Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.755
Filter
Add more filters

Publication year range
1.
Cell ; 184(2): 370-383.e13, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33333023

ABSTRACT

Proton-coupled monocarboxylate transporters MCT1-4 catalyze the transmembrane movement of metabolically essential monocarboxylates and have been targeted for cancer treatment because of their enhanced expression in various tumors. Here, we report five cryo-EM structures, at resolutions of 3.0-3.3 Å, of human MCT1 bound to lactate or inhibitors in the presence of Basigin-2, a single transmembrane segment (TM)-containing chaperon. MCT1 exhibits similar outward-open conformations when complexed with lactate or the inhibitors BAY-8002 and AZD3965. In the presence of the inhibitor 7ACC2 or with the neutralization of the proton-coupling residue Asp309 by Asn, similar inward-open structures were captured. Complemented by structural-guided biochemical analyses, our studies reveal the substrate binding and transport mechanism of MCTs, elucidate the mode of action of three anti-cancer drug candidates, and identify the determinants for subtype-specific sensitivities to AZD3965 by MCT1 and MCT4. These findings lay out an important framework for structure-guided drug discovery targeting MCTs.


Subject(s)
Antineoplastic Agents/pharmacology , Monocarboxylic Acid Transporters/antagonists & inhibitors , Monocarboxylic Acid Transporters/chemistry , Symporters/antagonists & inhibitors , Symporters/chemistry , Amino Acid Sequence , Animals , Basigin/chemistry , Binding Sites , Cryoelectron Microscopy , Humans , Ligands , Models, Molecular , Monocarboxylic Acid Transporters/ultrastructure , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Protons , Pyrimidinones/chemistry , Pyrimidinones/pharmacology , Rats , Structural Homology, Protein , Substrate Specificity , Symporters/ultrastructure , Thiophenes/chemistry , Thiophenes/pharmacology
2.
Cell ; 170(1): 199-212.e20, 2017 Jun 29.
Article in English | MEDLINE | ID: mdl-28666119

ABSTRACT

Type 2 diabetes (T2D) affects Latinos at twice the rate seen in populations of European descent. We recently identified a risk haplotype spanning SLC16A11 that explains ∼20% of the increased T2D prevalence in Mexico. Here, through genetic fine-mapping, we define a set of tightly linked variants likely to contain the causal allele(s). We show that variants on the T2D-associated haplotype have two distinct effects: (1) decreasing SLC16A11 expression in liver and (2) disrupting a key interaction with basigin, thereby reducing cell-surface localization. Both independent mechanisms reduce SLC16A11 function and suggest SLC16A11 is the causal gene at this locus. To gain insight into how SLC16A11 disruption impacts T2D risk, we demonstrate that SLC16A11 is a proton-coupled monocarboxylate transporter and that genetic perturbation of SLC16A11 induces changes in fatty acid and lipid metabolism that are associated with increased T2D risk. Our findings suggest that increasing SLC16A11 function could be therapeutically beneficial for T2D. VIDEO ABSTRACT.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Basigin/metabolism , Cell Membrane/metabolism , Chromosomes, Human, Pair 17/metabolism , Gene Knockdown Techniques , Haplotypes , Hepatocytes/metabolism , Heterozygote , Histone Code , Humans , Liver/metabolism , Models, Molecular , Monocarboxylic Acid Transporters/chemistry
3.
Cell ; 161(4): 817-32, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25957687

ABSTRACT

Rod-derived cone viability factor (RdCVF) is an inactive thioredoxin secreted by rod photoreceptors that protects cones from degeneration. Because the secondary loss of cones in retinitis pigmentosa (RP) leads to blindness, the administration of RdCVF is a promising therapy for this untreatable neurodegenerative disease. Here, we investigated the mechanism underlying the protective role of RdCVF in RP. We show that RdCVF acts through binding to Basigin-1 (BSG1), a transmembrane protein expressed specifically by photoreceptors. BSG1 binds to the glucose transporter GLUT1, resulting in increased glucose entry into cones. Increased glucose promotes cone survival by stimulation of aerobic glycolysis. Moreover, a missense mutation of RdCVF results in its inability to bind to BSG1, stimulate glucose uptake, and prevent secondary cone death in a model of RP. Our data uncover an entirely novel mechanism of neuroprotection through the stimulation of glucose metabolism.


Subject(s)
Eye Proteins/metabolism , Glycolysis , Thioredoxins/metabolism , Alkaline Phosphatase/metabolism , Animals , Basigin/genetics , Basigin/metabolism , Eye Proteins/genetics , Glucose/metabolism , Glucose Transporter Type 1/metabolism , Humans , Mice , Mutation, Missense , Retina/metabolism , Retinal Cone Photoreceptor Cells/cytology , Retinal Cone Photoreceptor Cells/metabolism , Retinitis Pigmentosa/metabolism , Thioredoxins/genetics
4.
J Cell Sci ; 137(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38661040

ABSTRACT

Expression levels of the lactate-H+ cotransporter MCT4 (also known as SLC16A3) and its chaperone CD147 (also known as basigin) are upregulated in breast cancers, correlating with decreased patient survival. Here, we test the hypothesis that MCT4 and CD147 favor breast cancer invasion through interdependent effects on extracellular matrix (ECM) degradation. MCT4 and CD147 expression and membrane localization were found to be strongly reciprocally interdependent in MDA-MB-231 breast cancer cells. Overexpression of MCT4 and/or CD147 increased, and their knockdown decreased, migration, invasion and the degradation of fluorescently labeled gelatin. Overexpression of both proteins led to increases in gelatin degradation and appearance of the matrix metalloproteinase (MMP)-generated collagen-I cleavage product reC1M, and these increases were greater than those observed upon overexpression of each protein alone, suggesting a concerted role in ECM degradation. MCT4 and CD147 colocalized with invadopodia markers at the plasma membrane. They also colocalized with MMP14 and the lysosomal marker LAMP1, as well as partially with the autophagosome marker LC3, in F-actin-decorated intracellular vesicles. We conclude that MCT4 and CD147 reciprocally regulate each other and interdependently support migration and invasiveness of MDA-MB-231 breast cancer cells. Mechanistically, this involves MCT4-CD147-dependent stimulation of ECM degradation and specifically of MMP-mediated collagen-I degradation. We suggest that the MCT4-CD147 complex is co-delivered to invadopodia with MMP14.


Subject(s)
Basigin , Breast Neoplasms , Extracellular Matrix , Lysosomal-Associated Membrane Protein 1 , Matrix Metalloproteinase 14 , Monocarboxylic Acid Transporters , Neoplasm Invasiveness , Podosomes , Female , Humans , Basigin/metabolism , Basigin/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Membrane/metabolism , Cell Movement , Extracellular Matrix/metabolism , Gelatin/metabolism , Lysosomal Membrane Proteins/metabolism , Lysosomal Membrane Proteins/genetics , Matrix Metalloproteinase 14/metabolism , Matrix Metalloproteinase 14/genetics , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Monocarboxylic Acid Transporters/metabolism , Monocarboxylic Acid Transporters/genetics , Muscle Proteins/metabolism , Muscle Proteins/genetics , Neoplasm Invasiveness/genetics , Podosomes/metabolism
5.
PLoS Pathog ; 20(2): e1011989, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38315723

ABSTRACT

Plasmodium falciparum invasion of the red blood cell is reliant upon the essential interaction of PfRh5 with the host receptor protein basigin. Basigin exists as part of one or more multiprotein complexes, most notably through interaction with the monocarboxylate transporter MCT1. However, the potential requirement for basigin association with MCT1 and the wider role of basigin host membrane context and lateral protein associations during merozoite invasion has not been established. Using genetically manipulated in vitro derived reticulocytes, we demonstrate the ability to uncouple basigin ectodomain presentation from its transmembrane domain-mediated interactions, including with MCT1. Merozoite invasion of reticulocytes is unaffected by disruption of basigin-MCT1 interaction and by removal or replacement of the basigin transmembrane helix. Therefore, presentation of the basigin ectodomain at the red blood cell surface, independent of its native association with MCT1 or other interactions mediated by the transmembrane domain, is sufficient to facilitate merozoite invasion.


Subject(s)
Plasmodium falciparum , Symporters , Plasmodium falciparum/metabolism , Basigin/genetics , Basigin/metabolism , Erythrocytes/metabolism , Protein Domains , Symporters/metabolism
6.
J Immunol ; 213(2): 148-160, 2024 07 15.
Article in English | MEDLINE | ID: mdl-38787053

ABSTRACT

Human IgA Abs engage neutrophils for cancer immunotherapy more effectively than IgG Abs. Previous studies demonstrated that engineering approaches improved biochemical and functional properties. In this study, we report a novel, to our knowledge, IgA2 Ab against the epidermal growth factor receptor generated by protein engineering and polymerization. The resulting molecule demonstrated a covalent linkage of L and H chains and an effective polymerization by the joining chain. The engineered dimer outperformed its monomeric variant in functional experiments on Fab-mediated modes of action and binding to the Fc receptor. The capacity to engage neutrophils for Ab-dependent cell-mediated cytotoxicity (ADCC) of adherent growing target cancer cells was cell line dependent. Although the engineered dimer displayed a long-term efficacy against the vulva carcinoma cell line A431, there was a notable in-efficacy against human papillomavirus (HPV)- head and neck squamous cell carcinoma (HNSCC) cell lines. However, the highly engineered IgA Abs triggered a neutrophil-mediated cytotoxicity against HPV+ HNSCC cell lines. Short-term ADCC efficacy correlated with the target cells' epidermal growth factor receptor expression and the ability of cancer cell-conditioned media to enhance the CD147 surface level on neutrophils. Notably, the HPV+ HNSCC cell lines demonstrated a significant increment in releasing soluble CD147 and a reduced induction of membranous CD147 on neutrophils compared with HPV- cells. Although membranous CD147 on neutrophils may impair proper IgA-Fc receptor binding, soluble CD147 enhanced the IgA-neutrophil-mediated ADCC in a dose-dependent manner. Thus, engineering IgA Abs and impedance-based ADCC assays provided valuable information regarding the target-effector cell interaction and identified CD147 as a putative critical parameter for neutrophil-mediated cytotoxicity.


Subject(s)
Antibody-Dependent Cell Cytotoxicity , Basigin , ErbB Receptors , Head and Neck Neoplasms , Immunoglobulin A , Neutrophils , Protein Engineering , Squamous Cell Carcinoma of Head and Neck , Humans , Neutrophils/immunology , ErbB Receptors/immunology , Antibody-Dependent Cell Cytotoxicity/immunology , Cell Line, Tumor , Immunoglobulin A/immunology , Basigin/immunology , Squamous Cell Carcinoma of Head and Neck/immunology , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/therapy
7.
J Biol Chem ; 300(6): 107333, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38820650

ABSTRACT

The human Solute Carrier (SLC) family member, monocarboxylate transporter 1 (MCT1), transports lactic and pyruvic acid across biological membranes to regulate cellular pH and metabolism. Proper trafficking of MCT1 from the endoplasmic reticulum to the plasma membrane hinges on its interactions with the membrane-bound chaperone protein, CD147. Here, using AlphaFold2 modeling and copurification, we show how a conserved signature motif located in the flexible N-terminus of MCT1 is a crucial region of interaction between MCT1 and the C-terminus of CD147. Mutations to this motif-namely, the thymic cancer linked G19C and the highly conserved W20A-destabilize the MCT1-CD147 complex and lead to a loss of proper membrane localization and cellular substrate flux. Notably, the monomeric stability of MCT1 remains unaffected in mutants, thus supporting the role of CD147 in mediating the trafficking of the heterocomplex. Using the auxiliary chaperone, GP70, we demonstrated that W20A-MCT1 can be trafficked to the plasma membrane, while G19C-MCT1 remains internalized. Overall, our findings underscore the critical role of the MCT1 transmembrane one signature motif for engaging CD147 and identify altered chaperone binding mechanisms between the CD147 and GP70 glycoprotein chaperones.


Subject(s)
Amino Acid Motifs , Basigin , Monocarboxylic Acid Transporters , Protein Transport , Symporters , Basigin/metabolism , Basigin/genetics , Basigin/chemistry , Monocarboxylic Acid Transporters/metabolism , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/chemistry , Humans , Symporters/metabolism , Symporters/chemistry , Symporters/genetics , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , HEK293 Cells , Mutation, Missense
8.
J Biol Chem ; 300(3): 105755, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38364890

ABSTRACT

XK-related 8 (XKR8), in complex with the transmembrane glycoprotein basigin, functions as a phospholipid scramblase activated by the caspase-mediated cleavage or phosphorylation of its C-terminal tail. It carries a putative phospholipid translocation path of multiple hydrophobic and charged residues in the transmembrane region. It also has a crucial tryptophan at the exoplasmic end of the path that regulates its scrambling activity. We herein investigated the tertiary structure of the human XKR8-basigin complex embedded in lipid nanodiscs at an overall resolution of 3.66 Å. We found that the C-terminal tail engaged in intricate polar and van der Waals interactions with a groove at the cytoplasmic surface of XKR8. These interactions maintained the inactive state of XKR8. Point mutations to disrupt these interactions strongly enhanced the scrambling activity of XKR8, suggesting that the activation of XKR8 is mediated by releasing the C-terminal tail from the cytoplasmic groove. We speculate that the cytoplasmic tail region of XKR8 functions as a plug to prevent the scrambling of phospholipids.


Subject(s)
Apoptosis Regulatory Proteins , Basigin , Membrane Proteins , Phospholipid Transfer Proteins , Humans , Apoptosis Regulatory Proteins/chemistry , Apoptosis Regulatory Proteins/genetics , Basigin/chemistry , Cell Membrane/metabolism , Liposomes/chemistry , Membrane Proteins/chemistry , Membrane Proteins/genetics , Nanoparticles/chemistry , Phospholipid Transfer Proteins/chemistry , Phospholipid Transfer Proteins/genetics , Phospholipids , Protein Conformation, alpha-Helical , Single Molecule Imaging
9.
PLoS Pathog ; 19(9): e1011182, 2023 09.
Article in English | MEDLINE | ID: mdl-37713419

ABSTRACT

The Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is the current leading blood-stage malaria vaccine candidate. PfRH5 functions as part of the pentameric PCRCR complex containing PTRAMP, CSS, PfCyRPA and PfRIPR, all of which are essential for infection of human red blood cells (RBCs). To trigger RBC invasion, PfRH5 engages with RBC protein basigin in a step termed the RH5-basigin binding stage. Although we know increasingly more about how antibodies specific for PfRH5 can block invasion, much less is known about how antibodies recognizing other members of the PCRCR complex can inhibit invasion. To address this, we performed live cell imaging using monoclonal antibodies (mAbs) which bind PfRH5 and PfCyRPA. We measured the degree and timing of the invasion inhibition, the stage at which it occurred, as well as subsequent events. We show that parasite invasion is blocked by individual mAbs, and the degree of inhibition is enhanced when combining a mAb specific for PfRH5 with one binding PfCyRPA. In addition to directly establishing the invasion-blocking capacity of the mAbs, we identified a secondary action of certain mAbs on extracellular parasites that had not yet invaded where the mAbs appeared to inactivate the parasites by triggering a developmental pathway normally only seen after successful invasion. These findings suggest that epitopes within the PfCyRPA-PfRH5 sub-complex that elicit these dual responses may be more effective immunogens than neighboring epitopes by both blocking parasites from invading and rapidly inactivating extracellular parasites. These two protective mechanisms, prevention of invasion and inactivation of uninvaded parasites, resulting from antibody to a single epitope indicate a possible route to the development of more effective vaccines.


Subject(s)
Basigin , Merozoites , Humans , Animals , Plasmodium falciparum , Antibodies, Monoclonal , Epitopes
10.
Am J Pathol ; 194(4): 612-625, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38040091

ABSTRACT

Pathologic opening of the blood-brain barrier accelerates the progression of various neural diseases. Basigin, as an essential molecule for the opening of the blood-brain barrier, is a highly glycosylated transmembrane molecule specified in barrier-forming endothelial cells. This study analyzed the involvement of basigin in the regulation of the blood-brain barrier focusing on its glycosylation forms. First, basigin was found to be expressed as cell surface molecules with complex-type glycan as well as those with high-mannose-type glycan in barrier-forming endothelial cells. Monolayers of endothelial cells with suppressed expression of basigin with high-mannose-type glycan were then prepared and exposed to pathologic stimuli. These monolayers retained their barrier-forming properties even in the presence of pathologic stimuli, although their expression of basigin with complex-type glycan was maintained. In vivo, the blood-brain barrier in mice pretreated intravenously with endoglycosidase H was protected from opening under pathologic stimuli. Pathologically opened blood-brain barrier in streptozotocin-injected mice was successfully closed by intravenous injection of endoglycosidase H. These results show that high-mannose-type glycan of the basigin molecule is essential for the opening of the blood-brain barrier and therefore a specific target for protection as well as restoration of pathologic opening of the blood-brain barrier.


Subject(s)
Basigin , Blood-Brain Barrier , Animals , Mice , Basigin/metabolism , Blood-Brain Barrier/metabolism , Cyclophilin A/metabolism , Endothelial Cells/metabolism , Glycoside Hydrolases/metabolism , Hypoxia , Mannose , Polysaccharides , Tumor Necrosis Factor-alpha/metabolism
11.
Rev Med Virol ; 34(4): e2568, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38937111

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was reported in December 2019 and rapidly became a pandemic as coronavirus disease 2019 (COVID-19). Apart from other organs, presence of specific receptor angiotensin-converting enzyme (ACE2) and corresponding proteases such as transmembrane serine protease 2, basigin and cysteine protease cathepsin L make follicular somatic cells as well as oocyte as potential targets for SARS-CoV-2 infection. The SARS-CoV-2 causes inflammation and hypoxia that generate reactive oxygen species (ROS) in critically ill patients. In addition, a large number of casualties and insecurity of life due to repeated waves of SARS-CoV-2 infection generate psychological stress and cortisol resulting in the further generation of ROS. The excess levels of ROS under physiological range cause meiotic instability, while high levels result in oxidative stress that trigger various death pathways and affect number as well as quality of follicular oocytes. Although, emerging evidence suggests that the SARS-CoV-2 utilises cellular machinery of ovarian follicular cells, generates ROS and impairs quality of follicular oocytes, the underlying mechanism of viral entry into host cell and its negative impact on the follicular oocyte remains poorly understood. Therefore, this review summarises emerging evidence on the presence of cellular machinery for SARS-CoV-2 in ovarian follicles and the potential negative impact of viral infection on the follicular oocytes that affect ovarian functions in critically ill and stressed women.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Oocytes , SARS-CoV-2 , Humans , COVID-19/virology , SARS-CoV-2/physiology , Female , Oocytes/virology , Angiotensin-Converting Enzyme 2/metabolism , Reactive Oxygen Species/metabolism , Virus Internalization , Cathepsin L/metabolism , Basigin/metabolism , Ovarian Follicle/virology , Ovarian Follicle/metabolism , Oxidative Stress , Serine Endopeptidases/metabolism
12.
Cancer Immunol Immunother ; 73(9): 170, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954079

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy has shown promising results in hematologic malignancies, but its effectiveness in solid cancers remains challenging. Macrophages are immune cells residing within the tumor microenvironment. They can phagocytose tumor cells. Recently, CAR macrophages (CAR-M) have been a promising candidate for treating solid cancers. One of the common cancer antigens overexpressed in various types of cancer is CD147. CAR-T and NK cells targeting CD147 antigen have shown significant efficacy against hepatocellular carcinoma. Nevertheless, CAR-M targeting the CD147 molecule has not been investigated. In this study, we generated CAR targeting the CD147 molecule using the THP-1 monocytic cell line (CD147 CAR-M). The CD147 CAR-M exhibited typical macrophage characteristics, including phagocytosis of zymosan bioparticles and polarization ability toward M1 and M2 phenotypes. Furthermore, the CD147 CAR-M demonstrated enhanced anti-tumor activity against K562 and MDA-MB-231 cells without exhibiting off-target cytotoxicity against normal cells. Our research provides valuable insights into the potential of CD147 CAR-M as a promising platform for cancer immunotherapy, with applications in both hematologic malignancies and solid cancers.


Subject(s)
Basigin , Immunotherapy, Adoptive , Macrophages , Phagocytosis , Receptors, Chimeric Antigen , Humans , Phagocytosis/immunology , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Macrophages/immunology , Macrophages/metabolism , Immunotherapy, Adoptive/methods , Basigin/immunology , Basigin/metabolism , Neoplasms/immunology , Neoplasms/therapy , Mice , Animals , Cell Line, Tumor , Tumor Microenvironment/immunology
13.
Cell Immunol ; 401-402: 104845, 2024.
Article in English | MEDLINE | ID: mdl-38909549

ABSTRACT

CD147 is a T cell activation-associated molecule which is closely involved in the formation of the immune synapse (IS). However, the precise role of CD147 in T cell activation and IS formation remains unclear. In the present study, we demonstrated that CD147 translocated to the IS upon T cell activation and was primarily distributed in the peripheral super molecular cluster (p-SMAC). The knock down of CD147 expression in T cells, but not in B cells, impaired IS formation. CD147 participated in IS formation between T cells and different types of antigen-presenting cells (APCs), including macrophages and dendritic cells. Ligation of CD147 with its monoclonal antibody (mAb) HAb18 effectively inhibited T cell activation and IL-2 secretion. CD98, a critical molecule interacting with CD147, was distributed in IS in a CD147-dependent way. Phosphorylation levels of T cell receptor (TCR) related molecules, like ZAP-70, ERK, and cJun, were down-regulated by CD147 ligation, which is crucial for the interaction of CD147 and TCR signaling transduction. CD147 is indispensable for the formation of immune synapses and plays an important role in the regulation of its function.


Subject(s)
Basigin , Immunological Synapses , Lymphocyte Activation , T-Lymphocytes , Basigin/metabolism , Basigin/immunology , Immunological Synapses/metabolism , Immunological Synapses/immunology , Lymphocyte Activation/immunology , Humans , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Signal Transduction/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Phosphorylation , Antibodies, Monoclonal/immunology , Macrophages/immunology , Macrophages/metabolism , B-Lymphocytes/immunology , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Interleukin-2/metabolism , Interleukin-2/immunology , Animals , Jurkat Cells
14.
Respir Res ; 25(1): 6, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38178133

ABSTRACT

BACKGROUND: Airway remodeling is a poorly reversible feature of asthma which lacks effective therapeutic interventions. CD147 can regulate extracellular matrix (ECM) remodeling and tissue fibrosis, and participate in the pathogenesis of asthma. In this study, the role of CD147 in airway remodeling and activation of circulating fibrocytes was investigated in asthmatic mice. METHODS: Asthmatic mouse model was established by sensitizing and challenging mice with ovalbumin (OVA), and treated with anti-CD147 or Isotype antibody. The number of eosinophils in bronchoalveolar lavage fluid (BALF) was examined by microscope, and the levels of interleukin-4 (IL-4), IL-5 and IL-13 in BALF were detected by enzyme-linked immunosorbent assay (ELISA). The number of CD45+ and collagen I (COL-I)+ circulating fibrocytes in BALF was detected by flow cytometry. Lung tissue sections were respectively stained with hematoxylin and eosin (HE), periodic acid-Schiff (PAS) or Masson trichrome staining, or used for immunohistochemistry of CD31 and immunohistofluorescence of α-smooth muscle actin (α-SMA), CD45 and COL-I. The protein expression of α-SMA, vascular endothelial growth factor (VEGF), transforming growth factor-ß1 (TGF-ß1), Fibronectin, and COL-I was determined by western blotting. RESULTS: Anti-CD147 treatment significantly reduced the number of eosinophils and the levels of IL-4, IL-13, and IL-5 in BALF, and repressed airway inflammatory infiltration and airway wall thickening in asthmatic mice. Anti-CD147 treatment also reduced airway goblet cell metaplasia, collagen deposition, and angiogenesis in asthmatic mice, accompanied by inhibition of VEGF and α-SMA expression. The number of CD45+COL-I+ circulating fibrocytes was increased in BALF and lung tissues of OVA-induced asthmatic mice, but was decreased by anti-CD147 treatment. In addition, anti-CD147 treatment also reduced the protein expression of COL-I, fibronectin, and TGF-ß1 in lung tissues of asthmatic mice. CONCLUSION: OVA-triggered airway inflammation and airway remodeling in asthmatic mice can be repressed by anti-CD147 treatment, along with inhibiting the accumulation and activation of circulating fibrocytes.


Subject(s)
Asthma , Basigin , Animals , Mice , Airway Remodeling , Asthma/drug therapy , Collagen Type I , Fibronectins , Interleukin-13 , Interleukin-4 , Interleukin-5 , Transforming Growth Factor beta1 , Vascular Endothelial Growth Factor A
15.
Cell Commun Signal ; 22(1): 129, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38360687

ABSTRACT

BACKGROUND: Extracellular vesicles (EVs), including microvesicles, hold promise for the management of bladder urothelial carcinoma (BLCA), particularly because of their utility in identifying therapeutic targets and their diagnostic potential using easily accessible urine samples. Among the transmembrane glycoproteins highly enriched in cancer-derived EVs, tissue factor (TF) and CD147 have been implicated in promoting tumor progression. In this in vitro study, we explored a novel approach to impede cancer cell migration and metastasis by simultaneously targeting these molecules on urothelial cancer-derived EVs. METHODS: Cell culture supernatants from invasive and non-invasive bladder cancer cell lines and urine samples from patients with BLCA were collected. Large, microvesicle-like EVs were isolated using sequential centrifugation and characterized by electron microscopy, nanoparticle tracking analysis, and flow cytometry. The impact of urinary or cell supernatant-derived EVs on cellular phenotypes was evaluated using cell-based assays following combined treatment with a specific CD147 inhibitor alone or in combination with a tissue factor pathway inhibitor (TFPI), an endogenous anticoagulant protein that can be released by low-molecular-weight heparins. RESULTS: We observed that EVs obtained from the urine samples of patients with muscle-invasive BLCA and from the aggressive bladder cancer cell line J82 exhibited higher TF activity and CD147 expression levels than did their non-invasive counterparts. The shedding of GFP-tagged CD147 into isolated vesicles demonstrated that the vesicles originated from plasma cell membranes. EVs originating from invasive cancer cells were found to trigger migration, secretion of matrix metalloproteinases (MMPs), and invasion. The same induction of MMP activity was replicated using EVs obtained from urine samples of patients with invasive BLCA. EVs derived from cancer cell clones overexpressing TF and CD147 were produced in higher quantities and exhibited a higher invasive potential than those from control cancer cells. TFPI interfered with the effect when used in conjunction with the CD147 inhibitor, further suppressing homotypic EV-induced migration, MMP production, and invasion. CONCLUSIONS: Our findings suggest that combining a CD147 inhibitor with low molecular weight heparins to induce TFPI release may be a promising therapeutic approach for urothelial cancer management. This combination can potentially suppress the tumor-promoting actions of cancer-derived microvesicle-like EVs, including collective matrix invasion.


Small particles or vesicles released by cancer cells into their surroundings have the potential to stimulate the spread and growth of cancer cells. In this study, we focused on two specific molecules presented by these cancer cell-derived vesicles that could play a role in promoting the dissemination of cancer cells: a protein related to blood clotting and a protein on the cell surface.We found that large vesicles from bladder cancer cells that have the ability to spread had higher levels of these proteins than vesicles from nonspreading cancer cells. We also found that the former could make cancer cells move about more, produce more of a substance that helps cancer cells spread, and invade other tissues.To counteract the cancer-promoting actions of these vesicles, we examined the impact of combining a naturally occurring anticlotting protein that can be released by medications derived from heparin with an inhibitor targeting the cancer cell surface protein. We found that this combination stopped the vesicles from helping cancer cells move about more, produce more of the spreading substance, and invade other tissues.This approach of simultaneously targeting the two protein molecules present on cancer cell-derived vesicles might be a new way to treat bladder cancer.


Subject(s)
Basigin , Carcinoma, Transitional Cell , Extracellular Vesicles , Lipoproteins , Urinary Bladder Neoplasms , Humans , Carcinoma, Transitional Cell/drug therapy , Cell Line, Tumor , Extracellular Vesicles/drug effects , Lipoproteins/metabolism , Urinary Bladder Neoplasms/drug therapy , Basigin/antagonists & inhibitors
16.
Cell Commun Signal ; 22(1): 349, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965547

ABSTRACT

T lymphocytes play a primary role in the adaptive antiviral immunity. Both lymphocytosis and lymphopenia were found to be associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While lymphocytosis indicates an active anti-viral response, lymphopenia is a sign of poor prognosis. T-cells, in essence, rarely express ACE2 receptors, making the cause of cell depletion enigmatic. Moreover, emerging strains posed an immunological challenge, potentially alarming for the next pandemic. Herein, we review how possible indirect and direct key mechanisms could contribute to SARS-CoV-2-associated-lymphopenia. The fundamental mechanism is the inflammatory cytokine storm elicited by viral infection, which alters the host cell metabolism into a more acidic state. This "hyperlactic acidemia" together with the cytokine storm suppresses T-cell proliferation and triggers intrinsic/extrinsic apoptosis. SARS-CoV-2 infection also results in a shift from steady-state hematopoiesis to stress hematopoiesis. Even with low ACE2 expression, the presence of cholesterol-rich lipid rafts on activated T-cells may enhance viral entry and syncytia formation. Finally, direct viral infection of lymphocytes may indicate the participation of other receptors or auxiliary proteins on T-cells, that can work alone or in concert with other mechanisms. Therefore, we address the role of CD147-a novel route-for SARS-CoV-2 and its new variants. CD147 is not only expressed on T-cells, but it also interacts with other co-partners to orchestrate various biological processes. Given these features, CD147 is an appealing candidate for viral pathogenicity. Understanding the molecular and cellular mechanisms behind SARS-CoV-2-associated-lymphopenia will aid in the discovery of potential therapeutic targets to improve the resilience of our immune system against this rapidly evolving virus.


Subject(s)
Basigin , COVID-19 , Lymphopenia , SARS-CoV-2 , Humans , Lymphopenia/immunology , Lymphopenia/virology , COVID-19/immunology , COVID-19/virology , COVID-19/pathology , SARS-CoV-2/metabolism , Basigin/metabolism , Angiotensin-Converting Enzyme 2/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/virology , Cytokine Release Syndrome/immunology , Animals
17.
Mol Cell ; 61(6): 791-2, 2016 Mar 17.
Article in English | MEDLINE | ID: mdl-26990983

ABSTRACT

In this issue of Molecular Cell, Tay and colleagues (Albayrak et al., 2016) describe a new technique to digitally quantify the numbers of protein and mRNA in the same mammalian cell, providing a new way to look at the central dogma of molecular biology.


Subject(s)
Basigin/isolation & purification , Polymerase Chain Reaction/methods , RNA, Messenger/isolation & purification , Single-Cell Analysis/methods , Animals , Humans
18.
Mol Cell ; 61(6): 914-24, 2016 Mar 17.
Article in English | MEDLINE | ID: mdl-26990994

ABSTRACT

Absolute quantification of macromolecules in single cells is critical for understanding and modeling biological systems that feature cellular heterogeneity. Here we show extremely sensitive and absolute quantification of both proteins and mRNA in single mammalian cells by a very practical workflow that combines proximity ligation assay (PLA) and digital PCR. This digital PLA method has femtomolar sensitivity, which enables the quantification of very small protein concentration changes over its entire 3-log dynamic range, a quality necessary for accounting for single-cell heterogeneity. We counted both endogenous (CD147) and exogenously expressed (GFP-p65) proteins from hundreds of single cells and determined the correlation between CD147 mRNA and the protein it encodes. Using our data, a stochastic two-state model of the central dogma was constructed and verified using joint mRNA/protein distributions, allowing us to estimate transcription burst sizes and extrinsic noise strength and calculate the transcription and translation rate constants in single mammalian cells.


Subject(s)
Basigin/isolation & purification , Polymerase Chain Reaction/methods , RNA, Messenger/isolation & purification , Single-Cell Analysis/methods , Animals , Basigin/genetics , HEK293 Cells , Humans , RNA, Messenger/genetics
19.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Article in English | MEDLINE | ID: mdl-33762304

ABSTRACT

MYCN-amplified neuroblastoma is a lethal subset of pediatric cancer. MYCN drives numerous effects in the cell, including metabolic changes that are critical for oncogenesis. The understanding that both compensatory pathways and intrinsic redundancy in cell systems exists implies that the use of combination therapies for effective and durable responses is necessary. Additionally, the most effective targeted therapies exploit an "Achilles' heel" and are tailored to the genetics of the cancer under study. We performed an unbiased screen on select metabolic targeted therapy combinations and correlated sensitivity with over 20 subsets of cancer. We found that MYCN-amplified neuroblastoma is hypersensitive to the combination of an inhibitor of the lactate transporter MCT1, AZD3965, and complex I of the mitochondrion, phenformin. Our data demonstrate that MCT4 is highly correlated with resistance to the combination in the screen and lowly expressed in MYCN-amplified neuroblastoma. Low MCT4 combines with high expression of the MCT2 and MCT1 chaperone CD147 in MYCN-amplified neuroblastoma, altogether conferring sensitivity to the AZD3965 and phenformin combination. The result is simultaneous disruption of glycolysis and oxidative phosphorylation, resulting in dramatic disruption of adenosine triphosphate (ATP) production, endoplasmic reticulum stress, and cell death. In mouse models of MYCN-amplified neuroblastoma, the combination was tolerable at concentrations where it shrank tumors and did not increase white-blood-cell toxicity compared to single drugs. Therefore, we demonstrate that a metabolic combination screen can identify vulnerabilities in subsets of cancer and put forth a metabolic combination therapy tailored for MYCN-amplified neuroblastoma that demonstrates efficacy and tolerability in vivo.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Electron Transport Complex I/antagonists & inhibitors , Monocarboxylic Acid Transporters/antagonists & inhibitors , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/drug therapy , Symporters/antagonists & inhibitors , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Basigin/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Electron Transport Complex I/metabolism , Gene Amplification , Humans , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Monocarboxylic Acid Transporters/metabolism , Neuroblastoma/genetics , Neuroblastoma/pathology , Phenformin/pharmacology , Phenformin/therapeutic use , Pyrimidinones/pharmacology , Pyrimidinones/therapeutic use , Symporters/metabolism , Thiophenes/pharmacology , Thiophenes/therapeutic use , Xenograft Model Antitumor Assays
20.
Odontology ; 112(1): 148-157, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37227552

ABSTRACT

Extracellular matrix metalloproteinase inducer (EMMPRIN) plays critical roles in the regulation of inflammation and bone metabolism. The roles of EMMPRIN signaling in osteoclasts are worthy of deep study. The present study aimed to investigate bone resorption in periodontitis through the intervention of EMMPRIN signaling. The distribution of EMMPRIN in human periodontitis was observed. RANKL-induced osteoclast differentiation of mouse bone marrow-derived macrophages (BMMs) were treated with EMMPRIN inhibitor in vitro. Rats with ligation-induced periodontitis were treated with EMMPRIN inhibitor and harvested for microcomputed tomography scanning, histologic observation, immunohistochemistry, and double immunofluorescence analysis. Positive expressions of EMMPRIN could be found in the CD68+-infiltrating cells. Downregulated EMMPRIN restrained osteoclast differentiation of BMMs in vitro, which also inhibited MMP-9 expression (*P < 0.05). In vivo, EMMPRIN inhibitor restrained ligation-induced bone resorption by decreasing tartrate-resistant acid phosphatase-positive osteoclasts. Both EMMPRIN-positive and MMP-9-positive osteoclasts were less common in the EMMPRIN inhibitor groups than in the control groups. Intervention of EMMPRIN signaling in osteoclasts could probably provide a potential therapeutic target for attenuating ligation-induced bone resorption.


Subject(s)
Bone Resorption , Periodontitis , Mice , Rats , Humans , Animals , Osteoclasts , Basigin/analysis , Basigin/metabolism , Matrix Metalloproteinase 9/metabolism , X-Ray Microtomography , Bone Resorption/pathology , Periodontitis/pathology , RANK Ligand , Cell Differentiation
SELECTION OF CITATIONS
SEARCH DETAIL