Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 281
Filter
Add more filters

Publication year range
1.
Cell ; 165(4): 1012-26, 2016 May 05.
Article in English | MEDLINE | ID: mdl-27062923

ABSTRACT

Mouse studies have been instrumental in forming our current understanding of early cell-lineage decisions; however, similar insights into the early human development are severely limited. Here, we present a comprehensive transcriptional map of human embryo development, including the sequenced transcriptomes of 1,529 individual cells from 88 human preimplantation embryos. These data show that cells undergo an intermediate state of co-expression of lineage-specific genes, followed by a concurrent establishment of the trophectoderm, epiblast, and primitive endoderm lineages, which coincide with blastocyst formation. Female cells of all three lineages achieve dosage compensation of X chromosome RNA levels prior to implantation. However, in contrast to the mouse, XIST is transcribed from both alleles throughout the progression of this expression dampening, and X chromosome genes maintain biallelic expression while dosage compensation proceeds. We envision broad utility of this transcriptional atlas in future studies on human development as well as in stem cell research.


Subject(s)
Blastocyst/metabolism , Chromosomes, Human, X , Single-Cell Analysis , Blastocyst Inner Cell Mass/metabolism , Dosage Compensation, Genetic , Female , Humans , Male , RNA, Long Noncoding/genetics , Sequence Analysis, RNA , Sex Characteristics , Transcriptome
2.
Cell ; 165(6): 1375-1388, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-27259149

ABSTRACT

How the chromatin regulatory landscape in the inner cell mass cells is established from differentially packaged sperm and egg genomes during preimplantation development is unknown. Here, we develop a low-input DNase I sequencing (liDNase-seq) method that allows us to generate maps of DNase I-hypersensitive site (DHS) of mouse preimplantation embryos from 1-cell to morula stage. The DHS landscape is progressively established with a drastic increase at the 8-cell stage. Paternal chromatin accessibility is quickly reprogrammed after fertilization to the level similar to maternal chromatin, while imprinted genes exhibit allelic accessibility bias. We demonstrate that transcription factor Nfya contributes to zygotic genome activation and DHS formation at the 2-cell stage and that Oct4 contributes to the DHSs gained at the 8-cell stage. Our study reveals the dynamic chromatin regulatory landscape during early development and identifies key transcription factors important for DHS establishment in mammalian embryos.


Subject(s)
Blastocyst , Chromatin/metabolism , Animals , Binding Sites , Blastocyst/cytology , Blastocyst Inner Cell Mass/metabolism , CCAAT-Binding Factor/metabolism , Chromosome Mapping , DNA/metabolism , Deoxyribonuclease I/metabolism , Embryonic Development , Female , Gene Expression Regulation, Developmental , Male , Mice , Octamer Transcription Factor-3/metabolism , Promoter Regions, Genetic
3.
Cell ; 161(6): 1425-36, 2015 Jun 04.
Article in English | MEDLINE | ID: mdl-26004067

ABSTRACT

Global DNA demethylation in humans is a fundamental process that occurs in pre-implantation embryos and reversion to naive ground state pluripotent stem cells (PSCs). However, the extent of DNA methylation reprogramming in human germline cells is unknown. Here, we performed whole-genome bisulfite sequencing (WGBS) and RNA-sequencing (RNA-seq) of human prenatal germline cells from 53 to 137 days of development. We discovered that the transcriptome and methylome of human germline is distinct from both human PSCs and the inner cell mass (ICM) of human blastocysts. Using this resource to monitor the outcome of global DNA demethylation with reversion of primed PSCs to the naive ground state, we uncovered hotspots of ultralow methylation at transposons that are protected from demethylation in the germline and ICM. Taken together, the human germline serves as a valuable in vivo tool for monitoring the epigenome of cells that have emerged from a global DNA demethylation event.


Subject(s)
Blastocyst/metabolism , DNA Methylation , Embryo, Mammalian/metabolism , Germ Cells/metabolism , Blastocyst Inner Cell Mass , Embryonic Stem Cells/metabolism , Female , Gene Expression Profiling , Humans , Male
4.
Cell ; 148(1-2): 285-95, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-22225614

ABSTRACT

Totipotent cells in early embryos are progenitors of all stem cells and are capable of developing into a whole organism, including extraembryonic tissues such as placenta. Pluripotent cells in the inner cell mass (ICM) are the descendants of totipotent cells and can differentiate into any cell type of a body except extraembryonic tissues. The ability to contribute to chimeric animals upon reintroduction into host embryos is the key feature of murine totipotent and pluripotent cells. Here, we demonstrate that rhesus monkey embryonic stem cells (ESCs) and isolated ICMs fail to incorporate into host embryos and develop into chimeras. However, chimeric offspring were produced following aggregation of totipotent cells of the four-cell embryos. These results provide insights into the species-specific nature of primate embryos and suggest that a chimera assay using pluripotent cells may not be feasible.


Subject(s)
Blastocyst Inner Cell Mass/cytology , Chimera , Embryonic Stem Cells/cytology , Macaca mulatta , Animals , Embryo, Mammalian/cytology , Species Specificity
5.
Nature ; 592(7852): 80-85, 2021 04.
Article in English | MEDLINE | ID: mdl-33692543

ABSTRACT

Placentas can exhibit chromosomal aberrations that are absent from the fetus1. The basis of this genetic segregation, which is known as confined placental mosaicism, remains unknown. Here we investigated the phylogeny of human placental cells as reconstructed from somatic mutations, using whole-genome sequencing of 86 bulk placental samples (with a median weight of 28 mg) and of 106 microdissections of placental tissue. We found that every bulk placental sample represents a clonal expansion that is genetically distinct, and exhibits a genomic landscape akin to that of childhood cancer in terms of mutation burden and mutational imprints. To our knowledge, unlike any other healthy human tissue studied so far, the placental genomes often contained changes in copy number. We reconstructed phylogenetic relationships between tissues from the same pregnancy, which revealed that developmental bottlenecks genetically isolate placental tissues by separating trophectodermal lineages from lineages derived from the inner cell mass. Notably, there were some cases with full segregation-within a few cell divisions of the zygote-of placental lineages and lineages derived from the inner cell mass. Such early embryonic bottlenecks may enable the normalization of zygotic aneuploidy. We observed direct evidence for this in a case of mosaic trisomic rescue. Our findings reveal extensive mutagenesis in placental tissues and suggest that mosaicism is a typical feature of placental development.


Subject(s)
Mosaicism , Mutagenesis , Mutation , Placenta/metabolism , Biopsy , Blastocyst Inner Cell Mass/cytology , Female , Genome, Human/genetics , Humans , Mesoderm/cytology , Mutation Rate , Placenta/cytology , Pregnancy , Trisomy/genetics , Trophoblasts/cytology , Trophoblasts/metabolism , Zygote/cytology
6.
Nature ; 587(7834): 443-447, 2020 11.
Article in English | MEDLINE | ID: mdl-32968278

ABSTRACT

Current understandings of cell specification in early mammalian pre-implantation development are based mainly on mouse studies. The first lineage differentiation event occurs at the morula stage, with outer cells initiating a trophectoderm (TE) placental progenitor program. The inner cell mass arises from inner cells during subsequent developmental stages and comprises precursor cells of the embryo proper and yolk sac1. Recent gene-expression analyses suggest that the mechanisms that regulate early lineage specification in the mouse may differ in other mammals, including human2-5 and cow6. Here we show the evolutionary conservation of a molecular cascade that initiates TE segregation in human, cow and mouse embryos. At the morula stage, outer cells acquire an apical-basal cell polarity, with expression of atypical protein kinase C (aPKC) at the contact-free domain, nuclear expression of Hippo signalling pathway effectors and restricted expression of TE-associated factors such as GATA3, which suggests initiation of a TE program. Furthermore, we demonstrate that inhibition of aPKC by small-molecule pharmacological modulation or Trim-Away protein depletion impairs TE initiation at the morula stage. Our comparative embryology analysis provides insights into early lineage specification and suggests that a similar mechanism initiates a TE program in human, cow and mouse embryos.


Subject(s)
Biological Evolution , Ectoderm/metabolism , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Gene Expression Regulation, Developmental , Transcription, Genetic , Trophoblasts/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Blastocyst Inner Cell Mass/cytology , Blastocyst Inner Cell Mass/metabolism , Cattle , Cell Lineage , Cell Polarity , Ectoderm/cytology , Embryo, Mammalian/enzymology , Female , GATA3 Transcription Factor/metabolism , Hippo Signaling Pathway , Humans , Mice , Morula/cytology , Morula/enzymology , Morula/metabolism , Placenta/cytology , Placenta/metabolism , Pregnancy , Protein Kinase C/metabolism , Protein Serine-Threonine Kinases/metabolism , SOXB1 Transcription Factors/metabolism , Signal Transduction , Transcription Factors/metabolism , Trophoblasts/cytology , YAP-Signaling Proteins , Yolk Sac/cytology , Yolk Sac/metabolism
7.
Hum Reprod ; 39(9): 1889-1898, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38926157

ABSTRACT

In the first days of life, cells of the mammalian embryo segregate into two distinct lineages, trophectoderm and inner cell mass. Unlike nonmammalian species, mammalian development does not proceed from predetermined factors in the oocyte. Rather, asymmetries arise de novo in the early embryo incorporating cues from cell position, contractility, polarity, and cell-cell contacts. Molecular heterogeneities, including transcripts and non-coding RNAs, have now been characterized as early as the 2-cell stage. However, it's debated whether these early heterogeneities bias cells toward one fate or the other or whether lineage identity arises stochastically at the 16-cell stage. This review summarizes what is known about early blastomere asymmetries and our understanding of lineage allocation in the context of historical models. Preimplantation development is reviewed coupled with what is known about changes in morphology, contractility, and transcription factor networks. The addition of single-cell atlases of human embryos has begun to reveal key differences between human and mouse, including the timing of events and core transcription factors. Furthermore, the recent generation of blastoid models will provide valuable tools to test and understand fate determinants. Lastly, new techniques are reviewed, which may better synthesize existing knowledge with emerging data sets and reconcile models with the regulative capacity unique to the mammalian embryo.


Subject(s)
Blastocyst , Cell Lineage , Embryonic Development , Animals , Humans , Blastocyst/cytology , Blastocyst/physiology , Embryonic Development/physiology , Mice , Blastocyst Inner Cell Mass/cytology , Blastocyst Inner Cell Mass/physiology , Blastocyst Inner Cell Mass/metabolism , Gene Expression Regulation, Developmental , Blastomeres/cytology , Blastomeres/physiology , Blastomeres/metabolism , Mammals , Embryo, Mammalian/cytology
8.
Hum Reprod ; 39(9): 1942-1951, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39013119

ABSTRACT

STUDY QUESTION: Can the density of the inner cell mass (ICM) be a new indicator of the quality of the human blastocyst? SUMMARY ANSWER: The densification index (DI) developed in this study can quantify ICM density and provide positive guidance for ploidy, pregnancy, and live birth. WHAT IS KNOWN ALREADY: In evaluating the quality of ICM, reproductive care clinics still use size indicators without further evaluation. The main disadvantage of this current method is that the evaluation of blastocyst ICM is relatively rough and cannot meet the needs of clinical embryologists, especially when multiple blastocysts have the same ICM score, which makes them difficult to evaluate further. STUDY DESIGN, SIZE, DURATION: This observational study included data from 2272 blastocysts in 1991 frozen-thawed embryo transfer (FET) cycles between January 2018 to November 2021 and 1105 blastocysts in 430 preimplantation genetic testing cycles between January 2019 and February 2023. PARTICIPANTS/MATERIALS, SETTING, METHODS: FET, ICSI, blastocyst culture, trophectoderm biopsy, time-lapse (TL) monitoring, and next-generation sequencing were performed. After preliminary sample size selection, the 11 focal plane images captured by the TL system were normalized and the spatial frequency was used to construct the DI of the ICM. MAIN RESULTS AND THE ROLE OF CHANCE: This study successfully constructed a quantitative indicator DI that can reflect the degree of ICM density in terms of fusion and texture features. The higher the DI value, the better the density of the blastocyst ICM, and the higher the chances that the blastocyst was euploid (P < 0.001) and that pregnancy (P < 0.001) and live birth (P = 0.005) were reached. In blastocysts with ICM graded B and blastocysts graded 4BB, DI was also positively associated with ploidy, pregnancy, and live birth (P < 0.05). ROC analysis showed that combining the Gardner scoring system with DI can more effectively predict pregnancy and live births, when compared to using the Gardner scoring system alone. LIMITATIONS, REASONS FOR CAUTION: Accurate calculation of the DI value places high demands on image quality, requiring manual selection of the clearest focal plane and exposure control. Images with the ICM not completely within the field of view cannot be used. The association between the density of ICM and chromosomal mosaicism was not evaluated. The associations between the density of ICM and different assisted reproductive technologies and different culture conditions in embryo laboratories were also not evaluated. Prospective studies are needed to further investigate the impact of ICM density on clinical outcomes. WIDER IMPLICATIONS OF THE FINDINGS: ICM density assessment is a new direction in blastocyst assessment. This study explores new ways of assessing blastocyst ICM density and develops quantitative indicators and a corresponding qualitative evaluation scheme for ICM density. The DI of the blastocyst ICM developed in this study is easy to calculate and requires only TL equipment and image processing, providing positive guidance for clinical outcomes. The qualitative evaluation scheme of ICM density can assist embryologists without TL equipment to manually evaluate ICM density. ICM density is a simple indicator that can be used in practice and is a good complement to the blastocyst scoring systems currently used in most centers. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the National Key Research & Development Program of China (2021YFC2700603). The authors report no financial or commercial conflicts of interest. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Blastocyst Inner Cell Mass , Embryo Transfer , Pregnancy Rate , Humans , Female , Pregnancy , Blastocyst Inner Cell Mass/cytology , Embryo Transfer/methods , Live Birth , Adult , Blastocyst/cytology , Embryo Culture Techniques/standards , Embryo Culture Techniques/methods , Preimplantation Diagnosis/methods , Preimplantation Diagnosis/standards , Ploidies
9.
Reproduction ; 167(6)2024 06 01.
Article in English | MEDLINE | ID: mdl-38552319

ABSTRACT

In brief: MEK signalling pathway is required for hypoblast differentiation in mouse embryos, but its role in ungulate embryos remains controversial. This paper demonstrates that MEK is required for hypoblast specification in the inner cell mass of the ovine blastocyst and that it plays a role during the hypoblast migration occurring following blastocyst hatching. Abstract: Early embryo development requires the differentiation of three cell lineages in two differentiation events. The second lineage specification differentiates the inner cell mass into epiblast, which will form the proper fetus, and hypoblast, which together with the trophectoderm will form the extraembryonic membranes and the fetal part of the placenta. MEK signalling pathway is required for hypoblast differentiation in mouse embryos, but its role in ungulate embryos remains controversial. The aim of this work was to analyse the role of MEK signalling on hypoblast specification at the blastocyst stage and on hypoblast migration during post-hatching stages in vitro in the ovine species. Using well-characterized and reliable lineage markers, and different MEK inhibitor concentrations, we demonstrate that MEK signalling pathway is required for hypoblast specification in the inner cell mass of the ovine blastocyst, and that it plays a role during the hypoblast migration occurring following blastocyst hatching. These results show that the role of MEK signalling pathway on hypoblast specification is conserved in phylogenetically distant mammals.


Subject(s)
Cell Differentiation , Cell Movement , Embryonic Development , MAP Kinase Signaling System , Animals , Female , Pregnancy , Blastocyst/metabolism , Blastocyst/cytology , Blastocyst Inner Cell Mass/metabolism , Blastocyst Inner Cell Mass/cytology , Cell Lineage , Sheep , Signal Transduction , Mice
10.
Mol Reprod Dev ; 91(5): e23760, 2024 May.
Article in English | MEDLINE | ID: mdl-38769918

ABSTRACT

e-Lysine acetylation is a prominent histone mark found at transcriptionally active loci. Among many lysine acetyl transferases, nonspecific lethal complex (NSL) members are known to mediate the modification of histone H4. In addition to histone modifications, the KAT8 regulatory complex subunit 3 gene (Kansl3), a core member of NSL complex, has been shown to be involved in several other cellular processes such as mitosis and mitochondrial activity. Although functional studies have been performed on NSL complex members, none of the four core proteins, including Kansl3, have been studied during early mouse development. Here we show that homozygous knockout Kansl3 embryos are lethal at peri-implantation stages, failing to hatch out of the zona pellucida. When the zona pellucida is removed in vitro, Kansl3 null embryos form an abnormal outgrowth with significantly disrupted inner cell mass (ICM) morphology. We document lineage-specific defects at the blastocyst stage with significantly reduced ICM cell number but no difference in trophectoderm cell numbers. Both epiblast and primitive endoderm lineages are altered with reduced cell numbers in null mutants. These results show that Kansl3 is indispensable during early mouse embryonic development and with defects in both ICM and trophectoderm lineages.


Subject(s)
Embryonic Development , Animals , Female , Mice , Blastocyst/metabolism , Blastocyst/cytology , Blastocyst Inner Cell Mass/metabolism , Blastocyst Inner Cell Mass/cytology , Embryo Loss/pathology , Embryo Loss/genetics , Embryo Loss/metabolism , Embryonic Development/genetics , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/genetics , Histone Acetyltransferases/deficiency , Mice, Knockout
11.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Article in English | MEDLINE | ID: mdl-33452132

ABSTRACT

OCT4 is a fundamental component of the molecular circuitry governing pluripotency in vivo and in vitro. To determine how OCT4 establishes and protects the pluripotent lineage in the embryo, we used comparative single-cell transcriptomics and quantitative immunofluorescence on control and OCT4 null blastocyst inner cell masses at two developmental stages. Surprisingly, activation of most pluripotency-associated transcription factors in the early mouse embryo occurs independently of OCT4, with the exception of the JAK/STAT signaling machinery. Concurrently, OCT4 null inner cell masses ectopically activate a subset of trophectoderm-associated genes. Inspection of metabolic pathways implicates the regulation of rate-limiting glycolytic enzymes by OCT4, consistent with a role in sustaining glycolysis. Furthermore, up-regulation of the lysosomal pathway was specifically detected in OCT4 null embryos. This finding implicates a requirement for OCT4 in the production of normal trophectoderm. Collectively, our findings uncover regulation of cellular metabolism and biophysical properties as mechanisms by which OCT4 instructs pluripotency.


Subject(s)
Cell Lineage/genetics , Embryonic Development/immunology , Octamer Transcription Factor-3/genetics , STAT3 Transcription Factor/genetics , Animals , Blastocyst Inner Cell Mass/metabolism , Embryo, Mammalian , Embryonic Development/genetics , Gene Expression Regulation, Developmental/genetics , Glycolysis/genetics , Mice , Pluripotent Stem Cells/metabolism , Signal Transduction/genetics , Single-Cell Analysis
12.
Cell ; 135(7): 1287-98, 2008 Dec 26.
Article in English | MEDLINE | ID: mdl-19109897

ABSTRACT

Embryonic stem (ES) cells have been available from inbred mice since 1981 but have not been validated for other rodents. Failure to establish ES cells from a range of mammals challenges the identity of cultivated stem cells and our understanding of the pluripotent state. Here we investigated derivation of ES cells from the rat. We applied molecularly defined conditions designed to shield the ground state of authentic pluripotency from inductive differentiation stimuli. Undifferentiated cell lines developed that exhibited diagnostic features of ES cells including colonization of multiple tissues in viable chimeras. Definitive ES cell status was established by transmission of the cell line genome to offspring. Derivation of germline-competent ES cells from the rat paves the way to targeted genetic manipulation in this valuable biomedical model species. Rat ES cells will also provide a refined test-bed for functional evaluation of pluripotent stem cell-derived tissue repair and regeneration.


Subject(s)
Blastocyst Inner Cell Mass/cytology , Embryonic Stem Cells/cytology , Animals , Cell Culture Techniques , Cell Line , Chimera , Female , Fibroblast Growth Factors/antagonists & inhibitors , Glycogen Synthase Kinases/antagonists & inhibitors , Male , Mice , Mice, SCID , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Rats , Rats, Inbred F344 , Rats, Inbred Strains
13.
Development ; 146(14)2019 07 25.
Article in English | MEDLINE | ID: mdl-31320324

ABSTRACT

Activation of the ERK signalling pathway is essential for the differentiation of the inner cell mass (ICM) during mouse preimplantation development. We show here that ERK phosphorylation occurs in ICM precursor cells, in differentiated primitive endoderm (PrE) cells as well as in the mature, formative state epiblast (Epi). We further show that DUSP4 and ETV5, factors often involved in negative-feedback loops of the FGF pathway, are differently regulated. Whereas DUSP4 presence clearly depends on ERK phosphorylation in PrE cells, ETV5 localises mainly to Epi cells. Unexpectedly, ETV5 accumulation does not depend on direct activation by ERK but requires NANOG activity. Indeed ETV5, like Fgf4 expression, is not present in Nanog mutant embryos. Our results lead us to propose that in pluripotent early Epi cells, NANOG induces the expression of both Fgf4 and Etv5 to enable the differentiation of neighbouring cells into the PrE while protecting the Epi identity from autocrine signalling.


Subject(s)
Blastocyst/metabolism , Embryonic Development/genetics , Extracellular Signal-Regulated MAP Kinases/genetics , MAP Kinase Signaling System , Animals , Blastocyst Inner Cell Mass/cytology , Blastocyst Inner Cell Mass/physiology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Embryo, Mammalian , Extracellular Signal-Regulated MAP Kinases/metabolism , Fibroblast Growth Factor 4/genetics , Fibroblast Growth Factor 4/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic , MAP Kinase Signaling System/genetics , Mice , Mice, Inbred ICR , Mice, Transgenic , Nanog Homeobox Protein/genetics , Nanog Homeobox Protein/metabolism , Protein Tyrosine Phosphatases/physiology , Signal Transduction/physiology , Transcription Factors/genetics , Transcription Factors/metabolism
14.
Nature ; 536(7616): 344-348, 2016 08 18.
Article in English | MEDLINE | ID: mdl-27487217

ABSTRACT

During pre-implantation development, the mammalian embryo self-organizes into the blastocyst, which consists of an epithelial layer encapsulating the inner-cell mass (ICM) giving rise to all embryonic tissues. In mice, oriented cell division, apicobasal polarity and actomyosin contractility are thought to contribute to the formation of the ICM. However, how these processes work together remains unclear. Here we show that asymmetric segregation of the apical domain generates blastomeres with different contractilities, which triggers their sorting into inner and outer positions. Three-dimensional physical modelling of embryo morphogenesis reveals that cells internalize only when differences in surface contractility exceed a predictable threshold. We validate this prediction using biophysical measurements, and successfully redirect cell sorting within the developing blastocyst using maternal myosin (Myh9)-knockout chimaeric embryos. Finally, we find that loss of contractility causes blastomeres to show ICM-like markers, regardless of their position. In particular, contractility controls Yap subcellular localization, raising the possibility that mechanosensing occurs during blastocyst lineage specification. We conclude that contractility couples the positioning and fate specification of blastomeres. We propose that this ensures the robust self-organization of blastomeres into the blastocyst, which confers remarkable regulative capacities to mammalian embryos.


Subject(s)
Blastocyst Inner Cell Mass/cytology , Cell Differentiation , Cell Division , Cell Movement , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Adaptor Proteins, Signal Transducing/metabolism , Animals , Blastocyst/cytology , Blastomeres/cytology , Cell Cycle Proteins , Cell Lineage , Cell Polarity , Embryonic Development , Female , Male , Mice , Phosphoproteins/metabolism , Protein Transport , Reproducibility of Results , YAP-Signaling Proteins
15.
Proc Natl Acad Sci U S A ; 116(28): 14105-14112, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31235575

ABSTRACT

Preimplantation genetic testing for aneuploidy (PGT-A) with trophectoderm (TE) biopsy is widely applied in in vitro fertilization (IVF) to identify aneuploid embryos. However, potential safety concerns regarding biopsy and restrictions to only those embryos suitable for biopsy pose limitations. In addition, embryo mosaicism gives rise to false positives and false negatives in PGT-A because the inner cell mass (ICM) cells, which give rise to the fetus, are not tested. Here, we report a critical examination of the efficacy of noninvasive preimplantation genetic testing for aneuploidy (niPGT-A) in the spent culture media of human blastocysts by analyzing the cell-free DNA, which reflects ploidy of both the TE and ICM. Fifty-two frozen donated blastocysts with TE biopsy results were thawed; each of their spent culture medium was collected after 24-h culture and analyzed by next-generation sequencing (NGS). niPGT-A and TE-biopsy PGT-A results were compared with the sequencing results of the corresponding embryos, which were taken as true results for aneuploidy reporting. With removal of all corona-cumulus cells, the false-negative rate (FNR) for niPGT-A was found to be zero. By applying an appropriate threshold for mosaicism, both the positive predictive value (PPV) and specificity for niPGT-A were much higher than TE-biopsy PGT-A. Furthermore, the concordance rates for both embryo ploidy and chromosome copy numbers were higher for niPGT-A than TE-biopsy PGT-A. These results suggest that niPGT-A is less prone to errors associated with embryo mosaicism and is more reliable than TE-biopsy PGT-A.


Subject(s)
Aneuploidy , Blastocyst/pathology , Genetic Testing , Karyotype , Adult , Biopsy , Blastocyst/metabolism , Blastocyst Inner Cell Mass/pathology , Cell-Free Nucleic Acids/genetics , Culture Media/analysis , Female , Fertilization in Vitro/standards , High-Throughput Nucleotide Sequencing , Humans , Noninvasive Prenatal Testing/standards , Pregnancy , Preimplantation Diagnosis/standards
16.
Development ; 145(3)2018 02 07.
Article in English | MEDLINE | ID: mdl-29361568

ABSTRACT

Single-cell profiling techniques create opportunities to delineate cell fate progression in mammalian development. Recent studies have provided transcriptome data from human pre-implantation embryos, in total comprising nearly 2000 individual cells. Interpretation of these data is confounded by biological factors, such as variable embryo staging and cell-type ambiguity, as well as technical challenges in the collective analysis of datasets produced with different sample preparation and sequencing protocols. Here, we address these issues to assemble a complete gene expression time course spanning human pre-implantation embryogenesis. We identify key transcriptional features over developmental time and elucidate lineage-specific regulatory networks. We resolve post-hoc cell-type assignment in the blastocyst, and define robust transcriptional prototypes that capture epiblast and primitive endoderm lineages. Examination of human pluripotent stem cell transcriptomes in this framework identifies culture conditions that sustain a naïve state pertaining to the inner cell mass. Our approach thus clarifies understanding both of lineage segregation in the early human embryo and of in vitro stem cell identity, and provides an analytical resource for comparative molecular embryology.


Subject(s)
Blastocyst/cytology , Blastocyst/metabolism , Animals , Blastocyst Inner Cell Mass/cytology , Blastocyst Inner Cell Mass/metabolism , Cell Line , Cell Lineage/genetics , Cell Lineage/physiology , Chromosome Mapping , Embryo Culture Techniques , Embryonic Development/genetics , Embryonic Development/physiology , Gene Expression Profiling , Genetic Markers , Germ Layers/cytology , Germ Layers/embryology , Germ Layers/metabolism , Humans , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Primates , Single-Cell Analysis
17.
Development ; 145(8)2018 04 18.
Article in English | MEDLINE | ID: mdl-29567671

ABSTRACT

Mammalian embryo cloning by nuclear transfer has a low success rate. This is hypothesized to correlate with a high variability of early developmental steps that segregate outer cells, which are fated to extra-embryonic tissues, from inner cells, which give rise to the embryo proper. Exploring the cell lineage of wild-type embryos and clones, imaged in toto until hatching, highlights the respective contributions of cell proliferation, death and asymmetric divisions to phenotypic variability. Preferential cell death of inner cells in clones, probably pertaining to the epigenetic plasticity of the transferred nucleus, is identified as a major difference with effects on the proportion of inner cell. In wild type and clones, similar patterns of outer cell asymmetric divisions are shown to be essential to the robust proportion of inner cells observed in wild type. Asymmetric inner cell division, which is not described in mice, is identified as a regulator of the proportion of inner cells and likely gives rise to resilient clones.


Subject(s)
Asymmetric Cell Division , Blastocyst Inner Cell Mass/cytology , Cloning, Organism/methods , Animals , Cell Count , Cell Death , Cell Differentiation , Cell Lineage , Cell Proliferation , Computer Simulation , Embryonic Development , Female , Green Fluorescent Proteins/genetics , Imaging, Three-Dimensional , Male , Microscopy, Fluorescence, Multiphoton , Nuclear Transfer Techniques , Pregnancy , Rabbits
18.
Am J Obstet Gynecol ; 225(6): 654.e1-654.e16, 2021 12.
Article in English | MEDLINE | ID: mdl-34245681

ABSTRACT

BACKGROUND: An increased incidence of monozygotic twinning after a blastocyst transfer has been previously reported in assisted reproductive technology treatment. It is uncertain whether this phenomenon is due to the extended culture time, culture medium, or inherent blastocyst parameters. OBJECTIVE: This study aimed to investigate the association between blastocyst parameters (in vitro culture time, blastocyst stage, and inner cell mass and trophectoderm grading) and the incidence of monozygotic twinning after assisted reproductive technology. STUDY DESIGN: This was a retrospective cohort study employing data from a multicenter, large, electronic database from 4 academic hospitals. All clinical pregnancies after a single blastocyst transfer between January 2014 and February 2020 were included. Blastocyst morphology was evaluated based on the Gardner grading system, considering the blastocyst stage, and inner cell mass and trophectoderm grading (grades A, B, and C). Monozygotic twinning was defined as ≥2 fetal heartbeats in a single gestational sac or 2 gestational sacs with sex concordance at birth. The multivariable predicted marginal proportions from logistic regression models were used to compute adjusted relative risks for the association between blastocyst parameters and the incidence of monozygotic twinning. RESULTS: The overall monozygotic twinning rate was 1.53% (402 of 26,254 cases). The monozygotic twinning was not associated with the culture time in vitro (day 5 vs day 6) or blastocyst stage (early, blastocyst, expanded, hatching, and hatched). Alternatively, monozygotic twinning was associated with lower inner cell mass grading (B vs A: adjusted relative risk, 1.67 [95 % confidence interval, 1.28-2.25]; C vs A: adjusted relative risk, 1.98 [95% confidence interval, 1.18-3.11]) and higher trophectoderm grading (B vs C: adjusted relative risk, 1.38 [95% confidence interval, 1.03-1.92]; A vs C: adjusted relative risk, 2.14 [95% confidence interval, 1.45-3.20]). The incidence of monozygotic twinning was the lowest in blastocysts with grade A inner cell mass and grade B or C trophectoderm (0.82%, as the reference) and the highest in blastocysts with grade B or C inner cell mass and grade A trophectoderm (2.40%; adjusted relative risk, 2.62; 95% confidence interval, 1.60-4.43). The incidence of monozygotic twinning in blastocysts with consistent inner cell mass or trophectoderm grading was somewhere in between (both A: 1.58%; adjusted relative risk, 1.86 [95% confidence interval, 1.23-3.04]; both B or C: 1.59%; adjusted relative risk, 1.84 [95% confidence interval, 1.29-2.90]). CONCLUSION: Higher risk of monozygotic twinning was associated with blastocyst morphology specific to those blastocysts with loosely arranged inner cell mass cells combined with tightly packed trophectoderm cells.


Subject(s)
Blastocyst/cytology , Pregnancy, Twin , Twinning, Monozygotic , Adult , Blastocyst Inner Cell Mass , China , Cohort Studies , Electronic Health Records , Female , Humans , Incidence , Pregnancy , Reproductive Techniques, Assisted , Retrospective Studies
19.
J Reprod Dev ; 67(3): 161-165, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-33907058

ABSTRACT

In mammalian embryos, the first visible differentiation event is the segregation of the inner cell mass (ICM) and trophectoderm (TE) during the transition from the morula to the blastocyst stage. The ICM, which is attached to the inside of the TE, develop into the fetus and extraembryonic tissues, while the TE, which is a single layer surrounding the fluid-filled cavity called the blastocoel, will provide extraembryonic structures such as the placenta. ICM/TE differentiation is regulated by the interaction between various transcriptional factors. However, little information is available on the segregation of the ICM and TE lineages in preimplantation embryos of domestic animals, such as cattle and pigs. This review focuses on the roles of cell differentiation factors that regulate the ICM/TE segregation of preimplantation bovine and porcine embryos. Understanding the mechanism of cell differentiation in early embryos is necessary to improve the in vitro production systems for bovine and porcine embryos.


Subject(s)
Blastocyst/metabolism , Cell Differentiation/physiology , Embryonic Development/physiology , Transcription Factors/metabolism , Animals , Animals, Domestic , Blastocyst/cytology , Blastocyst Inner Cell Mass/cytology , Blastocyst Inner Cell Mass/metabolism , Cattle , Female , Swine , Transcription Factors/genetics
20.
Proc Natl Acad Sci U S A ; 115(41): 10387-10391, 2018 10 09.
Article in English | MEDLINE | ID: mdl-30257947

ABSTRACT

Following erasure in the blastocyst, the entire genome undergoes de novo methylation at the time of implantation, with CpG islands being protected from this process. This bimodal pattern is then preserved throughout development and the lifetime of the organism. Using mouse embryonic stem cells as a model system, we demonstrate that the binding of an RNA polymerase complex on DNA before de novo methylation is predictive of it being protected from this modification, and tethering experiments demonstrate that the presence of this complex is, in fact, sufficient to prevent methylation at these sites. This protection is most likely mediated by the recruitment of enzyme complexes that methylate histone H3K4 over a local region and, in this way, prevent access to the de novo methylation complex. The topological pattern of H3K4me3 that is formed while the DNA is as yet unmethylated provides a strikingly accurate template for modeling the genome-wide basal methylation pattern of the organism. These results have far-reaching consequences for understanding the relationship between RNA transcription and DNA methylation.


Subject(s)
Blastocyst Inner Cell Mass/metabolism , DNA Methylation , Embryo, Mammalian/metabolism , Gene Expression Regulation, Developmental , Histones/metabolism , Transcription, Genetic , Animals , Blastocyst Inner Cell Mass/cytology , CpG Islands , DNA-Directed RNA Polymerases/metabolism , Embryo, Mammalian/cytology , Mice , Mice, Transgenic , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL