Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 951
Filter
Add more filters

Publication year range
1.
Article in English | MEDLINE | ID: mdl-38780584

ABSTRACT

Four yeast strains belonging to the basidiomycetous yeast genus Mrakia were isolated from diverse habitats in the Ny-Ålesund region (Svalbard, High Arctic): two from vascular plants, one from seawater and one from freshwater. Phylogenetic analysis, based on the ITS region and the D1/D2 domain of the 28S rRNA gene, identified these four strains as representing two novel species within the genus Mrakia. The names Mrakia polaris sp. nov. (MycoBank number: MB 852063) and Mrakia amundsenii sp. nov. (MycoBank number: MB 852064) are proposed. These two new species show distinct psychrophilic adaptations, as they exhibit optimal growth at temperatures between 10 and 15°C, while being unable to grow at 25°C. The holotype of M. polaris sp. nov. is CPCC 300345T, and the holotype of M. amundsenii sp. nov. is CPCC 300572T.


Subject(s)
DNA, Fungal , Phylogeny , Seawater , Sequence Analysis, DNA , Arctic Regions , DNA, Fungal/genetics , Seawater/microbiology , Mycological Typing Techniques , Svalbard , RNA, Ribosomal, 28S/genetics , Basidiomycota/genetics , Basidiomycota/classification , Basidiomycota/isolation & purification , Fresh Water/microbiology , Ecosystem , Cold Temperature , Saccharomycetales/classification , Saccharomycetales/genetics , Saccharomycetales/isolation & purification
2.
Biotechnol Lett ; 46(4): 641-669, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38687405

ABSTRACT

OBJECTIVES: This study aimed to isolate red yeast from sap, bark and slime exudates collected from Polish birch forests and then assessment of their biotechnological potential. RESULTS: 24 strains of red yeast were isolated from the bark, sap and spring slime fluxes of birch (Betula pendula). Strains belonging to Rhodotorula mucilaginosa (6), Rhodosporidiobolus colostri (4), Cystrofilobasidium capitaum (3), Phaffia rhodozyma (3) and Cystobasidium psychroaquaticum (3) were dominant. The highest efficiency of carotenoid biosynthesis (5.04 mg L-1) was obtained by R. mucilaginosa CMIFS 004, while lipids were most efficiently produced by two strains of P. rhodozyma (5.40 and 5.33 g L-1). The highest amount of exopolysaccharides (3.75 g L-1) was produced by the R. glutinis CMIFS 103. Eleven strains showed lipolytic activity, nine amylolytic activity, and only two proteolytic activity. The presence of biosurfactants was not found. The growth of most species of pathogenic moulds was best inhibited by Rhodotorula yeasts. CONCLUSION: Silver birch is a good natural source for the isolation of new strains of red yeast with wide biotechnological potential.


Subject(s)
Betula , Forests , Rhodotorula , Betula/microbiology , Betula/chemistry , Poland , Rhodotorula/metabolism , Rhodotorula/isolation & purification , Biotechnology/methods , Basidiomycota/metabolism , Basidiomycota/isolation & purification , Carotenoids/metabolism , Carotenoids/chemistry , Plant Bark/microbiology , Plant Bark/chemistry
3.
Plant Dis ; 108(6): 1437-1444, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38100673

ABSTRACT

Rust fungi are the largest group of obligate plant pathogens and cause severe damage to global forests and agricultural security. Meliosma myriantha, a tree species native to East Asia (China, Japan, and Korea), is vulnerable to three rust species: Neophysopella meliosmae, N. meliosmae-myrianthae, and N. vitis. The early symptoms of infection are indistinguishable between these species, making an accurate and rapid diagnosis challenging. The urediniospores of N. meliosmae-myrianthae and N. vitis are also known to infect economically relevant grapevines (Vitis spp.) and ivies (Parthenocissus spp.), respectively, rendering early detection and identification even more important. To address this issue, we developed a multiplex quantitative polymerase chain reaction assay equipped with TaqMan probes targeting the internal transcribed spacer rDNA sequences specific to the three rust pathogens. This assay successfully detected minute quantities (5 fg for N. meliosmae-myrianthae and 50 fg for N. meliosmae and N. vitis) of DNA from the three Neophysopella species and demonstrated consistent reliability when applied to fresh and herbarium samples collected from M. myriantha, grapevines, and ivies. In conclusion, this novel assay is a rapid and robust diagnostic tool for the three rust pathogens, N. meliosmae, N. meliosmae-myrianthae, and N. vitis, and offers the potential to identify and detect their global movement and spread to grapevines, ivies, and trees.


Subject(s)
Basidiomycota , DNA, Fungal , Multiplex Polymerase Chain Reaction , Plant Diseases , Basidiomycota/genetics , Basidiomycota/isolation & purification , Basidiomycota/classification , Plant Diseases/microbiology , DNA, Fungal/genetics , Multiplex Polymerase Chain Reaction/methods , DNA, Ribosomal Spacer/genetics , Real-Time Polymerase Chain Reaction/methods , Reproducibility of Results , Vitis/microbiology
4.
World J Microbiol Biotechnol ; 40(8): 251, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38910228

ABSTRACT

Genetic diversity in Sclerotium rolfsii is useful for understanding its population structure, identifying different mycelial compatibility groups (MCGs), and developing targeted strategies for disease management in affected crops. In our study, a comprehensive genetic analysis was conducted on 50 isolates of S. rolfsii, collected from various geographic regions and host plants. Two specific genes, TEF1α and RPB2, were utilized to assess the genetic diversity and relationships among these isolates. Notably, out of 1225 pairings examined, only 154 exhibited a compatible reaction, while the majority displayed antagonistic reactions, resulting in the formation of a barrier zone. The isolates were grouped into 10 distinct MCGs. These MCGs were further characterized using genetic sequencing. TEF1α sequences distinguished the isolates into 17 distinct clusters, and RPB2 sequences classified them into 20 clusters. Some MCGs shared identical gene sequences within each gene, while others exhibited unique sequences. Intriguingly, when both TEF1α and RPB2 sequences were combined, all 10 MCGs were effectively differentiated, even those that appeared identical with single-gene analysis. This combined approach provided a comprehensive understanding of the genetic diversity and relationships among the S. rolfsii isolates, allowing for precise discrimination between different MCGs. The results shed light on the population structure and genetic variability within this plant pathogenic fungus, providing valuable insights for disease management and control strategies. This study highlights the significance of comprehending the varied virulence characteristics within S. rolfsii isolates, categorizing them into specific virulence groups based on disease severity index (DSI) values. The association with MCGs provides additional insights into the genetic underpinnings of virulence in this pathogen. Furthermore, the identification of geographical patterns in virulence implies the influence of region-specific factors, with potential implications for disease control and crop protection strategies.Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Author 1 Given name: [G. M. Sandeep] Last name [Kumar]. Author 2 Given name: [Praveen Kumar] Last name [Singh]. Also, kindly confirm the details in the metadata are correct.I confirm that the given names are accurate and presented in the correct sequence.


Subject(s)
Basidiomycota , Genetic Variation , Multilocus Sequence Typing , Phylogeny , Plant Diseases , Plant Diseases/microbiology , Basidiomycota/genetics , Basidiomycota/isolation & purification , Basidiomycota/classification , Mycelium/genetics , Fungal Proteins/genetics , DNA, Fungal/genetics , Crops, Agricultural/microbiology
5.
Article in English | MEDLINE | ID: mdl-37022743

ABSTRACT

Four strains (NYNU 178247, NYNU 178251, DMKU-PAL160 and DMKU-PAL137) representing a novel yeast species were isolated from the external surfaces of rice and pineapple leaves collected in China and Thailand. Phylogenetic analysis based on the concatenated sequences of the internal transcribed spacer (ITS) regions and the D1/D2 domains of the large subunit rRNA gene revealed that the novel species belonged to the genus Spencerozyma. The D1/D2 sequence of the novel species differed from its closest relative, Spencerozyma acididurans SYSU-17T, by 3.2 % sequence divergence. The species also differed from Spencerozyma crocea CBS 2029T and Spencerozyma siamensis DMKU13-2T, by 3.0-6.9 % sequence divergence in the D1/D2 sequences out of 592 bp. In the ITS regions, the novel species displayed 19.8-29.2% sequence divergence from S. acididurans SYSU-17T, S. crocea CBS 2029T and S. siamensis DMKU13-2T out of 655 bp. Furthermore, the novel species could also be differentiated from the closely related species by some physiological characteristics. The species name of Spencerozyma pingqiaoensis sp. nov. (Holotype CBS 15238, Mycobank MB 844734) is proposed to accommodate these four strains.


Subject(s)
Ananas , Basidiomycota , Oryza , Phylogeny , Base Composition , China , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Mycological Typing Techniques , Oryza/microbiology , Plant Leaves/microbiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Basidiomycota/classification , Basidiomycota/isolation & purification , Ananas/microbiology
6.
Curr Microbiol ; 80(11): 350, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37735278

ABSTRACT

Ten white-rot fungal isolates were evaluated for the decolorization potential of pulp and paper mill effluent. Trametes elegans PP17-06, Pseudolagarobasidium sp. PP17-33, and Microporus sp.2 PP17-20 showed the highest decolorization efficiencies between 42 and 54% in 5 d. To reveal the mechanisms involved in decolorization and assess the long-term performance, PP17-06, which showed the highest decolorization efficiency, was further investigated. It could reduce the ADMI color scale by 63.6% in 10 d. However, extending the treatment period for more than 10 d did not significantly enhance the decolorization efficiencies. The maximum MnP activity of 3.27 U L-1 was observed on the 6 d during the biodegradation. In comparison, laccase activities were low with the maximum activity of 0.38 U L-1 (24 d). No significant LiP activities were monitored during the experiment. Dead fungal biomass showed an optimum decolorization efficiency of 44.18% in 8 d employing the biosorption mechanism. No significant changes in the decolorization efficiency were observed after that, suggesting the equilibrium status was reached. These results revealed that PP17-06 has the potential to decolorize pulp and paper mill effluent by employing both biodegradation and biosorption processes.


Subject(s)
Basidiomycota , Biodegradation, Environmental , Paper , Biomass , Polyporales/isolation & purification , Trametes/isolation & purification , Manufacturing Industry , Polyporaceae/isolation & purification , Basidiomycota/isolation & purification , Basidiomycota/physiology , Adsorption
7.
PLoS Pathog ; 16(8): e1008731, 2020 08.
Article in English | MEDLINE | ID: mdl-32810177

ABSTRACT

A priority for research on infectious disease is to understand how epidemiological and evolutionary processes interact to influence pathogen population dynamics and disease outcomes. However, little is understood about how population adaptation changes across time, how sexual vs. asexual reproduction contribute to the spread of pathogens in wild populations and how diversity measured with neutral and selectively important markers correlates across years. Here, we report results from a long-term study of epidemiological and genetic dynamics within several natural populations of the Linum marginale-Melampsora lini plant-pathogen interaction. Using pathogen isolates collected from three populations of wild flax (L. marginale) spanning 16 annual epidemics, we probe links between pathogen population dynamics, phenotypic variation for infectivity and genomic polymorphism. Pathogen genotyping was performed using 1567 genome-wide SNP loci and sequence data from two infectivity loci (AvrP123, AvrP4). Pathogen isolates were phenotyped for infectivity using a differential set. Patterns of epidemic development were assessed by conducting surveys of infection prevalence in one population (Kiandra) annually. Bayesian clustering analyses revealed host population and ecotype as key predictors of pathogen genetic structure. Despite strong fluctuations in pathogen population size and severe annual bottlenecks, analysis of molecular variance revealed that pathogen population differentiation was relatively stable over time. Annually, varying levels of clonal spread (0-44.8%) contributed to epidemics. However, within populations, temporal genetic composition was dynamic with rapid turnover of pathogen genotypes, despite the dominance of only four infectivity phenotypes across the entire study period. Furthermore, in the presence of strong fluctuations in population size and migration, spatial selection may maintain pathogen populations that, despite being phenotypically stable, are genetically highly dynamic.


Subject(s)
Basidiomycota/genetics , Flax/microbiology , Plant Diseases/microbiology , Basidiomycota/classification , Basidiomycota/isolation & purification , Biodiversity , Biological Evolution , Genetic Variation , Genotype , Phenotype , Polymorphism, Genetic
8.
Article in English | MEDLINE | ID: mdl-35225759

ABSTRACT

Eight yeast isolates with an affinity to the genus Tremella were obtained from bromeliads from different locations in Brazil. Although the formation of basidia and basidiocarp were not observed, on the basis of the results of sequence analysis of the D1/D2 domain of the large subunit (LSU) rRNA gene and internal transcribed spacer (ITS) region, we suggest that these isolates represent two novel species of the genus Tremella. These yeasts are phylogenetically related to Tremella saccharicola and Tremella globispora. Therefore, we propose Tremella ananatis sp. nov. and Tremella lamprococci sp. nov. as novel yeast species of the order Tremellales (Agaricomycotina, Basidiomycota). Sequence analysis revealed that Tremella ananatis sp. nov. differs by 11 and 28 nucleotide substitutions from Tremella saccharicola in the D1/D2 sequence and ITS region, respectively. Moreover, Tremella lamprococci sp. nov. differs by 15 and 29 nucleotide substitutions from Tremella globispora in the D1/D2 sequence and ITS region, respectively. The holotypes of Tremella ananatis sp. nov. and Tremella lamprococci sp. nov. are CBS 14568T and CBS 14567T, and the MycoBank numbers are MB840480 and MB840481, respectively.


Subject(s)
Basidiomycota , Bromeliaceae/microbiology , Phylogeny , Base Composition , Basidiomycota/classification , Basidiomycota/isolation & purification , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Mycological Typing Techniques , Sequence Analysis, DNA
9.
Plant Dis ; 106(1): 107-113, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34261359

ABSTRACT

Several species from the genus Quambalaria (order Microstromatales) cause diseases on eucalypts (Eucalyptus and related genera) both in plantations and natural ecosystems. We developed real-time quantitative PCR (qPCR) assays to rapidly detect and distinguish five Quambalaria species. The design of the species-specific qPCR assay for each species, Q. pitereka (PIT), Q. coyrecup (COR), Q. cyanescens (CYN), Q. pusilla (PUS), and Q. eucalypti (EUC), was based on the ITS region and was evaluated for specificity and sensitivity. The PIT, COR, and CYN qPCR assays could amplify as little as 10 fg µl-1 from pure cultures, whereas PUS and EUC qPCR assays could amplify 100 fg µl-1 of their target species. The PIT, COR, and CYN qPCR assays were further validated using naturally and artificially infected samples of their plant host Corymbia calophylla. These assays will be used for rapid diagnostics and future experiments on the infection process.


Subject(s)
Basidiomycota , Eucalyptus , Basidiomycota/isolation & purification , Ecosystem , Eucalyptus/microbiology , Plant Diseases/microbiology , Real-Time Polymerase Chain Reaction
10.
Article in English | MEDLINE | ID: mdl-34214028

ABSTRACT

Sporobolomyces lactosus is a pink yeast-like fungus that is not congeneric with other members of Sporobolomyces (Basidiomycota, Microbotryomycetes, Sporidiobolales). During our ongoing studies of pink yeasts we determined that S. lactosus was most closely related to Pseudeurotium zonatum (Ascomycota, Leotiomycetes, Thelebolales). A molecular phylogenetic analysis using sequences of the ITS region and the small and large subunit (SSU, LSU) rRNA genes, indicated that four isolates of S. lactosus, including three ex-type isolates, were placed in Thelebolales with maximum support. A new genus is proposed to accommodate S. lactosus, Inopinatum. This is the first pink yeast reported in Leotiomycetes.


Subject(s)
Basidiomycota/classification , Phylogeny , Basidiomycota/isolation & purification , DNA, Fungal/genetics , Pigmentation , Poland , RNA, Ribosomal/genetics , Sequence Analysis, DNA
11.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Article in English | MEDLINE | ID: mdl-34726589

ABSTRACT

During studies of yeasts associated with soil in a Cerrado-Atlantic Rain Forest ecotone site in Brazil, three orange-pigmented yeast strains were isolated from samples collected in Minas Gerais state, Brazil. Molecular analyses combining the 26S rRNA gene (D1/D2 domains) and the internal transcribed spacer (ITS) sequences as well as whole-genome sequence data showed that these strains could not be ascribed to any known species in the basidiomycetous genus Phaffia, and thus they are considered to represent a novel species for which the name Phaffia brasiliana sp. nov. is proposed. The holotype is CBS 16121T and the MycoBank number is MB 839315. The occurrence of P. brasiliana in a tropical region is unique for the genus, since all other species occur in temperate regions. Two factors appear to contribute to the distribution of the novel taxon: first, the region where it was found has relatively moderate temperature ranges and, second, an adaptation to grow or withstand temperatures higher than those of the other species in the genus seems to be in place.


Subject(s)
Basidiomycota/classification , Phylogeny , Rainforest , Soil Microbiology , Basidiomycota/isolation & purification , Brazil , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Mycological Typing Techniques , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
12.
Article in English | MEDLINE | ID: mdl-33502296

ABSTRACT

Sampling campaigns in Greenland and Svalbard were executed to explore fungal diversity in cold habitats. Three very abundant groups of strains were discovered, consisting either of recently described or of yet-undescribed psychrophilic and oligotrophic yeasts and dimorphic fungi, accounting for around 50 % of the total cultivable diversity of basidiomycetes in our studies. The occurrence of these taxa has also been demonstrated by culture-independent methods. Based on phylogenetic analyses of ribosomal gene cluster sequences (D1/D2 domains of 28S (LSU), 18S (SSU), ITS with 5.8S rDNA) and sequences of protein-coding genes for elongation factor one alpha (TEF), cytochrome b (CYTB) and two subunits of the RNA polymerase II (RPB1 and RPB2) obtained from pure cultures, the isolated taxa presented in this study belong to Basidiomycota, subphylum Pucciniomycotina, class Microbotryomycetes, family Camptobasidiaceae. The dataset of the sequences supported the recognition of three species: Camptobasidium gelus, Camptobasidium arcticum sp. nov. (ex-type strain EXF-12713) and Psychromyces glacialis gen. and sp. nov. (ex-type strain EXF-13111). Camptobasidium gelus was found in the Svalbard and Greenland samples, while representatives of the here proposed new species, C. arcticum, were found only in the Greenland Ice Sheet. Psychromyces gen. nov. was erected for the dimorphic/filamentous isolates found in Svalbard and Greenland glacial environments. The taxon, for which the invalid name 'Rhodotorula svalbardensis' has been used, belongs to this genus. Based on ribosomal genes, Camptobasidium arcticum and Psychromyces glacialis are related, phylogenetically most closely related to the genera Glaciozyma and Cryolevonia. Seven genes phylogeny restricted to taxa with available sequences, supported the placement of Psychromyces to Camptobasidiaceae.


Subject(s)
Basidiomycota/classification , Ice Cover/microbiology , Phylogeny , Basidiomycota/isolation & purification , DNA, Fungal/genetics , DNA, Ribosomal/genetics , Greenland , Mycological Typing Techniques , Sequence Analysis, DNA , Svalbard , Yeasts/classification
13.
Mycoses ; 64(8): 817-822, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34091966

ABSTRACT

OBJECTIVES: To investigate the occurrence of Trichosporon asahii fungemia among critically ill COVID-19 patients. METHODS: From 1 July to 30 September 2020, cases of T asahii fungemia (TAF) in a Brazilian COVID-19 referral centre were investigated. The epidemiology and clinical courses were detailed, along with a mycological investigation that included molecular species identification, haplotype diversity analysis and antifungal susceptibility testing. RESULTS: Five critically ill COVID-19 patients developed TAF in the period. All five patients had common risk conditions for TAF: central venous catheter at fungemia, previous exposure to broad-spectrum antibiotics, prior echinocandin therapy and previous prolonged corticosteroid therapy. The average time of intensive care unit hospitalisation previous to the TAF episode was 23 days. All but one patient had voriconazole therapy, and TAF 30-day mortality was 80%. The five T asahii strains from the COVID-19 patients belonged to 4 different haplotypes, mitigating the possibility of skin origin and cross-transmission linking the 5 reported episodes. The antifungal susceptibility testing revealed low minimal inhibitory concentrations for azole derivatives. CONCLUSIONS: Judicious prescription of antibiotics, corticosteroids and antifungals needs to be discussed in critically ill COVID-19 patients to prevent infections by hard-to-treat fungi like T asahii.


Subject(s)
Adrenal Cortex Hormones/administration & dosage , Antifungal Agents/administration & dosage , Basidiomycota/isolation & purification , COVID-19/complications , Superinfection/complications , Trichosporonosis/complications , Adrenal Cortex Hormones/pharmacology , Aged , Antifungal Agents/pharmacology , Basidiomycota/classification , Basidiomycota/drug effects , Basidiomycota/genetics , Brazil/epidemiology , COVID-19/epidemiology , Candidemia/complications , Female , Fungemia/complications , Haplotypes , Humans , Male , Microbial Sensitivity Tests , Middle Aged , Phylogeny , Risk Factors , Superinfection/epidemiology , Trichosporonosis/epidemiology
14.
BMC Genomics ; 21(1): 247, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32197579

ABSTRACT

BACKGROUND: The stripe rust pathogen, Puccinia striiformis f. sp. tritici (Pst), threats world wheat production. Resistance to Pst is often overcome by pathogen virulence changes, but the mechanisms of variation are not clearly understood. To determine the role of mutation in Pst virulence changes, in previous studies 30 mutant isolates were developed from a least virulent isolate using ethyl methanesulfonate (EMS) mutagenesis and phenotyped for virulence changes. The progenitor isolate was sequenced, assembled and annotated for establishing a high-quality reference genome. In the present study, the 30 mutant isolates were sequenced and compared to the wide-type isolate to determine the genomic variation and identify candidates for avirulence (Avr) genes. RESULTS: The sequence reads of the 30 mutant isolates were mapped to the wild-type reference genome to identify genomic changes. After selecting EMS preferred mutations, 264,630 and 118,913 single nucleotide polymorphism (SNP) sites and 89,078 and 72,513 Indels (Insertion/deletion) were detected among the 30 mutant isolates compared to the primary scaffolds and haplotigs of the wild-type isolate, respectively. Deleterious variants including SNPs and Indels occurred in 1866 genes. Genome wide association analysis identified 754 genes associated with avirulence phenotypes. A total of 62 genes were found significantly associated to 16 avirulence genes after selection through six criteria for putative effectors and degree of association, including 48 genes encoding secreted proteins (SPs) and 14 non-SP genes but with high levels of association (P ≤ 0.001) to avirulence phenotypes. Eight of the SP genes were identified as avirulence-associated effectors with high-confidence as they met five or six criteria used to determine effectors. CONCLUSIONS: Genome sequence comparison of the mutant isolates with the progenitor isolate unraveled a large number of mutation sites along the genome and identified high-confidence effector genes as candidates for avirulence genes in Pst. Since the avirulence gene candidates were identified from associated SNPs and Indels caused by artificial mutagenesis, these avirulence gene candidates are valuable resources for elucidating the mechanisms of the pathogen pathogenicity, and will be studied to determine their functions in the interactions between the wheat host and the Pst pathogen.


Subject(s)
Basidiomycota/pathogenicity , Mutation , Whole Genome Sequencing/methods , Basidiomycota/genetics , Basidiomycota/isolation & purification , Fungal Proteins/genetics , High-Throughput Nucleotide Sequencing , INDEL Mutation , Plant Diseases/microbiology , Polymorphism, Single Nucleotide , Triticum/microbiology , Virulence Factors
15.
Environ Microbiol ; 22(8): 3357-3374, 2020 08.
Article in English | MEDLINE | ID: mdl-32483901

ABSTRACT

Endophytic fungi compose a significant part of plant microbiomes. However, while a small number of fungal taxa have proven beneficial impact, the vast majority of fungal endophytes remain uncharacterized, and the drivers of fungal endophyte community (FEC) assembly are not well understood. Here, we analysed FECs in three cereal crops-related wild grasses - Avena sterilis, Hordeum spontaneum and Aegilops peregrina - that grow in mixed populations in natural habitats. Taxa in Ascomycota class Dothideomycetes, particularly the genera Alternaria and Cladosporium, were the most abundant and prevalent across all populations, but there was also high incidence of basidiomyceteous yeasts of the class Tremellomycetes. The fungal community was shaped to large extent by stochastic processes, as indicated by high level of variation even between individuals from local populations of the same plant species, and confirmed by the neutral community model and Raup-Crick index. Nevertheless, we still found strong determinism in FEC assembly with both incidence and abundance data sets. Substantial differences in community composition across host species and locations were revealed. Our research demonstrated that assembly of FECs is affected by stochastic as well as deterministic processes and suggests strong effects of environment heterogeneity and plant species on community composition. In addition, a small number of taxa had high incidence and abundance in all of the 15 populations. These taxa represent an important part of the core FEC and might be of general functional importance.


Subject(s)
Aegilops/microbiology , Ascomycota/classification , Avena/microbiology , Basidiomycota/classification , Hordeum/microbiology , Ascomycota/isolation & purification , Basidiomycota/isolation & purification , Edible Grain/microbiology , Endophytes/classification , Endophytes/isolation & purification , Mycobiome , Poaceae/microbiology
16.
Biochem Biophys Res Commun ; 526(4): 1138-1142, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32317185

ABSTRACT

Brown macroalgae is a promising marine biomass for the production of bioethanol and biodiesel fuels. Here we investigate the biochemical processes used by marine oleaginous yeast for assimilating the major carbohydrate found in brown macroalgae. Briefly, yeast Rhodosporidiobolus fluvialis strain Y2 was isolated from seawater and grown in minimal medium containing reduced sugar alcohol mannitol as the sole carbon source with a salinity comparable to seawater. Conditions limiting nitrogen were used to facilitate lipid synthesis. R. fluvialis Y2 yielded 55.1% (w/w) and 39.1% (w/w) of lipids, per dry cell weight, from mannitol in the absence and presence of salinity, respectively. Furthermore, mannitol, as a sugar source, led to an increase in the composition of polyunsaturated fatty acids, linoleic acid (C18:2) and linolenic acid (C18:3), compared to glucose. This suggests that oxidation of mannitol leads to the activation of NADH-dependent fatty acid desaturases in R. fluvialis Y2. Such fatty acid composition may contribute to the cold-flow properties of biodiesel fuels. Our results identified a salt-tolerant oleaginous yeast species with unique metabolic traits, demonstrating a key role as a decomposer in the global carbon cycle through marine ecosystems. This is the first study on mannitol-induced synthesis of lipids enriched with polyunsaturated fatty acids by marine yeast.


Subject(s)
Aquatic Organisms/metabolism , Basidiomycota/metabolism , Fatty Acids, Unsaturated/metabolism , Mannitol/metabolism , Aquatic Organisms/ultrastructure , Basidiomycota/drug effects , Basidiomycota/isolation & purification , Basidiomycota/ultrastructure , Fatty Acids, Unsaturated/biosynthesis , Nitrogen/pharmacology , Oxidation-Reduction
17.
BMC Microbiol ; 20(1): 236, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32746782

ABSTRACT

BACKGROUND: Achlorophyllous orchids are mycoheterotrophic plants, which lack photosynthetic ability and associate with fungi to acquire carbon from different environmental sources. In tropical latitudes, achlorophyllous forest orchids show a preference to establish mycorrhizal relationships with saprotrophic fungi. However, a few of them have been recently found to associate with ectomycorrhizal fungi and there is still much to be learned about the identity of fungi associated with tropical orchids. The present study focused on mycorrhizal diversity in the achlorophyllous orchid C. inverta, an endangered species, which is endemic to southern China. The aim of this work was to identify the main mycorrhizal partners of C. inverta in different plant life stages, by means of morphological and molecular methods. RESULTS: Microscopy showed that the roots of analysed C. inverta samples were extensively colonized by fungal hyphae forming pelotons in root cortical cells. Fungal ITS regions were amplified by polymerase chain reaction, from DNA extracted from fungal mycelia isolated from orchid root samples, as well as from total root DNA. Molecular sequencing and phylogenetic analyses showed that the investigated orchid primarily associated with ectomycorrhizal fungi belonging to a narrow clade within the family Ceratobasidiaceae, which was previously detected in a few fully mycoheterotrophic orchids and was also found to show ectomycorrhizal capability on trees and shrubs. Russulaceae fungal symbionts, showing high similarity with members of the ectomycorrhizal genus Russula, were also identified from the roots of C. inverta, at young seedling stage. Ascomycetous fungi including Chaetomium, Diaporthe, Leptodontidium, and Phomopsis genera, and zygomycetes in the genus Mortierella were obtained from orchid root isolated strains with unclear functional role. CONCLUSIONS: This study represents the first assessment of root fungal diversity in the rare, cryptic and narrowly distributed Chinese orchid C. inverta. Our results provide new insights on the spectrum of orchid-fungus symbiosis suggesting an unprecedented mixed association between the studied achlorophyllous forest orchid and ectomycorrhizal fungi belonging to Ceratobasidiaceae and Russulaceae. Ceratobasidioid fungi as dominant associates in the roots of C. inverta represent a new record of the rare association between the identified fungal group and fully mycoheterotrophic orchids in nature.


Subject(s)
Basidiomycota/isolation & purification , Mycorrhizae/isolation & purification , Orchidaceae/microbiology , Ascomycota/classification , Ascomycota/genetics , Ascomycota/isolation & purification , Basidiomycota/classification , Basidiomycota/genetics , China , DNA, Fungal/genetics , Endangered Species , Hyphae/classification , Hyphae/genetics , Mycorrhizae/classification , Mycorrhizae/genetics , Phylogeny , Plant Roots/microbiology , Seedlings/microbiology , Symbiosis
18.
Arch Microbiol ; 202(10): 2727-2738, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32734321

ABSTRACT

Tuber species may be regarded as complex microhabitats hosting diverse microorganisms inside their fruiting bodies. Here, we investigated the structure of microbial communities inhabiting the gleba of wild growing (in stands) T. aestivum, using Illumina sequencing and culture-based methods. The two methods used in combination allowed to extract more information on complex microbiota of Tuber aestivum gleba. Analysis of the V3-V4 region of 16S rDNA identified nine phyla of bacteria present in the gleba of T. aestivum ascomata, mostly Proteobacteria from the family Bradyrhizobiaceae. Our results ideally match the earlier data for other Tuber species where the family Bradyrhizobiaceae was the most represented. The ITS1 region of fungal rDNA represented six alien fungal species belonging to three phyla. To complement the metagenomic analysis, cultivable fungi and bacteria were obtained from the gleba of the same T. aestivum fruiting bodies. The identified fungi mostly belong to the phylum Basidiomycota and same to Ascomycota. Analysis of cultivable bacteria revealed that all the specimens were colonized by different strains of Bacillus. Fungal community inhabiting T. aestivum fruiting bodies was never shown before.


Subject(s)
Ascomycota/physiology , Bacillus/isolation & purification , Basidiomycota/isolation & purification , Bradyrhizobiaceae/isolation & purification , Fruiting Bodies, Fungal/physiology , Bacillus/classification , Bacillus/genetics , Basidiomycota/classification , Basidiomycota/genetics , Bradyrhizobiaceae/classification , Bradyrhizobiaceae/genetics , DNA, Ribosomal/genetics , High-Throughput Nucleotide Sequencing , Microbiota
19.
Int J Syst Evol Microbiol ; 70(5): 3449-3454, 2020 May.
Article in English | MEDLINE | ID: mdl-32375951

ABSTRACT

Plants are important reservoirs of described and undescribed species of yeast. During a study of yeasts associated with bromeliads from the Northeast region of Brazil (collected in 2013-2017), analysis of the D1/D2 domain of the LSU rRNA and internal transcribed spacer (ITS) region identified eleven strains of yeasts as representing an unknown species of the genus Vishniacozyma. The species may have a diverse habitat in Brazil as a strain was collected from a flowering plant (Acanthaceae) in 1994. As a consequence, we propose Vishniacozyma alagoana sp. nov. as a member of the tremellomycetes yeasts (Agaricomycotina, Basidiomycota). Vishniacozyma alagoana sp. nov. was found in Atlantic Forest (a tropical rainforest) and the Caatinga (a seasonally dry tropical forest) associated with bromeliads in northeast and southeastern Brazil. The proposed novel species is related to Vishniacozyma taibaiensis and distinguished by eight nucleotide substitutions in the D1/D2 domain and seventeen in the ITS region. In addition, Vishniacozyma alagoana sp. nov. differs from V. taibaiensis by the ability to assimilate ribitol. The holotype is CBS 15966T.


Subject(s)
Basidiomycota/classification , Bromeliaceae/microbiology , Phylogeny , Rainforest , Basidiomycota/isolation & purification , Brazil , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Mycological Typing Techniques , RNA, Ribosomal/genetics , Sequence Analysis, DNA
20.
Int J Syst Evol Microbiol ; 70(6): 3673-3678, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32416736

ABSTRACT

The strain DMKU-XD44, representing an anamorphic novel yeast species, was isolated from soil collected in a peat swamp forest (PSF) area in Rayong Botanical Garden in eastern Thailand. On the basis of sequence analysis of the D1/D2 region of the large subunit (LSU) rRNA gene and the internal transcribed spacer (ITS) region, Teunia cuniculi CBS 10309T was the most closely related species. The novel species differed from the T. cuniculi type by 2.5 % (14 nucleotide substitutions) in the D1/D2 region of the LSU rRNA gene and by 8.0 % (40 nucleotide substitutions) in the ITS region. The results of a phylogenetic analysis, based on the combined sequences of the ITS region and the D1/D2 region, indicated that DMKU-XD44 represents a member of the Teunia clade in the Cryptococcaceae (Tremellales, Tremellomycetes, Agaricomycotina and Basidiomycota) and is phylogenetically distinct from other species of the genus Teunia in the clade. Therefore, DMKU-XD44 represents a novel species of the genus Teunia. The name Teunia siamensis f.a., sp. nov. is proposed. The holotype is DMKU-XD44, while the MycoBank number is MB 832816.


Subject(s)
Basidiomycota/classification , Forests , Phylogeny , Soil Microbiology , Wetlands , Basidiomycota/isolation & purification , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Mycological Typing Techniques , Sequence Analysis, DNA , Thailand
SELECTION OF CITATIONS
SEARCH DETAIL