Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.830
Filter
Add more filters

Publication year range
1.
Cell ; 185(16): 2961-2974.e19, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35839760

ABSTRACT

Wheat crops are frequently devastated by pandemic stripe rust caused by Puccinia striiformis f. sp. tritici (Pst). Here, we identify and characterize a wheat receptor-like cytoplasmic kinase gene, TaPsIPK1, that confers susceptibility to this pathogen. PsSpg1, a secreted fungal effector vital for Pst virulence, can bind TaPsIPK1, enhance its kinase activity, and promote its nuclear localization, where it phosphorylates the transcription factor TaCBF1d for gene regulation. The phosphorylation of TaCBF1d switches its transcriptional activity on the downstream genes. CRISPR-Cas9 inactivation of TaPsIPK1 in wheat confers broad-spectrum resistance against Pst without impacting important agronomic traits in two years of field tests. The disruption of TaPsIPK1 leads to immune priming without constitutive activation of defense responses. Taken together, TaPsIPK1 is a susceptibility gene known to be targeted by rust effectors, and it has great potential for developing durable resistance against rust by genetic modifications.


Subject(s)
Basidiomycota , Triticum , Basidiomycota/genetics , Basidiomycota/metabolism , Plant Diseases , Protein Kinases/genetics , Protein Kinases/metabolism , Triticum/genetics , Triticum/metabolism , Triticum/microbiology , Virulence/genetics
2.
PLoS Genet ; 20(3): e1011207, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38498573

ABSTRACT

Permanent heterozygous loci, such as sex- or mating-compatibility regions, often display suppression of recombination and signals of genomic degeneration. In Basidiomycota, two distinct loci confer mating compatibility. These loci encode homeodomain (HD) transcription factors and pheromone receptor (Pra)-ligand allele pairs. To date, an analysis of genome level mating-type (MAT) loci is lacking for obligate biotrophic basidiomycetes in the Pucciniales, an order containing serious agricultural plant pathogens. Here, we focus on four species of Puccinia that infect oat and wheat, including P. coronata f. sp. avenae, P. graminis f. sp. tritici, P. triticina and P. striiformis f. sp. tritici. MAT loci are located on two separate chromosomes supporting previous hypotheses of a tetrapolar mating compatibility system in the Pucciniales. The HD genes are multiallelic in all four species while the PR locus appears biallelic, except for P. graminis f. sp. tritici, which potentially has multiple alleles. HD loci are largely conserved in their macrosynteny, both within and between species, without strong signals of recombination suppression. Regions proximal to the PR locus, however, displayed signs of recombination suppression and genomic degeneration in the three species with a biallelic PR locus. Our observations support a link between recombination suppression, genomic degeneration, and allele diversity of MAT loci that is consistent with recent mathematical modelling and simulations. Finally, we confirm that MAT genes are expressed during the asexual infection cycle, and we propose that this may support regulating nuclear maintenance and pairing during infection and spore formation. Our study provides insights into the evolution of MAT loci of key pathogenic Puccinia species. Understanding mating compatibility can help predict possible combinations of nuclear pairs, generated by sexual reproduction or somatic recombination, and the potential evolution of new virulent isolates of these important plant pathogens.


Subject(s)
Basidiomycota , Edible Grain , Edible Grain/genetics , Basidiomycota/genetics , Genomics , Genome, Fungal/genetics , Reproduction , Plant Diseases/genetics , Plant Diseases/microbiology
3.
Proc Natl Acad Sci U S A ; 119(46): e2208575119, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36343254

ABSTRACT

Genetic variability can be generated by different mechanisms, and across the life cycle. Many basidiomycete fungi have an extended somatic stage, during which each cell carries two genetically distinct haploid nuclei (dikaryosis), resulting from fusion of two compatible monokaryotic individuals. Recent findings have revealed remarkable genome stability at the nucleotide level during dikaryotic growth in these organisms, but whether this pattern extends to mutations affecting large genomic regions remains unknown. Furthermore, despite high genome integrity during dikaryosis, basidiomycete populations are not devoid of genetic diversity, begging the question of when this diversity is introduced. Here, we used a Marasmius oreades fairy ring to investigate the rise of large-scale variants during mono- and dikaryosis. By separating the two nuclear genotypes from four fruiting bodies and generating complete genome assemblies, we gained access to investigate genomic changes of any size. We found that during dikaryotic growth in nature the genome stayed intact, but after separating the nucleotypes into monokaryons, a considerable amount of structural variation started to accumulate, driven to large extent by transposons. Transposon insertions were also found in monokaryotic single-meiospore isolates. Hence, we show that genome integrity in basidiomycetes can be interrupted during monokaryosis, leading to genomic rearrangements and increased activity of transposable elements. We suggest that genetic diversification is disproportionate between life cycle stages in mushroom-forming fungi, so that the short-lived monokaryotic growth stage is more prone to genetic changes than the dikaryotic stage.


Subject(s)
Agaricales , Basidiomycota , Marasmius , Humans , Animals , Basidiomycota/genetics , Agaricales/genetics , Life Cycle Stages
4.
PLoS Genet ; 18(3): e1010097, 2022 03.
Article in English | MEDLINE | ID: mdl-35358178

ABSTRACT

Balancing selection, an evolutionary force that retains genetic diversity, has been detected in multiple genes and organisms, such as the sexual mating loci in fungi. However, to quantify the strength of balancing selection and define the mating-related genes require a large number of strains. In tetrapolar basidiomycete fungi, sexual type is determined by two unlinked loci, MATA and MATB. Genes in both loci define mating type identity, control successful mating and completion of the life cycle. These loci are usually highly diverse. Previous studies have speculated, based on culture crosses, that species of the non-model genus Trichaptum (Hymenochaetales, Basidiomycota) possess a tetrapolar mating system, with multiple alleles. Here, we sequenced a hundred and eighty strains of three Trichaptum species. We characterized the chromosomal location of MATA and MATB, the molecular structure of MAT regions and their allelic richness. The sequencing effort was sufficient to molecularly characterize multiple MAT alleles segregating before the speciation event of Trichaptum species. Analyses suggested that long-term balancing selection has generated trans-species polymorphisms. Mating sequences were classified in different allelic classes based on an amino acid identity (AAI) threshold supported by phylogenetics. 17,550 mating types were predicted based on the allelic classes. In vitro crosses allowed us to support the degree of allelic divergence needed for successful mating. Even with the high amount of divergence, key amino acids in functional domains are conserved. We conclude that the genetic diversity of mating loci in Trichaptum is due to long-term balancing selection, with limited recombination and duplication activity. The large number of sequenced strains highlighted the importance of sequencing multiple individuals from different species to detect the mating-related genes, the mechanisms generating diversity and the evolutionary forces maintaining them.


Subject(s)
Basidiomycota , Genes, Mating Type, Fungal , Basidiomycota/genetics , Genes, Mating Type, Fungal/genetics , Phylogeny
5.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Article in English | MEDLINE | ID: mdl-35012977

ABSTRACT

Small RNAs (sRNAs) are known to regulate pathogenic plant-microbe interactions. Emerging evidence from the study of these model systems suggests that microRNAs (miRNAs) can be translocated between microbes and plants to facilitate symbiosis. The roles of sRNAs in mutualistic mycorrhizal fungal interactions, however, are largely unknown. In this study, we characterized miRNAs encoded by the ectomycorrhizal fungus Pisolithus microcarpus and investigated their expression during mutualistic interaction with Eucalyptus grandis. Using sRNA sequencing data and in situ miRNA detection, a novel fungal miRNA, Pmic_miR-8, was found to be transported into E. grandis roots after interaction with P. microcarpus Further characterization experiments demonstrate that inhibition of Pmic_miR-8 negatively impacts the maintenance of mycorrhizal roots in E. grandis, while supplementation of Pmic_miR-8 led to deeper integration of the fungus into plant tissues. Target prediction and experimental testing suggest that Pmic_miR-8 may target the host NB-ARC domain containing transcripts, suggesting a potential role for this miRNA in subverting host signaling to stabilize the symbiotic interaction. Altogether, we provide evidence of previously undescribed cross-kingdom sRNA transfer from ectomycorrhizal fungi to plant roots, shedding light onto the involvement of miRNAs during the developmental process of mutualistic symbioses.


Subject(s)
Basidiomycota/genetics , Gene Silencing , MicroRNAs/metabolism , Mycorrhizae/genetics , Symbiosis/genetics , Base Sequence , Basidiomycota/growth & development , Colony Count, Microbial , Gene Expression Profiling , Gene Expression Regulation, Fungal , Genome, Fungal , MicroRNAs/genetics , Plant Roots/microbiology , RNA, Messenger/genetics , RNA, Messenger/metabolism
6.
Plant J ; 114(6): 1209-1226, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37323061

ABSTRACT

Protein-protein interactions (PPIs) are a fundamental process in cellular biogenesis. Here we have developed a split GAL4 RUBY assay that enables macroscopically visual PPI detection in plant leaves in real time. Candidate interacting protein partners are fused to specific domains of the yeast GAL4 and herpes simplex virus VP16 transcription factors and transiently expressed in Nicotiana benthamina leaves by Agrobacterium infiltration. PPI, that may be either direct or indirect, results in transcriptional activation of a RUBY reporter gene leading to the production of the highly visual metabolite, betalain, in leaf tissue of living plants. Samples require no processing for in planta visual qualitative assessment, but with very simple processing steps the assay is quantitative. Its accuracy is demonstrated using a series of known interacting protein partners and mutant derivatives including transcription factors, signalling molecules and plant resistance proteins with cognate pathogen effectors. Using this assay, association between the wheat Sr27 stem rust disease resistance protein and corresponding AvrSr27 avirulence effector family produced by the rust pathogen is detected. Interaction is also observed between this resistance protein and the effector encoded by the corresponding avrSr27-3 virulence allele. However, this association appears weaker in the split GAL4 RUBY assay, which coupled with lower avrSr27-3 expression during stem rust infection, likely enables virulent races of the rust pathogen to avoid Sr27-mediated detection.


Subject(s)
Basidiomycota , Basidiomycota/genetics , Plants/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Nicotiana/metabolism , Transcription Factors/genetics , Plant Diseases/microbiology
7.
Plant J ; 115(2): 480-493, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37029526

ABSTRACT

Rust, caused by the fungus Puccinia helianthi Schwein., is one of the most devastating diseases of sunflower (Helianthus annuus L.), affecting global production. The rust R gene R11 in sunflower line HA-R9 shows broad-spectrum resistance to P. helianthi virulent races and was previously mapped to an interval on sunflower chromosome 13 encompassing three candidate genes annotated in the XRQr1.0 reference genome assembly. In the current study, we combined ethyl methane sulfonate (EMS) mutagenesis with targeted region capture and PacBio long-read sequencing to clone the R11 gene. Sequencing of a 60-kb region spanning the R11 locus from the R11 -HA-R9 rust-resistant line and three EMS-induced susceptible mutants facilitated the identification of R11 and definition of induced mutations. The R11 gene is predicted to have a single 3996-bp open reading frame and encodes a protein of 1331 amino acids with CC-NBS-LRR domains typical of genes conferring plant resistance to biotrophic pathogens. Point mutations identified in the R11 rust-susceptible mutants resulted in premature stop codons, consistent with loss of function leading to rust susceptibility. Additional functional studies using comparative RNA sequencing of the resistant line R11 -HA-R9 and R11 -susceptible mutants revealed substantial differences in gene expression patterns associated with R11 -mediated resistance at 7 days post-inoculation with rust, and uncovered the potential roles of terpenoid biosynthesis and metabolism in sunflower rust resistance.


Subject(s)
Basidiomycota , Helianthus , Helianthus/genetics , Helianthus/microbiology , Chromosome Mapping , Genetic Markers , Genes, Plant/genetics , Genetic Linkage , Basidiomycota/genetics , Mutation , Cloning, Molecular , Plant Diseases/genetics , Plant Diseases/microbiology , Disease Resistance/genetics
8.
Mol Plant Microbe Interact ; 37(3): 171-178, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38170736

ABSTRACT

Crops are constantly exposed to pathogenic microbes. Rust fungi are examples of these harmful microorganisms, which have a major economic impact on wheat production. To protect themselves from pathogens like rust fungi, plants employ a multilayered immune system that includes immunoreceptors encoded by resistance genes. Significant efforts have led to the isolation of numerous resistance genes against rust fungi in cereals, especially in wheat. However, the evolution of virulence of rust fungi hinders the durability of resistance genes as a strategy for crop protection. Rust fungi, like other biotrophic pathogens, secrete an arsenal of effectors to facilitate infection, and these are the molecules that plant immunoreceptors target for pathogen recognition and mounting defense responses. When recognized, these effector proteins are referred to as avirulence (Avr) effectors. Despite the many predicted effectors in wheat rust fungi, only five Avr genes have been identified, all from wheat stem rust. Knowledge of the Avr genes and their variation in the fungal population will inform deployment of the most appropriate wheat disease-resistance genes for breeding and farming. The review provides an overview of methodologies as well as the validation techniques that have been used to characterize Avr effectors from wheat stem rust. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Subject(s)
Basidiomycota , Plant Breeding , Basidiomycota/genetics , Virulence/genetics , Disease Resistance/genetics , Crops, Agricultural , Plant Diseases/microbiology
9.
Mol Plant Microbe Interact ; 37(3): 277-289, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38148279

ABSTRACT

The poplar rust fungus Melampsora larici-populina is part of one of the most devastating group of fungi (Pucciniales) and causes important economic losses to the poplar industry. Because M. larici-populina is a heteroecious obligate biotroph, its spread depends on its ability to carry out its reproductive cycle through larch and then poplar parasitism. Genomic approaches have identified more than 1,000 candidate secreted effector proteins (CSEPs) from the predicted secretome of M. larici-populina that are potentially implicated in the infection process. In this study, we selected CSEP pairs (and one triplet) among CSEP gene families that share high sequence homology but display specific gene expression profiles among the two distinct hosts. We determined their subcellular localization by confocal microscopy through expression in the heterologous plant system Nicotiana benthamiana. Five out of nine showed partial or complete chloroplastic localization. We also screened for potential protein interactors from larch and poplar by yeast two-hybrid assays. One pair of CSEPs and the triplet shared common interactors, whereas the members of the two other pairs did not have common targets from either host. Finally, stromule induction quantification revealed that two pairs and the triplet of CSEPs induced stromules when transiently expressed in N. benthamiana. The use of N. benthamiana eds1 and nrg1 knockout lines showed that CSEPs can induce stromules through an eds1-independent mechanism. However, CSEP homologs shared the same impact on stromule induction and contributed to discovering a new stromule induction cascade that can be partially and/or fully independent of eds1. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Basidiomycota , Populus , Nicotiana/genetics , Basidiomycota/genetics , Transcriptome , Plastids , Populus/genetics , Populus/microbiology , Plant Diseases/microbiology
10.
Mol Plant Microbe Interact ; 37(3): 290-303, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37955552

ABSTRACT

Puccinia coronata f. sp. avenae (Pca) is an important fungal pathogen causing crown rust that impacts oat production worldwide. Genetic resistance for crop protection against Pca is often overcome by the rapid virulence evolution of the pathogen. This study investigated the factors shaping adaptive evolution of Pca using pathogen populations from distinct geographic regions within the United States and South Africa. Phenotypic and genome-wide sequencing data of these diverse Pca collections, including 217 isolates, uncovered phylogenetic relationships and established distinct genetic composition between populations from northern and southern regions from the United States and South Africa. The population dynamics of Pca involve a bidirectional movement of inoculum between northern and southern regions of the United States and contributions from clonality and sexuality. The population from South Africa is solely clonal. A genome-wide association study (GWAS) employing a haplotype-resolved Pca reference genome was used to define 11 virulence-associated loci corresponding to 25 oat differential lines. These regions were screened to determine candidate Avr effector genes. Overall, the GWAS results allowed us to identify the underlying genetic factors controlling pathogen recognition in an oat differential set used in the United States to assign pathogen races (pathotypes). Key GWAS findings support complex genetic interactions in several oat lines, suggesting allelism among resistance genes or redundancy of genes included in the differential set, multiple resistance genes recognizing genetically linked Avr effector genes, or potentially epistatic relationships. A careful evaluation of the composition of the oat differential set accompanied by the development or implementation of molecular markers is recommended. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Basidiomycota , Disease Resistance , Puccinia , Disease Resistance/genetics , Avena/genetics , Avena/microbiology , Virulence/genetics , Genome-Wide Association Study , Phylogeny , Plant Diseases/microbiology , Basidiomycota/genetics , Population Dynamics
11.
Mol Biol Evol ; 40(3)2023 03 04.
Article in English | MEDLINE | ID: mdl-36811946

ABSTRACT

The mutualistic ectomycorrhizal (ECM) fungal genus Pisolithus comprises 19 species defined to date which colonize the roots of >50 hosts worldwide suggesting that substantial genomic and functional evolution occurred during speciation. To better understand this intra-genus variation, we undertook a comparative multi-omic study of nine Pisolithus species sampled from North America, South America, Asia, and Australasia. We found that there was a small core set of genes common to all species (13%), and that these genes were more likely to be significantly regulated during symbiosis with a host than accessory or species-specific genes. Thus, the genetic "toolbox" foundational to the symbiotic lifestyle in this genus is small. Transposable elements were located significantly closer to gene classes including effector-like small secreted proteins (SSPs). Poorly conserved SSPs were more likely to be induced by symbiosis, suggesting that they may be a class of protein that tune host specificity. The Pisolithus gene repertoire is characterized by divergent CAZyme profiles when compared with other fungi, both symbiotic and saprotrophic. This was driven by differences in enzymes associated with symbiotic sugar processing, although metabolomic analysis suggest that neither copy number nor expression of these genes is sufficient to predict sugar capture from a host plant or its metabolism in fungal hyphae. Our results demonstrate that intra-genus genomic and functional diversity within ECM fungi is greater than previously thought, underlining the importance of continued comparative studies within the fungal tree of life to refine our focus on pathways and evolutionary processes foundational to this symbiotic lifestyle.


Subject(s)
Basidiomycota , Mycorrhizae , Mycorrhizae/genetics , Symbiosis/genetics , Basidiomycota/genetics , Plant Roots , Sugars
12.
BMC Plant Biol ; 24(1): 291, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632518

ABSTRACT

BACKGROUND: Leaf rust (LR) is among the most destructive fungal diseases of rye (Secale cereale L.). Despite intensive research using various analytical and methodological approaches, such as quantitative trait locus (QTL) mapping, candidate gene expression analysis, and transcriptome sequencing, the genetic basis of the rye immune response to LR remains unclear. RESULTS: A genome-wide association study was employed to detect QTLs controlling the immune response to LR of rye. A mapping population, G38A, was constructed by crossing two inbred lines: 723 (susceptible to LR) and JKI-NIL-Pr3 (a donor of the LR resistance gene Pr3). For genotyping, SNP-DArT and silico-DArT markers were used. Resistance phenotyping was conducted by visual assessment of the infection severity in detached leaf segments inoculated with two isolates of Puccinia recondita f. sp. secalis, namely, 60/17/2.1 (isolate S) in the main experiment and 86/n/2.1_5x (isolate N) in the validation experiment, at 10 and 17 days post-infection (dpi), respectively. In total, 42,773 SNP-DArT and 105,866 silico-DArT markers were included in the main analysis including isolate S, of which 129 and 140 SNP-DArTs and 767 and 776 silico-DArTs were significantly associated (p ≤ 0.001; - log10(p) ≥ 3.0) with the immune response to LR at 10 and 17 dpi, respectively. Most significant markers were mapped to chromosome 1R. The number of common markers from both systems and at both time points occupying common chromosomal positions was 37, of which 21 were positioned in genes, comprising 18 markers located in exons and three in introns. This gene pool included genes encoding proteins with a known function in response to LR (e.g., a NBS-LRR disease resistance protein-like protein and carboxyl-terminal peptidase). CONCLUSION: This study has expanded and supplemented existing knowledge of the genetic basis of rye resistance to LR by (1) detecting two QTLs associated with the LR immune response of rye, of which one located on the long arm of chromosome 1R is newly detected, (2) assigning hundreds of markers significantly associated with the immune response to LR to genes in the 'Lo7' genome, and (3) predicting the potential translational effects of polymorphisms of SNP-DArT markers located within protein-coding genes.


Subject(s)
Basidiomycota , Quantitative Trait Loci , Secale/genetics , Genome-Wide Association Study , Chromosome Mapping , Disease Resistance/genetics , Plant Diseases/microbiology , Basidiomycota/genetics
13.
BMC Plant Biol ; 24(1): 262, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38594614

ABSTRACT

BACKGROUND: Foliar diseases namely late leaf spot (LLS) and leaf rust (LR) reduce yield and deteriorate fodder quality in groundnut. Also the high oleic acid content has emerged as one of the most important traits for industries and consumers due to its increased shelf life and health benefits. RESULTS: Genetic mapping combined with pooled sequencing approaches identified candidate resistance genes (LLSR1 and LLSR2 for LLS and LR1 for LR) for both foliar fungal diseases. The LLS-A02 locus housed LLSR1 gene for LLS resistance, while, LLS-A03 housed LLSR2 and LR1 genes for LLS and LR resistance, respectively. A total of 49 KASPs markers were developed from the genomic regions of important disease resistance genes, such as NBS-LRR, purple acid phosphatase, pentatricopeptide repeat-containing protein, and serine/threonine-protein phosphatase. Among the 49 KASP markers, 41 KASPs were validated successfully on a validation panel of contrasting germplasm and breeding lines. Of the 41 validated KASPs, 39 KASPs were designed for rust and LLS resistance, while two KASPs were developed using fatty acid desaturase (FAD) genes to control high oleic acid levels. These validated KASP markers have been extensively used by various groundnut breeding programs across the world which led to development of thousands of advanced breeding lines and few of them also released for commercial cultivation. CONCLUSION: In this study, high-throughput and cost-effective KASP assays were developed, validated and successfully deployed to improve the resistance against foliar fungal diseases and oleic acid in groundnut. So far deployment of allele-specific and KASP diagnostic markers facilitated development and release of two rust- and LLS-resistant varieties and five high-oleic acid groundnut varieties in India. These validated markers provide opportunities for routine deployment in groundnut breeding programs.


Subject(s)
Basidiomycota , Mycoses , Disease Resistance/genetics , Oleic Acid , Plant Breeding , Chromosome Mapping , Basidiomycota/genetics , Plant Diseases/genetics , Plant Diseases/microbiology
14.
Fungal Genet Biol ; 172: 103893, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657898

ABSTRACT

Chitin is an essential structural component of fungal cell walls composed of transmembrane proteins called chitin synthases (CHSs), which have a large range of reported effects in ascomycetes; however, are poorly understood in agaricomycetes. In this study, evolutionary and molecular genetic analyses of chs genes were conducted using genomic information from nine ascomycete and six basidiomycete species. The results support the existence of seven previously classified chs clades and the discovery of three novel basidiomycete-specific clades (BI-BIII). The agaricomycete fungus Pleurotus ostreatus was observed to have nine putative chs genes, four of which were basidiomycete-specific. Three of these basidiomycete specific genes were disrupted in the P. ostreatus 20b strain (ku80 disruptant) through homologous recombination and transformants were obtained (Δchsb2, Δchsb3, and Δchsb4). Despite numerous transformations Δchsb1 was unobtainable, suggesting disruption of this gene causes a crucial negative effect in P. ostreatus. Disruption of these chsb2-4 genes caused sparser mycelia with rougher surfaces and shorter aerial hyphae. They also caused increased sensitivity to cell wall and membrane stress, thinner cell walls, and overexpression of other chitin and glucan synthases. These genes have distinct roles in the structural formation of aerial hyphae and cell walls, which are important for understanding basidiomycete evolution in filamentous fungi.


Subject(s)
Chitin Synthase , Chitin , Fungal Proteins , Phylogeny , Pleurotus , Chitin Synthase/genetics , Pleurotus/genetics , Pleurotus/enzymology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Chitin/metabolism , Cell Wall/genetics , Cell Wall/metabolism , Evolution, Molecular , Basidiomycota/genetics , Basidiomycota/enzymology
15.
Fungal Genet Biol ; 173: 103911, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960372

ABSTRACT

Coprinopsis cinerea, a model fungus, is utilized for investigating the developmental mechanisms of basidiomycetes. The development of basidiomycetes is a highly organized process that requires coordination among genetic, environmental, and physiological factors. Oxylipins, a class of widely distributed signaling molecules, play crucial roles in fungal biology. Among oxylipins, the sexual pheromone-inducing factors (psi factors) have been identified as key regulators of the balance between asexual and sexual spore development in Ascomycetes. Linoleate dioxygenases are enzymes involved in the biosynthesis of psi factors, yet their specific physiological functions in basidiomycete development remain unclear. In this study, linoleate dioxygenases in basidiomycetes were identified and characterized. Phylogenetic analysis revealed that linoleate dioxygenases from Basidiomycota formed a distinct clade, with linoleate dioxygenases from Agaricomycetes segregating into three groups and those from Ustilaginomycetes forming a separate group. Both basidiomycete and ascomycete linoleate dioxygenases shared two characteristic domains: the N-terminal of linoleate dioxygenase domain and the C-terminal of cytochrome P450 domain. While the linoleate dioxygenase domains exhibited similarity between basidiomycetes and ascomycetes, the cytochrome P450 domains displayed high diversity in key sites. Furthermore, the gene encoding the linoleate dioxygenase Ccldo1 in C. cinerea was knocked out, resulting in a significant increase in fruiting body formation without affecting asexual conidia production. This observation suggests that secondary metabolites synthesized by CcLdo1 negatively regulate the sexual reproduction process in C. cinerea while not influencing the asexual reproductive process. This study represents the first identification of a gene involved in secondary metabolite synthesis that regulates basidiocarp development in a basidiomycete.


Subject(s)
Basidiomycota , Fruiting Bodies, Fungal , Fungal Proteins , Phylogeny , Fruiting Bodies, Fungal/genetics , Fruiting Bodies, Fungal/growth & development , Fruiting Bodies, Fungal/enzymology , Basidiomycota/genetics , Basidiomycota/enzymology , Basidiomycota/growth & development , Fungal Proteins/genetics , Fungal Proteins/metabolism , Dioxygenases/genetics , Dioxygenases/metabolism , Agaricales/genetics , Agaricales/enzymology , Agaricales/growth & development , Agaricales/metabolism , Gene Expression Regulation, Fungal , Spores, Fungal/growth & development , Spores, Fungal/genetics , Spores, Fungal/enzymology
16.
Yeast ; 41(8): 477-485, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38877753

ABSTRACT

Cellobiose lipids are surface-active compounds or biological detergents produced by distinct Basidiomycetes yeasts, of which the most and best-described ones belong to the Ustilaginomycetes class. The molecules display slight variation in congener type, which is linked to the hydroxylation position of the long fatty acid, acetylation profile of the cellobiose unit, and presence or absence of the short fatty acid. In general, this variation is strain specific. Although cellobiose lipid biosynthesis has been described for about 11 yeast species, hitherto only two types of biosynthetic gene clusters are identified, and this for only three species. This work adds six more biosynthetic gene clusters and describes for the first time a novel type of cellobiose lipid biosynthetic cluster with a simplified architecture related to specific cellobiose lipids synthesized by Trichosporonaceae family members.


Subject(s)
Basidiomycota , Cellobiose , Lipids , Multigene Family , Cellobiose/metabolism , Basidiomycota/genetics , Basidiomycota/metabolism , Lipids/biosynthesis , Biosynthetic Pathways/genetics
17.
PLoS Pathog ; 18(5): e1010439, 2022 05.
Article in English | MEDLINE | ID: mdl-35617196

ABSTRACT

Sexual reproduction, mutation, and reassortment of nuclei increase genotypic diversity in rust fungi. Sexual reproduction is inherent to rust fungi, coupled with their coevolved plant hosts in native pathosystems. Rust fungi are hypothesised to exchange nuclei by somatic hybridisation with an outcome of increased genotypic diversity, independent of sexual reproduction. We provide criteria to demonstrate whether somatic exchange has occurred, including knowledge of parental haplotypes and rejection of fertilisation in normal rust life cycles.


Subject(s)
Basidiomycota , Plant Diseases , Animals , Basidiomycota/genetics , Fungi , Life Cycle Stages , Plant Diseases/microbiology , Reproduction
18.
New Phytol ; 242(4): 1448-1475, 2024 May.
Article in English | MEDLINE | ID: mdl-38581203

ABSTRACT

Research on mycorrhizal symbiosis has been slowed by a lack of established study systems. To address this challenge, we have been developing Suillus, a widespread ecologically and economically relevant fungal genus primarily associated with the plant family Pinaceae, into a model system for studying ectomycorrhizal (ECM) associations. Over the last decade, we have compiled extensive genomic resources, culture libraries, a phenotype database, and protocols for manipulating Suillus fungi with and without their tree partners. Our efforts have already resulted in a large number of publicly available genomes, transcriptomes, and respective annotations, as well as advances in our understanding of mycorrhizal partner specificity and host communication, fungal and plant nutrition, environmental adaptation, soil nutrient cycling, interspecific competition, and biological invasions. Here, we highlight the most significant recent findings enabled by Suillus, present a suite of protocols for working with the genus, and discuss how Suillus is emerging as an important model to elucidate the ecology and evolution of ECM interactions.


Subject(s)
Biological Evolution , Models, Biological , Mycorrhizae , Mycorrhizae/physiology , Mycorrhizae/genetics , Ecology , Symbiosis/genetics , Basidiomycota/physiology , Basidiomycota/genetics
19.
New Phytol ; 241(1): 444-460, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37292019

ABSTRACT

Ectomycorrhizal (EcM) symbiosis, a ubiquitous plant-fungus interaction in forests, evolved in parallel in fungi. Why the evolution of EcM fungi did not necessarily increase ecological opportunities for explosive diversification remains unclear. This study aimed to reveal the driving mechanism of the evolutionary diversification in the fungal class Agaricomycetes, specifically by testing whether the evolution of EcM symbiosis in the Late Cretaceous increased ecological opportunities. The historical character transitions of trophic state and fruitbody form were estimated based on phylogenies inferred from fragments of 89 single-copy genes. Moreover, five analyses were used to estimate the net diversification rates (speciation rate minus extinction rate). The results indicate that the unidirectional evolution of EcM symbiosis occurred 27 times, ranging in date from the Early Triassic to the Early Paleogene. The increased diversification rates appeared to occur intensively at the stem of EcM fungal clades diverging in the Late Cretaceous, coinciding with the rapid diversification of EcM angiosperms. By contrast, the evolution of fruitbody form was not strongly linked with the increased diversification rates. These findings suggest that the evolution of EcM symbiosis in the Late Cretaceous, supposedly with coevolving EcM angiosperms, was the key drive of the explosive diversification in Agaricomycetes.


Subject(s)
Basidiomycota , Mycorrhizae , Mycorrhizae/genetics , Symbiosis , Biological Evolution , Basidiomycota/genetics , Phylogeny
20.
Biotechnol Bioeng ; 121(1): 238-249, 2024 01.
Article in English | MEDLINE | ID: mdl-37902687

ABSTRACT

Oleaginous yeasts are promising platforms for microbial lipids production as a renewable and sustainable alternative to vegetable oils in biodiesel production. In this paper, a thorough in silico assessment of lipid production in batch cultivation by Rhodosporidium toruloides was developed. By means of dynamic flux balance analysis, the traditional two-stage bioprocess (TSB) performed by the native strain was contrasted with one-stage bioprocess (OSB) using four designed strains obtained by gene knockout strategies. Lipid titer, yield, content, and productivity were analyzed at different initial C/N ratios as relevant performance indicators used in bioprocesses. By weighting these indicators, a global lipid efficiency metric (GLEM) was defined to consider different scenarios. Under simulated conditions, designed strains for lipid overproduction in OSB outperformed the TSB in terms of lipid title (up to threefold), lipid yield (up to 2.4-fold), lipid content (up to 2.8-fold, with a maximum of 76%), and productivity (up to 1.3-fold), depending on C/N ratios. Using these efficiency parameters and the proposed GLEM, the process of selecting the most suitable candidates for lipid production could be carried out before experimental assays. This methodology holds the potential to be extended to other oleaginous microorganisms and diverse strain design techniques.


Subject(s)
Basidiomycota , Rhodotorula , Basidiomycota/genetics , Rhodotorula/genetics , Biofuels , Lipids
SELECTION OF CITATIONS
SEARCH DETAIL