Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.879
Filter
Add more filters

Publication year range
1.
Nature ; 629(8010): 235-243, 2024 May.
Article in English | MEDLINE | ID: mdl-38499039

ABSTRACT

Biogenic monoamines-vital transmitters orchestrating neurological, endocrinal and immunological functions1-5-are stored in secretory vesicles by vesicular monoamine transporters (VMATs) for controlled quantal release6,7. Harnessing proton antiport, VMATs enrich monoamines around 10,000-fold and sequester neurotoxicants to protect neurons8-10. VMATs are targeted by an arsenal of therapeutic drugs and imaging agents to treat and monitor neurodegenerative disorders, hypertension and drug addiction1,8,11-16. However, the structural mechanisms underlying these actions remain unclear. Here we report eight cryo-electron microscopy structures of human VMAT1 in unbound form and in complex with four monoamines (dopamine, noradrenaline, serotonin and histamine), the Parkinsonism-inducing MPP+, the psychostimulant amphetamine and the antihypertensive drug reserpine. Reserpine binding captures a cytoplasmic-open conformation, whereas the other structures show a lumenal-open conformation stabilized by extensive gating interactions. The favoured transition to this lumenal-open state contributes to monoamine accumulation, while protonation facilitates the cytoplasmic-open transition and concurrently prevents monoamine binding to avoid unintended depletion. Monoamines and neurotoxicants share a binding pocket that possesses polar sites for specificity and a wrist-and-fist shape for versatility. Variations in this pocket explain substrate preferences across the SLC18 family. Overall, these structural insights and supporting functional studies elucidate the mechanism of vesicular monoamine transport and provide the basis to develop therapeutics for neurodegenerative diseases and substance abuse.


Subject(s)
Biogenic Monoamines , Drug Interactions , Vesicular Monoamine Transport Proteins , Humans , 1-Methyl-4-phenylpyridinium/chemistry , 1-Methyl-4-phenylpyridinium/metabolism , 1-Methyl-4-phenylpyridinium/pharmacology , Amphetamine/chemistry , Amphetamine/pharmacology , Amphetamine/metabolism , Binding Sites , Biogenic Monoamines/chemistry , Biogenic Monoamines/metabolism , Cryoelectron Microscopy , Dopamine/chemistry , Dopamine/metabolism , Models, Molecular , Norepinephrine/chemistry , Norepinephrine/metabolism , Protein Binding , Protons , Reserpine/pharmacology , Reserpine/chemistry , Reserpine/metabolism , Serotonin/chemistry , Serotonin/metabolism , Substrate Specificity , Vesicular Monoamine Transport Proteins/chemistry , Vesicular Monoamine Transport Proteins/metabolism , Vesicular Monoamine Transport Proteins/ultrastructure
2.
BMC Biol ; 22(1): 166, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113019

ABSTRACT

BACKGROUND: Monoamine oxidases (MAOs) is an enzyme that catalyzes the deamination of monoamines. The current research on this enzyme is focused on its role in neuropsychiatric, neurodevelopmental, and neurodegenerative diseases. Indeed, MAOs with two isoforms, namely, A and B, are located on the outer mitochondrial membrane and are widely distributed in the central nervous system and peripheral tissues. Several reports have described periodic changes in the levels of this enzyme in the human endometrial tissue. RESULTS: The novel role of MAOs in endometrial receptivity establishment and embryonic development by maintaining monoamine homeostasis was investigated in this study. MAOs activity was observed to be enhanced during the first trimester in both humans and mice under normal conditions. However, under pathological conditions, MAOs activity was reduced and was linked to early pregnancy failure. During the secretory phase, the endometrial stromal cells differentiated into decidual cells with a stronger metabolism of monoamines by MAOs. Excessive monoamine levels cause monoamine imbalance in decidual cells, which results in the activation of the AKT signal, decreased FOXO1 expression, and decidual dysfunction. CONCLUSIONS: The findings suggest that endometrial receptivity depends on the maintenance of monoamine homeostasis via MAOs activity and that this enzyme participates in embryo implantation and development.


Subject(s)
Embryo Implantation , Endometrium , Homeostasis , Monoamine Oxidase , Female , Monoamine Oxidase/metabolism , Endometrium/metabolism , Humans , Embryo Implantation/physiology , Mice , Animals , Pregnancy , Embryonic Development/physiology , Biogenic Monoamines/metabolism
3.
J Inherit Metab Dis ; 47(3): 533-550, 2024 05.
Article in English | MEDLINE | ID: mdl-38168036

ABSTRACT

Several mouse models have been developed to study human defects of primary and secondary inherited monoamine neurotransmitter disorders (iMND). As the field continues to expand, current defects in corresponding mouse models include enzymes and a molecular co-chaperone involved in monoamine synthesis and metabolism (PAH, TH, PITX3, AADC, DBH, MAOA, DNAJC6), tetrahydrobiopterin (BH4) cofactor synthesis and recycling (adGTPCH1/DRD, arGTPCH1, PTPS, SR, DHPR), and vitamin B6 cofactor deficiency (ALDH7A1), as well as defective monoamine neurotransmitter packaging (VMAT1, VMAT2) and reuptake (DAT). No mouse models are available for human DNAJC12 co-chaperone and PNPO-B6 deficiencies, disorders associated with recessive variants that result in decreased stability and function of the aromatic amino acid hydroxylases and decreased neurotransmitter synthesis, respectively. More than one mutant mouse is available for some of these defects, which is invaluable as different variant-specific (knock-in) models may provide more insights into underlying mechanisms of disorders, while complete gene inactivation (knock-out) models often have limitations in terms of recapitulating complex human diseases. While these mouse models have common phenotypic traits also observed in patients, reflecting the defective homeostasis of the monoamine neurotransmitter pathways, they also present with disease-specific manifestations with toxic accumulation or deficiency of specific metabolites related to the specific gene affected. This review provides an overview of the currently available models and may give directions toward selecting existing models or generating new ones to investigate novel pathogenic mechanisms and precision therapies.


Subject(s)
Disease Models, Animal , Neurotransmitter Agents , Animals , Mice , Humans , Neurotransmitter Agents/metabolism , Biogenic Monoamines/metabolism
4.
PLoS Genet ; 17(9): e1009794, 2021 09.
Article in English | MEDLINE | ID: mdl-34516550

ABSTRACT

LRRK2 gain-of-function is considered a major cause of Parkinson's disease (PD) in humans. However, pathogenicity of LRRK2 loss-of-function in animal models is controversial. Here we show that deletion of the entire zebrafish lrrk2 locus elicits a pleomorphic transient brain phenotype in maternal-zygotic mutant embryos (mzLrrk2). In contrast to lrrk2, the paralog gene lrrk1 is virtually not expressed in the brain of both wild-type and mzLrrk2 fish at different developmental stages. Notably, we found reduced catecholaminergic neurons, the main target of PD, in specific cell populations in the brains of mzLrrk2 larvae, but not adult fish. Strikingly, age-dependent accumulation of monoamine oxidase (MAO)-dependent catabolic signatures within mzLrrk2 brains revealed a previously undescribed interaction between LRRK2 and MAO biological activities. Our results highlight mzLrrk2 zebrafish as a tractable tool to study LRRK2 loss-of-function in vivo, and suggest a link between LRRK2 and MAO, potentially of relevance in the prodromic stages of PD.


Subject(s)
Biogenic Monoamines/metabolism , Brain/metabolism , Gene Deletion , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Zebrafish Proteins/genetics , Zebrafish/genetics , Animals , Anxiety/genetics , Brain/embryology , Brain/enzymology , CRISPR-Cas Systems , Larva/metabolism , Monoamine Oxidase/metabolism , Smell/genetics , Swimming , Zebrafish/embryology
5.
Molecules ; 29(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276574

ABSTRACT

This review highlights the advantages of high-precision liquid chromatography with an electrochemical detector (HPLC-ECD) in detecting and quantifying biological samples obtained through intracerebral microdialysis, specifically the serotonergic and dopaminergic systems: Serotonin (5-HT), 5-hydroxyindolacetic acid (5-HIAA), 3,4-dihydroxyphenylacetic acid (DOPAC), dopamine (DA), 3-metoxytryptamin (3-MT) and homovanillic acid (HVA). Recognized for its speed and selectivity, HPLC enables direct analysis of intracerebral microdialysis samples without complex derivatization. Various chromatographic methods, including reverse phase (RP), are explored for neurotransmitters (NTs) and metabolites separation. Electrochemical detector (ECD), particularly with glassy carbon (GC) electrodes, is emphasized for its simplicity and sensitivity, aimed at enhancing reproducibility through optimization strategies such as modified electrode materials. This paper underscores the determination of limits of detection (LOD) and quantification (LOQ) and the linear range (L.R.) showcasing the potential for real-time monitoring of compounds concentrations. A non-exhaustive compilation of literature values for LOD, LOQ, and L.R. from recent publications is included.


Subject(s)
Dopamine , Serotonin , Chromatography, High Pressure Liquid/methods , Reproducibility of Results , Dopamine/metabolism , Chromatography, Liquid , Serotonin/metabolism , Neurotransmitter Agents , 3,4-Dihydroxyphenylacetic Acid/metabolism , Hydroxyindoleacetic Acid/analysis , Hydroxyindoleacetic Acid/metabolism , Biogenic Monoamines
6.
Georgian Med News ; (350): 73-81, 2024 May.
Article in English | MEDLINE | ID: mdl-39089275

ABSTRACT

Monoamine neurotransmitter system dysfunctions lead to behavioral disorders, cognitive metabolic, and other pathological conditions. In this case, different amino acids are precursors of monoamines, while the parenteral path of monoamine administration has pharmacological restrictions. Therefore, intranasal administration one of the most promising methods of delivering an active substance is. The purpose of the work is to study the effect of intranasal administration of a chelate complex of zinc arginyl-glycinate and alpha-glutamyl-tryptophan dipeptide on behavioral and neurochemical changes in acute and chronic experiments. MATERIAL AND METHODS: The studies used outbred Wistar and DAT-KO rats, and inbred C57Bl6 and TAAR1-KO mice. Using intranasal administration of a chelate complex of zinc arginyl-glycinate and alpha-glutamyl-tryptophan dipeptide we tested methods for evaluating different behavioral indicators and the level of cerebral monoamines and their metabolites. RESULTS: An anxiolytic effect of zinc arginyl-glycinate and its combination with alpha-glutamyl-tryptophan was revealed. Both drugs have a physiological effect on the autonomic nervous system, but the determination of their operating mechanisms requires further research. CONCLUSION: Thus, these data indicate that intranasal delivery of the dipeptides is effective during acute and chronic intranasal administration in rodents, the latter showed a change in the anxiety indicator. Acute AG intranasal administration demonstrated signs of lower anxiety and depressive-like behavior in C57Bl6 mice. The acute intranasal administration of a chelate complex zinc arginyl-glycinate and combination with alpha-glutamyl-tryptophan in doses of 50-100 mg/kg of body weight may be used for pre-clinical studies as a new anxiolytic/antidepressant.


Subject(s)
Administration, Intranasal , Dipeptides , Mice, Knockout , Rats, Wistar , Animals , Dipeptides/administration & dosage , Dipeptides/pharmacology , Mice , Behavior, Animal/drug effects , Mice, Inbred C57BL , Male , Rats , Chelating Agents/administration & dosage , Chelating Agents/pharmacology , Zinc/administration & dosage , Zinc/pharmacology , Anxiety/drug therapy , Anti-Anxiety Agents/administration & dosage , Anti-Anxiety Agents/pharmacology , Biogenic Monoamines/metabolism
7.
Neurochem Res ; 48(6): 1755-1774, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36680692

ABSTRACT

Social isolation (SI) is chronic psycho-emotional stress for humans and other socially living species. There are few comparative studies that have measured monoamine levels in brain structures in male and female rats subjected to SI. Existing data is highly controversial. In our recent study, we investigated behavioral effects of SI prolonged up to 9 months on a rather large sample of 69 male and female Wistar rats. In the present study, we measured the levels of monoamines-norepinephrine (NE), dopamine (DA), 5-hydroxytryptamine (5-HT), and DA and 5-HT metabolites-in the brain structures of 40 rats from the same sample. The single-housed rats of both sexes showed hyperactivity and reduced reactivity to novelty in the Open Field test, and impaired passive avoidance learning. Regardless of their sex, by the time of sacrifice, the single-housed rats weighed less and had lower pain sensitivity and decreased anxiety compared with group-housed animals. SI decreased NE levels in the hippocampus and increased them in the striatum. SI induced functional activation of the DA-ergic system in the frontal cortex and hypothalamus, with increased DA and 3-methoxytyramine levels. SI-related changes were found in the 5-HT-ergic system: 5-HT levels increased in the frontal cortex and striatum, while 5-hydroxyindoleacetic acid only increased in the frontal cortex. We believe that SI prolonged for multiple months could be a valuable model for comparative analysis of the behavioral alterations and the underlying molecular processes in dynamics of adaptation to chronic psychosocial stress in male and female rats in relation to age-dependent changes.


Subject(s)
Brain , Social Isolation , Male , Female , Animals , Rats , Rats, Wistar , Biogenic Monoamines/metabolism , Brain/metabolism , Behavior, Animal , Maze Learning , Body Weight , Anxiety
8.
Bull Exp Biol Med ; 175(6): 739-743, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37978148

ABSTRACT

The activity in the open field, short- and long-term memory in the novel object recognition test, and gait features were evaluated in 6- and 12-month-old male C57BL/6 mice. The levels of norepinephrine, dopamine, serotonin, and their metabolites were determined in the cerebellum and frontal cortex. In the observed age range, a decrease in locomotion speed, impairment of gait initiation and stability, and long-term memory deficit were revealed. In the cerebral cortex, reduced levels of dopamine and its metabolites and accelerated metabolism of all neurotransmitters under study were found. In the cerebellum, the content of all studied monoamines was elevated, while dopamine metabolism was decelerated. Analysis of correlations between the neurochemical and behavioral parameters showed that the mechanisms of compensation of brain functions during the early aging may be associated with an increase in activity of the monoaminergic systems in the cerebellum.


Subject(s)
Dopamine , Norepinephrine , Mice , Animals , Male , Dopamine/metabolism , Mice, Inbred C57BL , Norepinephrine/metabolism , Cognition , Cerebellum/metabolism , Frontal Lobe/metabolism , Aging , Brain/metabolism , Biogenic Monoamines/metabolism
9.
J Neurosci ; 41(11): 2318-2328, 2021 03 17.
Article in English | MEDLINE | ID: mdl-33627325

ABSTRACT

Neuromodulatory communication among various neurons and non-neuronal cells mediates myriad physiological and pathologic processes, yet defining regulatory and functional features of neuromodulatory transmission remains challenging because of limitations of available monitoring tools. Recently developed genetically encoded neuromodulatory transmitter sensors, when combined with superresolution and/or deconvolution microscopy, allow the first visualization of neuromodulatory transmission with nanoscale or microscale spatiotemporal resolution. In vitro and in vivo experiments have validated several high-performing sensors to have the qualities necessary for demarcating fundamental synaptic properties of neuromodulatory transmission, and initial analysis has unveiled unexpected fine control and precision of neuromodulation. These new findings underscore the importance of synaptic dynamics in synapse-, subcellular-, and circuit-specific neuromodulation, as well as the prospect of genetically encoded transmitter sensors in expanding our knowledge of various behaviors and diseases, including Alzheimer's disease, sleeping disorders, tumorigenesis, and many others.


Subject(s)
Acetylcholine/physiology , Biogenic Monoamines/physiology , Cell Communication/genetics , Neurons/physiology , Neurotransmitter Agents/physiology , Synapses/physiology , Synaptic Transmission/physiology , Animals , Humans
10.
Cereb Cortex ; 31(1): 483-496, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32869057

ABSTRACT

Perinatal nicotine exposure (PNE) produces frontal cortical hypo-dopaminergic state and attention and working memory deficits consistent with neurodevelopmental disorders such as attention deficit hyperactivity disorder (ADHD). Methylphenidate alleviates ADHD symptoms by increasing extracellular dopamine and noradrenaline. Kappa opioid receptor (KOR) antagonism may be another mechanism to achieve the same results because KOR activation inhibits frontal cortical dopamine release. We administered the selective KOR antagonist norbinaltorphimine (norBNI) (20 mg/kg; intraperitoneal) or methylphenidate (0.75 mg/kg; intraperitoneal) to PNE mouse model and examined frontal cortical monoamine release, attention, and working memory. Both compounds increased dopamine and noradrenaline release but neither influenced serotonin release. Both compounds improved object-based attention and working memory in the PNE group, with norBNI's effects evident at 2.5 h and 5.5 h but absent at 24 h. Methylphenidate's effects were evident at 0.5 h but not at 2.5 h. norBNI's effects temporally coincided with frontal cortical c-Jun N-terminal kinase phosphorylation. norBNI did not alter tissue dopamine content in the nucleus accumbens, offering preliminary support for lack of reinforcement.


Subject(s)
Biogenic Monoamines/metabolism , Memory, Short-Term/drug effects , Nicotine/adverse effects , Receptors, Opioid, kappa/antagonists & inhibitors , Animals , Attention Deficit Disorder with Hyperactivity/etiology , Disease Models, Animal , Female , Methylphenidate/pharmacology , Mice, Inbred C57BL , Norepinephrine/pharmacology , Receptors, Opioid, kappa/metabolism , Reinforcement, Psychology
11.
Int J Mol Sci ; 23(19)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36233200

ABSTRACT

Reduction in the levels of monoamines, such as serotonin and dopamine in the brain, were reported in patients and animals with depression. SAMe, a universal methyl donor and an epigenetic modulator, is successfully used as an adjunct treatment of depression. We previously found that prenatal treatment with SAMe of Submissive (Sub) mice that serve as a model for depression alleviated many of the behavioral depressive symptoms. In the present study, we treated pregnant Sub mice with 20 mg/kg of SAMe on days 12-15 of gestation and studied the levels of monoamines and the expression of genes related to monoamines metabolism in their prefrontal cortex (PFC) at the age of 3 months. The data were compared to normal saline-treated Sub mice that exhibit depressive-like symptoms. SAMe increased the levels of serotonin in the PFC of female Sub mice but not in males. The levels of 5-HIAA were not changed. SAMe increased the levels of dopamine and of DOPAC in males and females but increased the levels of HVA only in females. The levels of norepinephrine and its metabolite MHPG were unchanged. SAMe treatment changed the expression of several genes involved in the metabolism of these monoamines, also in a sex-related manner. The increase in several monoamines induced by SAMe in the PFC may explain the alleviation of depressive-like symptoms. Moreover, these changes in gene expression more than 3 months after treatment probably reflect the beneficial effects of SAMe as an epigenetic modulator in the treatment of depression.


Subject(s)
Dopamine , Serotonin , 3,4-Dihydroxyphenylacetic Acid/pharmacology , Animals , Biogenic Monoamines/metabolism , Brain/metabolism , Catecholamines/metabolism , Depression/drug therapy , Depression/genetics , Dopamine/metabolism , Epigenesis, Genetic , Female , Hierarchy, Social , Hydroxyindoleacetic Acid/metabolism , Male , Methoxyhydroxyphenylglycol , Mice , Norepinephrine/metabolism , Saline Solution , Serotonin/metabolism
12.
Molecules ; 27(20)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36296561

ABSTRACT

Two different pretreatment approaches have been used for the enrichment and separation of biogenic monoamines and metabolites in plasma for high performance liquid chromatography (HPLC) determination. The first approach, based on on-line packed-fiber solid-phase extraction (PFSPE) coupled with HPLC, allows for the simultaneous detection of epinephrine (E), norepinephrine (NE), dopamine (DA), 3-methoxyl epinephrine (MN), norepinephrine (NMN), 3-methoxytyramine (3-MT), and 5-hydroxytryptamin (5-HT). Using this developed on-line PFSPE-HPLC method, the limit of detections (LODs) of the seven analytes ranged from 1 ng/mL (NMN and MN) to 2 ng/mL (NE, E, DA, 3-MT and 5-HT). The reportable ranges were 5-300 ng/mL for NE and DA, 5-100 ng/mL for E, and 5-200 ng/mL for NMN, MN, 3-MT and 5-HT. The off-line PFSPE-HPLC was employed in the second approach and could provide simultaneous detection of NE, E, DA, NMN, and MN. The linearity was verified in the range of 0.5-20 ng/mL (NE, E, and DA) and 20-250 ng/mL (NMN and MN). The LODs of the five analytes ranged from 0.2 ng/mL (NE, E, and DA) to 5 ng/mL (NMN and MN). This study verified the possibility of using nanofibers as an adsorbent in an on-line PFSPE-HPLC system for the determination of biogenic monoamines and their metabolites in human plasma. Compared with the off-line PFSPE approach, the on-line PFSPE method deserves attention mainly due to its greener character, derived from the automation of the process and high-throughput with less operators' handling.


Subject(s)
Dopamine , Nanofibers , Humans , Nanofibers/chemistry , Serotonin , Solid Phase Extraction/methods , Biogenic Monoamines , Chromatography, High Pressure Liquid/methods , Norepinephrine , Epinephrine
13.
Appl Environ Microbiol ; 87(18): e0083421, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34190609

ABSTRACT

The etiology of alcohol dependence is not completely understood. Increasing evidence reveals that gut microbiota dysbiosis is associated with certain psychiatric disorders, including alcoholism, through the "microbiota-gut-brain" axis. The aims of this study were to evaluate the effect of alcohol abuse on the gut microbiota, intestinal permeability and serum metabolic profile and to determine whether alcohol-induced alterations in gut microbiota are correlated with gut permeability and serum metabolic phenotype changes. 16S rRNA gene high-throughput sequencing and nontarget metabolomics techniques were applied in an alcohol-dependent rat model in the present study. The results showed that alcohol intake altered the composition and structure of the colonic microbiota, especially the relative abundances of commensal microbes in the families Lachnospiraceae and Prevotellaceae, which were significantly decreased. Alcohol-dependent rats developed gut leakiness and a serum metabolic phenotype disorder. The valine, leucine and isoleucine biosynthesis pathways and arginine and proline metabolism pathways were obviously influenced by alcohol intake. Moreover, alcohol consumption disturbed the brain's neurotransmitter homeostasis. Regression analysis showed that alcohol-induced colonic microbiota dysbiosis was strongly associated with increased intestinal permeability and serum metabolic phenotype and neurotransmitter disorders. These results revealed that gut microbiota dysbiosis and serum metabolite alteration might be a cofactor for developing of alcohol dependence. IMPORTANCE Gut microbiota dysbiosis is associated with certain psychiatric disorders through the "microbiota-gut-brain" axis. Here, we revealed that alcohol consumption induced colonic microbiota dysbiosis, increased intestinal permeability, and altered the serum metabolic phenotype in rats, and there was a strong correlation between gut microbiota dysbiosis and serum metabolite disorders. Thus, gut microbiota dysbiosis and serum metabolite alteration may be a cofactor for development of alcohol dependence.


Subject(s)
Alcoholism , Colon/drug effects , Dysbiosis , Ethanol/pharmacology , Gastrointestinal Microbiome/drug effects , Metabolome/drug effects , Substance Withdrawal Syndrome , Alcoholism/metabolism , Alcoholism/microbiology , Amino Acids/metabolism , Animals , Biogenic Monoamines/metabolism , Colon/metabolism , Colon/microbiology , Dysbiosis/chemically induced , Dysbiosis/metabolism , Dysbiosis/microbiology , Gastrointestinal Microbiome/genetics , Hippocampus/drug effects , Hippocampus/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Permeability/drug effects , RNA, Ribosomal, 16S/genetics , Rats, Wistar , Substance Withdrawal Syndrome/metabolism , Substance Withdrawal Syndrome/microbiology
14.
Behav Pharmacol ; 32(5): 357-367, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33587482

ABSTRACT

The 3,4-methylenedioxypyrovalerone (MDPV), and other structurally related synthetic cathinones, are popular alternatives to prototypical illicit psychostimulants, such as cocaine and methamphetamine. These drugs are often referred to as 'bath salts' and function either as cocaine-like inhibitors of monoamine uptake, or amphetamine-like substrates for dopamine, norepinephrine and serotonin transporters. These studies used male Sprague-Dawley rats trained to discriminate MDPV from saline to evaluate the substitution profiles of structurally related synthetic cathinones, cocaine, and other direct-acting dopamine and noradrenergic receptor agonists in order to characterize the relative contributions of dopamine, norepinephrine and serotonin to the discriminative stimulus effects of MDPV. As expected, each of the cathinones and cocaine dose-dependently increased MDPV-appropriate responding, with a rank-order potency that was positively correlated with their potency to inhibit dopamine and norepinephrine, but not serotonin, a relationship that is consistent with the rank order to maintain self-administration. The dopamine D2/3 receptor-preferring agonist quinpirole produced a modest increase in MDPV-appropriate responding, whereas the dopamine D1/5 receptor agonist, SKF 82958, nonselective dopamine receptor agonist, apomorphine, as well as the α-1, and α-2 adrenergic receptor agonists, phenylephrine and clonidine, respectively, failed to increase MDPV-appropriate responding at doses smaller than those that suppressed responding altogether. Although these studies do not support a role for serotonergic or adrenergic systems in mediating/modulating the discriminative stimulus effects of MDPV, convergent evidence is provided to suggest that the discriminative stimulus effects of MDPV are primarily mediated by its capacity to inhibit dopamine uptake, and the subsequent activation of dopamine D2 or D3 receptors.


Subject(s)
Benzodioxoles , Biogenic Monoamines/metabolism , Dopamine Uptake Inhibitors , Neurotransmitter Transport Proteins/metabolism , Pyrrolidines , Alkaloids/chemistry , Amphetamines/pharmacology , Animals , Behavior, Animal/drug effects , Benzodioxoles/chemistry , Benzodioxoles/pharmacology , Central Nervous System Stimulants/chemistry , Central Nervous System Stimulants/pharmacology , Cocaine/analogs & derivatives , Cocaine/pharmacology , Discrimination Learning , Dopamine Uptake Inhibitors/chemistry , Dopamine Uptake Inhibitors/pharmacology , Dose-Response Relationship, Drug , Illicit Drugs , Male , Norepinephrine/antagonists & inhibitors , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Rats , Rats, Sprague-Dawley , Synthetic Drugs/chemistry , Synthetic Drugs/pharmacology , Synthetic Cathinone
15.
Behav Pharmacol ; 32(4): 308-320, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33491993

ABSTRACT

Alterations of monoamine transmission in mesocorticolimbic regions have been suggested in the pathophysiology of attention deficit/hyperactivity disorder (ADHD). The habenula is an important brain area in regulation of monoamine transmission. In this study, we investigated behavioral and electrophysiological alterations induced by neonatal habenula lesion (NHL) in rats. In NHL rats, age-dependent behavioral alterations relevant to the ADHD symptoms, such as hyperlocomotion, impulsivity, and attention deficit, were observed. Local field potentials (LFPs) in mesocorticolimbic regions of anesthetized rats were examined with in vivo electrophysiological recordings. Abnormally enhanced synchronization of slow (delta) and fast (gamma) LFP oscillations between the amygdala (AMY) and prefrontal cortex (PFC) was found in juvenile, but not in adult, NHL rats. We further examined the effects of an extract and the active compound from the perennial large brown algae Ecklonia stolonifera (ES), which have previously been demonstrated to modulate monoamine transmission, on these NHL-induced alterations. One week of ES extract treatments normalized the NHL-induced behavioral alterations, whereas the active compound fucosterol improved attention deficit and impulsivity, but not hyperlocomotion, in NHL rats. Consistent with the behavioral effects, ES extract treatments also normalized augmented AMY-PFC coupling. These results suggest that altered limbic-cortical information processing may be involved in ADHD-like behavioral alterations induced by NHL, which could be ameliorated by the natural substance, such as ES that affects monoamine transmission.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Attention/drug effects , Biogenic Monoamines/metabolism , Electrophysiological Phenomena/drug effects , Habenula , Impulsive Behavior , Stigmasterol/analogs & derivatives , Synaptic Transmission/drug effects , Animals , Animals, Newborn , Attention Deficit Disorder with Hyperactivity/drug therapy , Attention Deficit Disorder with Hyperactivity/metabolism , Attention Deficit Disorder with Hyperactivity/physiopathology , Disease Models, Animal , Habenula/metabolism , Habenula/physiopathology , Impulsive Behavior/drug effects , Impulsive Behavior/physiology , Phaeophyceae , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Rats , Stigmasterol/pharmacology
16.
Cell Mol Biol (Noisy-le-grand) ; 67(1): 1-8, 2021 Jan 31.
Article in English | MEDLINE | ID: mdl-34817375

ABSTRACT

The antidepressant activity of Spathodea campanulata flowers was evaluated in mice and in silico. When tested at doses of 200 and 400 mg/kg, the methanol extract of S. campanulata (MESC) showed dose-dependent antidepressant activity in the force swim test (FST), tail suspension test (TST), lithium chloride-induced twitches test and the open field test. In FST and TST, animals treated with MESC demonstrated a significant decrease in the immobility period compared to the control group. The lithium chloride-induced head twitches were significantly reduced following administration of MESC. The latter, at the dose of 400 mg/kg, also significantly reduced locomotor activity. Following administration of MESC, changes in the levels of serum corticosterone, and of norepinephrine, dopamine, serotonin, 4-hydroxy-3-methoxyphenylglycol (MHPG), 4-dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA) were measured in different brain regions using HPLC. The presence of spatheoside A (m/z 541) and spatheoside B (m/z 559) in MESC was detected using HPLC/ESI-MS. These two iridoids demonstrated a high predictive binding affinity for the active site of the type A monoamine oxidase (MAO-A) enzyme with scores of 99.40 and 93.54, respectively.  These data suggest that S. campanulata flowers warrants further investigation as a source of novel templates for antidepressive drugs.


Subject(s)
Antidepressive Agents/metabolism , Bignoniaceae/chemistry , Flowers/chemistry , Iridoids/metabolism , Monoamine Oxidase/metabolism , 3,4-Dihydroxyphenylacetic Acid/metabolism , Animals , Antidepressive Agents/chemistry , Antidepressive Agents/pharmacology , Binding, Competitive , Biogenic Monoamines/metabolism , Brain/drug effects , Brain/metabolism , Depression/prevention & control , Hydroxyindoleacetic Acid/metabolism , Iridoids/pharmacology , Male , Methanol/chemistry , Mice , Motor Activity/drug effects , Phytotherapy/methods , Plant Extracts/chemistry , Plant Extracts/pharmacology
17.
Nutr Neurosci ; 24(1): 35-44, 2021 Jan.
Article in English | MEDLINE | ID: mdl-31368414

ABSTRACT

Objectives: Depression is a common neuropsychiatric disorder. The available pharmacotherapy is ineffective for a substantial proportion of patients and has numerous side effects. Therefore, finding safer drugs for the management of depression is of paramount importance. The present study was aimed to identify the compound responsible for anti-depressant like effects of Allium cepa outer scale extract (ACE) and to elucidate its mechanism of action. Methods:The anti-depressant compound from ACE was separated using bioactivity guided fractionation. Furthermore, mouse model of unpredictable chronic mild stress (UCMS) induced depressive behaviour was employed to investigate the anti-depressant like activity and potential mechanism of bioactive compound using behavioural tests (forced swim test (FST), sucrose preference test (SPT), open field test (OFT)) as well as by assessing brain oxidative stress, monoamine oxidase A and serotonin levels. Results:ACE and its ethylacetate fraction (EF) showed marked anti-depressant like effects in mice in the FST model. Chromatographic and spectroscopic studies of EF lead to the isolation of quercetin and quercetin 4'-O-glucoside (QG). Of these, QG (20 mg/kg) treated animals showed activity similar to that shown by fluoxetine in mice using FST. Thus, QG was tested for anti-depressant like activity against UCMS induced depressive behaviour in mice. Treatment of UCMS- exposed mice with QG (20 mg/kg) improved UCMS induced behaviour anomalies and restored brain biochemical parameters (oxidative stress, MAO-A activity and serotonin levels). Discussion:QG is responsible for anti-depressant like effects of ACE possibly via prevention of brain oxidative stress and restoring serotonin levels by inhibiting MAO-A activity.


Subject(s)
Antidepressive Agents/administration & dosage , Biogenic Monoamines/metabolism , Brain/drug effects , Brain/metabolism , Depression/metabolism , Glucosides/administration & dosage , Oxidative Stress/drug effects , Quercetin/administration & dosage , Animals , Depression/prevention & control , Female , Male , Mice , Onions , Plant Extracts/administration & dosage , Plant Extracts/metabolism , Quercetin/analogs & derivatives , Stress, Psychological/complications
18.
Biomed Chromatogr ; 35(2): e4978, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32866321

ABSTRACT

This study presented for the first time the development and validation of a sensitive method for quantification of dopamine, noradrenaline, and adrenaline in Krebs-Henseleit solution by LC-tandem mass spectrometry. Aliquots of 2.0 mL calibrators, quality controls, and samples of Krebs-Henseleit solution incubated with tortoise's aortic ring for 30 min were extracted by solid-phase extraction. Catecholamine separation was achieved on a 100 × 4.6 mm LiChrospher RP-8 column and the quantification was performed by a mass spectrometer equipped with an electrospray interface operating in positive ion mode. The run time was 4 min and the calibration curve was linear over the range of 0.1-20.0 ng/mL. The method was applied to the measurement of basal release of dopamine, noradrenaline, and adrenaline from the tortoise Chelonoidis carbonaria aortae in vitro. One aortic ring (30 mm) per tortoise (n = 5) was incubated for 30 min in a 5 mL organ bath filled with Krebs-Henseleit solution. The method demonstrated sensitivity, precision, and accuracy enough for its application in the measurement of basal release of these catecholamines from C. carbonaria aortic rings in vitro. The mean (standard deviation) concentrations of dopamine, noradrenaline, and adrenaline were 3.48 (2.55) ng/mL, 1.40 (0.57) ng/mL, and 1.87 (1.09) ng/mL, respectively.


Subject(s)
Aorta/metabolism , Biogenic Monoamines , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Animals , Biogenic Monoamines/analysis , Biogenic Monoamines/metabolism , Biogenic Monoamines/pharmacokinetics , Cells, Cultured , Female , Glucose/chemistry , Linear Models , Male , Pulmonary Artery/cytology , Pulmonary Artery/metabolism , Reproducibility of Results , Sensitivity and Specificity , Swine , Tromethamine/chemistry , Turtles/metabolism
19.
J Therm Biol ; 99: 102923, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34420602

ABSTRACT

Heat exposure affects several physiological, neuronal, and emotional functions. Notably, monoaminergic neurotransmitters in the brain such as noradrenaline, dopamine, and serotonin, which regulate several basic physiological functions, such as thermoregulation, food intake, and energy balance, are affected by heat exposure and heat acclimation. Furthermore, cognition and emotional states are also affected by heat exposure and changes in brain monoamine levels. Short-term heat exposure has been reported to increase anxiety in some behavioral tests. In contrast, there is a possibility that long-term heat exposure decreases anxiety due to heat acclimation. These changes might be due to adaptation of the core body temperature and/or brain monoamine levels by heat exposure. In this review, we first outline the changes in brain monoamine levels and thereafter focus on changes in emotional behavior due to heat exposure and heat acclimation. Finally, we describe the relationships between emotional behavior and brain monoamine levels during heat acclimation.


Subject(s)
Anxiety , Biogenic Monoamines/metabolism , Brain/radiation effects , Cognition/radiation effects , Thermotolerance , Animals , Behavior, Animal/radiation effects , Brain/metabolism , Mice , Rats
20.
J Therm Biol ; 98: 102905, 2021 May.
Article in English | MEDLINE | ID: mdl-34016332

ABSTRACT

The aim of this study was to examine the central action of taurine on body temperature and food intake in neonatal chicks under control thermoneutral temperature (CT) and high ambient temperature (HT). Intracerebroventricular injection of taurine caused dose-dependent hypothermia and reduced food intake under CT. The mRNA expression of the GABAA receptors, GABAAR-α1 and GABAAR-γ, but not that of GABABR, significantly decreased in the diencephalon after central injection of taurine. Subsequently, we found that picrotoxin, a GABAAR antagonist, attenuated taurine-induced hypothermia. Central taurine significantly decreased the brain concentrations of 3-methoxy-4-hydroxyphenylglycol, a major metabolite of norepinephrine; however, the concentrations of serotonin, dopamine, and the epinephrine metabolites, 3,4-hydroxyindoleacetic acid and homovanillic acid, were unchanged. Although hypothermia was not observed under HT after central injection of taurine, plasma glucose and uric acid levels were higher, and plasma sodium and calcium levels were lower, than those in chicks under CT. In conclusion, brain taurine may play a role in regulating body temperature and food intake in chicks through GABAAR. The changes in plasma metabolites under heat stress suggest that brain taurine may play an important role in maintaining homeostasis in chicks.


Subject(s)
Chickens/physiology , Eating , Hypothermia/physiopathology , Receptors, GABA-A/physiology , Temperature , Animals , Biogenic Monoamines/metabolism , Blood Glucose/analysis , Body Temperature , Brain/metabolism , Chickens/blood , Chickens/genetics , Heat-Shock Response/genetics , Heat-Shock Response/physiology , Hypothermia/blood , Hypothermia/chemically induced , Hypothermia/genetics , Injections , Male , Receptors, GABA-A/genetics , Taurine , Uric Acid/blood
SELECTION OF CITATIONS
SEARCH DETAIL