence , CRISPR-Associated Protein 9/metabolism , Calcium-Binding Proteins/metabolism , Cell Cycle Proteins/metabolism , Chromosomes, Mammalian/genetics , DNA Breaks, Double-Stranded , Embryo, Mammalian , Female , Genetic Loci , Homologous Recombination/genetics , Homozygote , Humans , INDEL Mutation/genetics , Mice, Inbred C57BL , Mosaicism , Nuclear Proteins/metabolism , Polymorphism, Single Nucleotide/genetics , Ribonucleoproteins/metabolism , Zygote/metabolism
13.
Cell ; 184(18): 4680-4696.e22, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34380047

ABSTRACT

Mutations causing amyotrophic lateral sclerosis (ALS) often affect the condensation properties of RNA-binding proteins (RBPs). However, the role of RBP condensation in the specificity and function of protein-RNA complexes remains unclear. We created a series of TDP-43 C-terminal domain (CTD) variants that exhibited a gradient of low to high condensation propensity, as observed in vitro and by nuclear mobility and foci formation. Notably, a capacity for condensation was required for efficient TDP-43 assembly on subsets of RNA-binding regions, which contain unusually long clusters of motifs of characteristic types and density. These "binding-region condensates" are promoted by homomeric CTD-driven interactions and required for efficient regulation of a subset of bound transcripts, including autoregulation of TDP-43 mRNA. We establish that RBP condensation can occur in a binding-region-specific manner to selectively modulate transcriptome-wide RNA regulation, which has implications for remodeling RNA networks in the context of signaling, disease, and evolution.


Subject(s)
DNA-Binding Proteins/metabolism , RNA-Binding Proteins/metabolism , RNA/metabolism , 3' Untranslated Regions/genetics , Base Sequence , Cell Nucleus/metabolism , HEK293 Cells , HeLa Cells , Homeostasis , Humans , Mutation/genetics , Nucleotide Motifs/genetics , Phase Transition , Point Mutation/genetics , Poly A/metabolism , Protein Binding , Protein Multimerization , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Deletion
14.
Cell ; 184(22): 5541-5558.e22, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34644528

ABSTRACT

Retrotransposons mediate gene regulation in important developmental and pathological processes. Here, we characterized the transient retrotransposon induction during preimplantation development of eight mammals. Induced retrotransposons exhibit similar preimplantation profiles across species, conferring gene regulatory activities, particularly through long terminal repeat (LTR) retrotransposon promoters. A mouse-specific MT2B2 retrotransposon promoter generates an N-terminally truncated Cdk2ap1ΔN that peaks in preimplantation embryos and promotes proliferation. In contrast, the canonical Cdk2ap1 peaks in mid-gestation and represses cell proliferation. This MT2B2 promoter, whose deletion abolishes Cdk2ap1ΔN production, reduces cell proliferation and impairs embryo implantation, is developmentally essential. Intriguingly, Cdk2ap1ΔN is evolutionarily conserved in sequence and function yet is driven by different promoters across mammals. The distinct preimplantation Cdk2ap1ΔN expression in each mammalian species correlates with the duration of its preimplantation development. Hence, species-specific transposon promoters can yield evolutionarily conserved, alternative protein isoforms, bestowing them with new functions and species-specific expression to govern essential biological divergence.


Subject(s)
Conserved Sequence , Embryonic Development/genetics , Protein Kinases/metabolism , Retroelements/genetics , Tumor Suppressor Proteins/metabolism , Animals , Base Sequence , Blastocyst/metabolism , Cell Proliferation , Evolution, Molecular , Female , Gene Expression Regulation, Developmental , Human Embryonic Stem Cells/metabolism , Humans , Mammals/genetics , Mice, Inbred C57BL , Mice, Knockout , Models, Biological , Promoter Regions, Genetic , Protein Isoforms/metabolism
15.
Cell ; 184(4): 1064-1080.e20, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33606977

ABSTRACT

Understanding the functional consequences of single-nucleotide variants is critical to uncovering the genetic underpinnings of diseases, but technologies to characterize variants are limiting. Here, we leverage CRISPR-Cas9 cytosine base editors in pooled screens to scalably assay variants at endogenous loci in mammalian cells. We benchmark the performance of base editors in positive and negative selection screens, identifying known loss-of-function mutations in BRCA1 and BRCA2 with high precision. To demonstrate the utility of base editor screens to probe small molecule-protein interactions, we screen against BH3 mimetics and PARP inhibitors, identifying point mutations that confer drug sensitivity or resistance. We also create a library of single guide RNAs (sgRNAs) predicted to generate 52,034 ClinVar variants in 3,584 genes and conduct screens in the presence of cellular stressors, identifying loss-of-function variants in numerous DNA damage repair genes. We anticipate that this screening approach will be broadly useful to readily and scalably functionalize genetic variants.


Subject(s)
Gene Editing , Genetic Variation , High-Throughput Nucleotide Sequencing , Alleles , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Base Sequence , Catalytic Domain , Cell Line, Tumor , Humans , Loss of Function Mutation , Mutagenesis/genetics , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Point Mutation/genetics , Poly(ADP-ribose) Polymerases/chemistry , Poly(ADP-ribose) Polymerases/genetics , Reproducibility of Results , Selection, Genetic , bcl-X Protein/genetics
16.
Cell ; 184(20): 5163-5178.e24, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34559985

ABSTRACT

Rift Valley fever virus (RVFV) is a zoonotic pathogen with pandemic potential. RVFV entry is mediated by the viral glycoprotein (Gn), but host entry factors remain poorly defined. Our genome-wide CRISPR screen identified low-density lipoprotein receptor-related protein 1 (mouse Lrp1/human LRP1), heat shock protein (Grp94), and receptor-associated protein (RAP) as critical host factors for RVFV infection. RVFV Gn directly binds to specific Lrp1 clusters and is glycosylation independent. Exogenous addition of murine RAP domain 3 (mRAPD3) and anti-Lrp1 antibodies neutralizes RVFV infection in taxonomically diverse cell lines. Mice treated with mRAPD3 and infected with pathogenic RVFV are protected from disease and death. A mutant mRAPD3 that binds Lrp1 weakly failed to protect from RVFV infection. Together, these data support Lrp1 as a host entry factor for RVFV infection and define a new target to limit RVFV infections.


Subject(s)
Host-Pathogen Interactions , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Rift Valley fever virus/physiology , Virus Internalization , Animals , Antibody Specificity/immunology , Base Sequence , Brain/pathology , Brain/virology , CRISPR-Cas Systems/genetics , Cell Membrane/metabolism , Cells, Cultured , Glycoproteins/metabolism , Glycosaminoglycans/metabolism , Glycosylation , Humans , LDL-Receptor Related Protein-Associated Protein/metabolism , Ligands , Low Density Lipoprotein Receptor-Related Protein-1/deficiency , Membrane Glycoproteins/metabolism , Mice , Protein Binding , Protein Denaturation , Rift Valley Fever/pathology , Rift Valley Fever/prevention & control , Rift Valley Fever/virology , Rift Valley fever virus/immunology
17.
Cell ; 184(12): 3125-3142.e25, 2021 06 10.
Article in English | MEDLINE | ID: mdl-33930289

ABSTRACT

The N6-methyladenosine (m6A) RNA modification is used widely to alter the fate of mRNAs. Here we demonstrate that the C. elegans writer METT-10 (the ortholog of mouse METTL16) deposits an m6A mark on the 3' splice site (AG) of the S-adenosylmethionine (SAM) synthetase pre-mRNA, which inhibits its proper splicing and protein production. The mechanism is triggered by a rich diet and acts as an m6A-mediated switch to stop SAM production and regulate its homeostasis. Although the mammalian SAM synthetase pre-mRNA is not regulated via this mechanism, we show that splicing inhibition by 3' splice site m6A is conserved in mammals. The modification functions by physically preventing the essential splicing factor U2AF35 from recognizing the 3' splice site. We propose that use of splice-site m6A is an ancient mechanism for splicing regulation.


Subject(s)
Adenosine/analogs & derivatives , RNA Splice Sites/genetics , RNA Splicing/genetics , Splicing Factor U2AF/metabolism , Adenosine/metabolism , Amino Acid Sequence , Animals , Base Sequence , Caenorhabditis elegans/genetics , Conserved Sequence/genetics , Diet , HeLa Cells , Humans , Introns/genetics , Methionine Adenosyltransferase , Methylation , Methyltransferases/chemistry , Mice , Mutation/genetics , Nucleic Acid Conformation , Protein Binding , RNA Precursors/chemistry , RNA Precursors/genetics , RNA Precursors/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Nuclear , S-Adenosylmethionine , Transcriptome/genetics
18.
Cell ; 184(17): 4531-4546.e26, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34314702

ABSTRACT

Defects in translation lead to changes in the expression of proteins that can serve as drivers of cancer formation. Here, we show that cytosolic NAD+ synthesis plays an essential role in ovarian cancer by regulating translation and maintaining protein homeostasis. Expression of NMNAT-2, a cytosolic NAD+ synthase, is highly upregulated in ovarian cancers. NMNAT-2 supports the catalytic activity of the mono(ADP-ribosyl) transferase (MART) PARP-16, which mono(ADP-ribosyl)ates (MARylates) ribosomal proteins. Depletion of NMNAT-2 or PARP-16 leads to inhibition of MARylation, increased polysome association and enhanced translation of specific mRNAs, aggregation of their translated protein products, and reduced growth of ovarian cancer cells. Furthermore, MARylation of the ribosomal proteins, such as RPL24 and RPS6, inhibits polysome assembly by stabilizing eIF6 binding to ribosomes. Collectively, our results demonstrate that ribosome MARylation promotes protein homeostasis in cancers by fine-tuning the levels of protein synthesis and preventing toxic protein aggregation.


Subject(s)
ADP-Ribosylation , Ovarian Neoplasms/metabolism , Protein Biosynthesis , Proteostasis , Ribosomes/metabolism , 3' Untranslated Regions/genetics , Animals , Base Sequence , Cell Line, Tumor , Cell Proliferation , Endoplasmic Reticulum Stress , Fallopian Tubes/metabolism , Female , Humans , Mice, Inbred NOD , Mice, SCID , NAD/metabolism , Nicotinamide-Nucleotide Adenylyltransferase , Nucleic Acid Conformation , Ovarian Neoplasms/pathology , Poly(ADP-ribose) Polymerases/metabolism , Polyribosomes/metabolism , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Ribosomal Proteins/metabolism
19.
Cell ; 184(14): 3812-3828.e30, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34214472

ABSTRACT

We study a patient with the human papilloma virus (HPV)-2-driven "tree-man" phenotype and two relatives with unusually severe HPV4-driven warts. The giant horns form an HPV-2-driven multifocal benign epithelial tumor overexpressing viral oncogenes in the epidermis basal layer. The patients are unexpectedly homozygous for a private CD28 variant. They have no detectable CD28 on their T cells, with the exception of a small contingent of revertant memory CD4+ T cells. T cell development is barely affected, and T cells respond to CD3 and CD2, but not CD28, costimulation. Although the patients do not display HPV-2- and HPV-4-reactive CD4+ T cells in vitro, they make antibodies specific for both viruses in vivo. CD28-deficient mice are susceptible to cutaneous infections with the mouse papillomavirus MmuPV1. The control of HPV-2 and HPV-4 in keratinocytes is dependent on the T cell CD28 co-activation pathway. Surprisingly, human CD28-dependent T cell responses are largely redundant for protective immunity.


Subject(s)
CD28 Antigens/deficiency , Inheritance Patterns/genetics , Papillomaviridae/physiology , Skin/virology , T-Lymphocytes/immunology , Adult , Amino Acid Sequence , Animals , Base Sequence , CD28 Antigens/genetics , CD28 Antigens/metabolism , CD4-Positive T-Lymphocytes/immunology , Child , Endopeptidases/metabolism , Female , Genes, Recessive , HEK293 Cells , Homozygote , Humans , Immunity, Humoral , Immunologic Memory , Jurkat Cells , Keratinocytes/pathology , Male , Mice, Inbred C57BL , Oncogenes , Papilloma/pathology , Papilloma/virology , Pedigree , Protein Sorting Signals , RNA, Messenger/genetics , RNA, Messenger/metabolism
20.
Cell ; 184(20): 5179-5188.e8, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34499854

ABSTRACT

We present evidence for multiple independent origins of recombinant SARS-CoV-2 viruses sampled from late 2020 and early 2021 in the United Kingdom. Their genomes carry single-nucleotide polymorphisms and deletions that are characteristic of the B.1.1.7 variant of concern but lack the full complement of lineage-defining mutations. Instead, the remainder of their genomes share contiguous genetic variation with non-B.1.1.7 viruses circulating in the same geographic area at the same time as the recombinants. In four instances, there was evidence for onward transmission of a recombinant-origin virus, including one transmission cluster of 45 sequenced cases over the course of 2 months. The inferred genomic locations of recombination breakpoints suggest that every community-transmitted recombinant virus inherited its spike region from a B.1.1.7 parental virus, consistent with a transmission advantage for B.1.1.7's set of mutations.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Pandemics , Recombination, Genetic , SARS-CoV-2/genetics , Base Sequence/genetics , COVID-19/virology , Computational Biology/methods , Gene Frequency , Genome, Viral , Genotype , Humans , Mutation , Phylogeny , Polymorphism, Single Nucleotide , United Kingdom/epidemiology , Whole Genome Sequencing/methods
SELECTION OF CITATIONS
SEARCH DETAIL