Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 932
Filter
Add more filters

Publication year range
1.
Cell ; 184(14): 3595-3597, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34242561

ABSTRACT

In this issue of Cell, Casanova and colleagues examine three family members with a mutation that results in deficiency of the T cell co-stimulatory molecule CD28. These patients exhibit clinical symptoms due to human papillomavirus-2 and -4 infections, show increased levels of Epstein-Barr virus and cytomegalovirus in the blood, and respond poorly to vaccines.


Subject(s)
Alphapapillomavirus , Epstein-Barr Virus Infections , CD28 Antigens/genetics , Cytomegalovirus/genetics , Herpesvirus 4, Human/genetics , Humans
2.
Cell ; 184(14): 3812-3828.e30, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34214472

ABSTRACT

We study a patient with the human papilloma virus (HPV)-2-driven "tree-man" phenotype and two relatives with unusually severe HPV4-driven warts. The giant horns form an HPV-2-driven multifocal benign epithelial tumor overexpressing viral oncogenes in the epidermis basal layer. The patients are unexpectedly homozygous for a private CD28 variant. They have no detectable CD28 on their T cells, with the exception of a small contingent of revertant memory CD4+ T cells. T cell development is barely affected, and T cells respond to CD3 and CD2, but not CD28, costimulation. Although the patients do not display HPV-2- and HPV-4-reactive CD4+ T cells in vitro, they make antibodies specific for both viruses in vivo. CD28-deficient mice are susceptible to cutaneous infections with the mouse papillomavirus MmuPV1. The control of HPV-2 and HPV-4 in keratinocytes is dependent on the T cell CD28 co-activation pathway. Surprisingly, human CD28-dependent T cell responses are largely redundant for protective immunity.


Subject(s)
CD28 Antigens/deficiency , Inheritance Patterns/genetics , Papillomaviridae/physiology , Skin/virology , T-Lymphocytes/immunology , Adult , Amino Acid Sequence , Animals , Base Sequence , CD28 Antigens/genetics , CD28 Antigens/metabolism , CD4-Positive T-Lymphocytes/immunology , Child , Endopeptidases/metabolism , Female , Genes, Recessive , HEK293 Cells , Homozygote , Humans , Immunity, Humoral , Immunologic Memory , Jurkat Cells , Keratinocytes/pathology , Male , Mice, Inbred C57BL , Oncogenes , Papilloma/pathology , Papilloma/virology , Pedigree , Protein Sorting Signals , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
Nat Immunol ; 21(10): 1244-1255, 2020 10.
Article in English | MEDLINE | ID: mdl-32747817

ABSTRACT

Follicular helper T (TFH) cells are implicated in type 1 diabetes (T1D), and their development has been linked to CD28 costimulation. We tested whether TFH cells were decreased by costimulation blockade using the CTLA-4-immunoglobulin (Ig) fusion protein (abatacept) in a mouse model of diabetes and in individuals with new-onset T1D. Unbiased bioinformatics analysis identified that inducible costimulatory molecule (ICOS)+ TFH cells and other ICOS+ populations, including peripheral helper T cells, were highly sensitive to costimulation blockade. We used pretreatment TFH profiles to derive a model that could predict clinical response to abatacept in individuals with T1D. Using two independent approaches, we demonstrated that higher frequencies of ICOS+ TFH cells at baseline were associated with a poor clinical response following abatacept administration. Therefore, TFH analysis may represent a new stratification tool, permitting the identification of individuals most likely to benefit from costimulation blockade.


Subject(s)
Abatacept/therapeutic use , CD28 Antigens/metabolism , Diabetes Mellitus, Type 1/immunology , Germinal Center/immunology , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , T-Lymphocytes, Helper-Inducer/immunology , Abatacept/pharmacology , Animals , Biomarkers, Pharmacological , CD28 Antigens/genetics , Cells, Cultured , Computational Biology , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/therapy , Disease Models, Animal , Humans , Immune Checkpoint Inhibitors/pharmacology , Inducible T-Cell Co-Stimulator Protein/metabolism , Mice , Mice, Inbred BALB C , Mice, Knockout , Treatment Outcome
4.
Immunity ; 56(10): 2180-2182, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37820579

ABSTRACT

Immune checkpoint receptor-induced T cell dysfunction is a major cause of CAR T cell treatment failure. In this issue, Agarwal et al. report that CRISPR/Cas9 deletion of CTLA4, but not PDCD1 or CTLA4 and PDCD1, enhances CD28 signaling, restoring fitness and antitumor function of CAR T cells, including those derived from patients who failed CAR T cell therapy.


Subject(s)
CD28 Antigens , Immunotherapy, Adoptive , Humans , CTLA-4 Antigen/genetics , CD28 Antigens/genetics , Signal Transduction , T-Lymphocytes
5.
Nat Immunol ; 15(5): 473-81, 2014 May.
Article in English | MEDLINE | ID: mdl-24633226

ABSTRACT

Regulatory T cells (Treg cells) express members of the tumor-necrosis factor (TNF) receptor superfamily (TNFRSF), but the role of those receptors in the thymic development of Treg cells is undefined. We found here that Treg cell progenitors had high expression of the TNFRSF members GITR, OX40 and TNFR2. Expression of those receptors correlated directly with the signal strength of the T cell antigen receptor (TCR) and required the coreceptor CD28 and the kinase TAK1. The neutralization of ligands that are members of the TNF superfamily (TNFSF) diminished the development of Treg cells. Conversely, TNFRSF agonists enhanced the differentiation of Treg cell progenitors by augmenting responsiveness of the interleukin 2 receptor (IL-2R) and transcription factor STAT5. Costimulation with the ligand of GITR elicited dose-dependent enrichment for cells of lower TCR affinity in the Treg cell repertoire. In vivo, combined inhibition of GITR, OX40 and TNFR2 abrogated the development of Treg cells. Thus, expression of members of the TNFRSF on Treg cell progenitors translated strong TCR signals into molecular parameters that specifically promoted the development of Treg cells and shaped the Treg cell repertoire.


Subject(s)
Receptor Cross-Talk , Receptors, Antigen, T-Cell/agonists , T-Lymphocytes, Regulatory/immunology , Thymus Gland/immunology , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/metabolism , Animals , CD28 Antigens/genetics , CD28 Antigens/metabolism , Cell Differentiation/genetics , Cells, Cultured , Glucocorticoid-Induced TNFR-Related Protein/genetics , Glucocorticoid-Induced TNFR-Related Protein/metabolism , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Receptor Cross-Talk/immunology , Receptors, OX40/genetics , Receptors, OX40/metabolism , Receptors, Tumor Necrosis Factor, Type II/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology , STAT5 Transcription Factor/metabolism , Signal Transduction/genetics , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/genetics
6.
Nat Immunol ; 14(2): 152-61, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23242415

ABSTRACT

CD4(+)CXCR5(+)Foxp3(+) follicular regulatory T cells (T(FR) cells) inhibit humoral immunity mediated by CD4(+)CXCR5(+)Foxp3(-) follicular helper T cells (T(FH) cells). Although the inhibitory receptor PD-1 is expressed by both cell types, its role in the differentiation of T(FR) cells is unknown. Here we found that mice deficient in PD-1 and its ligand PD-L1 had a greater abundance of T(FR) cells in the lymph nodes and that those T(FR) cells had enhanced suppressive ability. We also found substantial populations of T(FR) cells in mouse blood and demonstrated that T(FR) cells in the blood homed to lymph nodes and potently inhibited T(FH) cells in vivo. T(FR) cells in the blood required signaling via the costimulatory receptors CD28 and ICOS but were inhibited by PD-1 and PD-L1. Our findings demonstrate mechanisms by which the PD-1 pathway regulates antibody production and help reconcile inconsistencies surrounding the role of this pathway in humoral immunity.


Subject(s)
Cell Communication/immunology , Immunity, Humoral , Lymph Nodes/immunology , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Antibody Formation , B7-H1 Antigen/blood , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , CD28 Antigens/blood , CD28 Antigens/genetics , CD28 Antigens/immunology , Cell Differentiation , Gene Expression Regulation , Inducible T-Cell Co-Stimulator Protein/blood , Inducible T-Cell Co-Stimulator Protein/genetics , Inducible T-Cell Co-Stimulator Protein/immunology , Lymph Nodes/cytology , Lymphocyte Count , Mice , Mice, Transgenic , Programmed Cell Death 1 Receptor/blood , Programmed Cell Death 1 Receptor/genetics , Signal Transduction/immunology , T-Lymphocytes, Helper-Inducer/cytology , T-Lymphocytes, Regulatory/cytology
7.
Immunity ; 44(5): 973-88, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27192564

ABSTRACT

Ligation of the CD28 receptor on T cells provides a critical second signal alongside T cell receptor (TCR) ligation for naive T cell activation. Here, we discuss the expression, structure, and biochemistry of CD28 and its ligands. CD28 signals play a key role in many T cell processes, including cytoskeletal remodeling, production of cytokines, survival, and differentiation. CD28 ligation leads to unique epigenetic, transcriptional, and post-translational changes in T cells that cannot be recapitulated by TCR ligation alone. We discuss the function of CD28 and its ligands in both effector and regulatory T cells. CD28 is critical for regulatory T cell survival and the maintenance of immune homeostasis. We outline the roles that CD28 and its family members play in human disease and we review the clinical efficacy of drugs that block CD28 ligands. Despite the centrality of CD28 and its family members and ligands to immune function, many aspects of CD28 biology remain unclear. Translation of a basic understanding of CD28 function into immunomodulatory therapeutics has been uneven, with both successes and failures. Such real-world results might stem from multiple factors, including complex receptor-ligand interactions among CD28 family members, differences between the mouse and human CD28 families, and cell-type specific roles of CD28 family members.


Subject(s)
Autoimmune Diseases/immunology , CD28 Antigens/metabolism , CTLA-4 Antigen/antagonists & inhibitors , Immunotherapy/methods , T-Lymphocytes/immunology , Abatacept/therapeutic use , Animals , Autoimmune Diseases/genetics , Autoimmune Diseases/therapy , CD28 Antigens/genetics , CD28 Antigens/immunology , Homeostasis , Humans , Immunotherapy/trends , Lymphocyte Activation , Mice , Molecular Targeted Therapy , Receptor Cross-Talk , Receptors, Antigen, T-Cell/metabolism , Signal Transduction
8.
Immunity ; 44(2): 380-90, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26885860

ABSTRACT

Chimeric antigen receptors (CARs) redirect T cell cytotoxicity against cancer cells, providing a promising approach to cancer immunotherapy. Despite extensive clinical use, the attributes of CAR co-stimulatory domains that impact persistence and resistance to exhaustion of CAR-T cells remain largely undefined. Here, we report the influence of signaling domains of coreceptors CD28 and 4-1BB on the metabolic characteristics of human CAR T cells. Inclusion of 4-1BB in the CAR architecture promoted the outgrowth of CD8(+) central memory T cells that had significantly enhanced respiratory capacity, increased fatty acid oxidation and enhanced mitochondrial biogenesis. In contrast, CAR T cells with CD28 domains yielded effector memory cells with a genetic signature consistent with enhanced glycolysis. These results provide, at least in part, a mechanistic insight into the differential persistence of CAR-T cells expressing 4-1BB or CD28 signaling domains in clinical trials and inform the design of future CAR T cell therapies.


Subject(s)
CD28 Antigens/metabolism , CD8-Positive T-Lymphocytes/physiology , Cancer Vaccines/immunology , Immunotherapy , Neoplasms/therapy , Receptors, Antigen, T-Cell/metabolism , Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism , CD28 Antigens/genetics , Cell Respiration , Cells, Cultured , Glycolysis , Humans , Immunologic Memory , Lipid Metabolism , Mitochondria/metabolism , Neoplasms/immunology , Receptor Cross-Talk , Receptors, Antigen, T-Cell/genetics , Recombinant Fusion Proteins/genetics , Signal Transduction/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 9/genetics
9.
Immunogenetics ; 76(1): 51-67, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38197898

ABSTRACT

The CD28-B7 interaction is required to deliver a second signal necessary for T-cell activation. Additional membrane receptors of the CD28 and B7 families are also involved in immune checkpoints that positively or negatively regulate leukocyte activation, in particular T lymphocytes. BTLA is an inhibitory receptor that belongs to a third receptor family. Fish orthologs exist only for some of these genes, and the potential interactions between the corresponding ligands remain mostly unclear. In this work, we focused on the channel catfish (Ictalurus punctatus), a long-standing model for fish immunology, to analyze these co-stimulatory and co-inhibitory receptors. We identified one copy of cd28, ctla4, cd80/86, b7h1/dc, b7h3, b7h4, b7h5, two btla, and four b7h7 genes. Catfish CD28 contains the highly conserved mammalian cytoplasmic motif for PI3K and GRB2 recruitment, however this motif is absent in cyprinids. Fish CTLA4 share a C-terminal putative GRB2-binding site but lacks the mammalian PI3K/GRB2-binding motif. While critical V-domain residues for human CD80 or CD86 binding to CD28/CTLA4 show low conservation in fish CD80/86, C-domain residues are highly conserved, underscoring their significance. Catfish B7H1/DC had a long intracytoplasmic domain with a P-loop-NTPase domain that is absent in mammalian sequences, while the lack of NLS motif in fish B7H4 suggests this protein may not regulate cell growth when expressed intracellularly. Finally, there is a notable expansion of fish B7H7s, which likely play diverse roles in leukocyte regulation. Overall, our work contributes to a better understanding of fish leukocyte co-stimulatory and co-inhibitory receptors.


Subject(s)
CD28 Antigens , Ictaluridae , Animals , Humans , CD28 Antigens/genetics , CD28 Antigens/metabolism , CTLA-4 Antigen , Ictaluridae/genetics , Ictaluridae/metabolism , Antigens, CD , B7-1 Antigen/genetics , B7-1 Antigen/metabolism , Ligands , Cell Adhesion Molecules , Phosphatidylinositol 3-Kinases , Mammals
10.
Breast Cancer Res Treat ; 203(1): 57-71, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37733186

ABSTRACT

PURPOSE: Chemotherapeutic agents exert immunomodulatory effects on triple-negative breast cancer (TNBC) cells and immune cells. Eribulin favorably affects the immunological status of patients with breast cancer. However, the effects of eribulin on the immune cells remain unexplored. The aim of this study was to investigate the effects of eribulin on immune cells. METHODS: Peripheral blood mononuclear cells (PBMCs) from healthy donors and mouse splenocytes were stimulated with anti-CD3 and anti-CD28 antibodies. The effects of eribulin and paclitaxel on cell proliferation and differentiation status were analyzed using flow cytometry. RNA sequencing was performed to assess alterations in gene expression in CD8+ T cells following eribulin and paclitaxel treatment. Using TNBC cell lines (MDA-MB-231, Hs578T, and MDA-MB-157), the anti-tumor activity of CD3/CD28-stimulated T cells combined with eribulin or paclitaxel was evaluated. RESULTS: Eribulin did not affect CD3/CD28-stimulated PBMCs proliferation. However, eribulin significantly decreased the CD4/CD8 ratio in T cells, indicating that eribulin facilitates CD8+ T cell proliferation. Furthermore, eribulin significantly increased the frequency of less differentiated CD45RA+, CCR7+, and TCF1+ subsets of CD8+ T cells. RNA sequencing revealed that eribulin enhanced the expression of gene sets related to cell proliferation and immune responses. Moreover, eribulin augmented the anti-tumor effects of CD3/CD28-stimulated T cells against TNBC cells. These results were not observed in experiments using paclitaxel. CONCLUSIONS: Eribulin promoted CD8+ T cell proliferation, repressed effector T cell differentiation, and harnessed T cell-mediated anti-tumor effects. These mechanisms may be one of the cues that eribulin can improve the immunological status of tumor-bearing hosts.


Subject(s)
CD8-Positive T-Lymphocytes , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , CD28 Antigens/genetics , CD28 Antigens/metabolism , Leukocytes, Mononuclear/metabolism , Paclitaxel/pharmacology , Cell Proliferation
11.
J Virol ; 97(1): e0155622, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36541799

ABSTRACT

Increased demand for novel, highly effective vaccination strategies necessitates a better understanding of long-lived memory CD8 T cell differentiation. To achieve this understanding, we used the mouse model of acute lymphocytic choriomeningitis virus (LCMV) infection. We reexamined classical memory CD8 T cell subsets and performed in-depth, longitudinal analysis of their phenotype, transcriptional programming, and anatomic location within the spleen. All analyses were performed at multiple time points from 8 days to 1 year postinfection. Memory subsets are conventionally defined by their expression of KLRG1 and IL-7Rα, as follows: KLRG1+IL-7Rα- terminal effectors (TEs) and KLRG1-IL-7Rα+ memory precursors (MPs). But we also characterized a third KLRG1+IL-7Rα+ subset which we refer to as KLRG1+ MPs. In these analyses, we defined a comprehensive memory phenotype that is associated with higher levels of CD28 expression. We also demonstrated that MPs, KLRG1+ MPs, and TEs have distinct localization programs within the spleen. We found that MPs became preferentially enriched in the white pulp as early as 1 to 2 weeks postinfection, and their predominance in the white pulp was maintained throughout the course of a year. On the other hand, KLRG1+ MPs and TEs localized to the red pulp just as early, and they consistently localized to the red pulp thereafter. These findings indicate that location may be crucial for memory formation and that white pulp-derived signals may contribute to long-term memory survival. Achieving robust memory responses following vaccination may require more deliberate consideration of which memory phenotypes are induced, as well as where they traffic, as these factors could impact their longevity. IMPORTANCE CD8 T cells play a critical role in viral immunity and it is important to understand how memory cells are formed and what processes lead to their long-term maintenance. Here, we use a mouse model of acute infection to perform an in-depth, longitudinal analysis of memory CD8 T cell differentiation, examining the phenotype and location of memory cells out to 1 year postinfection.


Subject(s)
Lymphocytic Choriomeningitis , T-Lymphocyte Subsets , Animals , Mice , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Immunologic Memory , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus , Mice, Inbred C57BL , Phenotype , Vaccination , CD28 Antigens/genetics , Transcriptome , Antigens, Surface/genetics , Viral Vaccines/immunology
12.
Fish Shellfish Immunol ; 148: 109482, 2024 May.
Article in English | MEDLINE | ID: mdl-38458503

ABSTRACT

CD28 and CD80/86 are crucial co-stimulatory molecules for the T cell activation. Previous study illustrated that CD28 and CD80/86 present on T cells and antigen-presenting cells in flounder (Paralichthys olivaceus), respectively. The co-stimulatory molecules were closely associated with cell immunity. In this paper, recombinant protein of flounder CD80/86 (rCD80/86) and phytohemagglutinin (PHA) were added to peripheral blood leukocytes (PBLs) in vitro. Lymphocytes were significantly proliferated with CFSE staining, and the proportion of CD4+ and CD28+ lymphocytes significantly increased. In the meantime, genes related to the CD28-CD80/86 signaling pathway or T cell markers were significantly upregulated (p < 0.05). For further study, the interaction between CD80/86 and CD28 was confirmed. The plasmid of CD28 (pCD28-FLAG and pVN-CD28) or CD80/86 (pVC-CD80/86) was successfully constructed. In addition, pVN-ΔCD28 without the conserved motif "TFPPPF" was constructed. The results showed that bands of pCD28-FLAG bound to rCD80/86 were detected by both anti-FLAG and anti-CD80/86. pVN-CD28 complemented to pVC-CD80/86 showing positive fluorescent signals, and pVN-ΔCD28 failed to combine with pVC-CD80/86. The motif "TFPPPF" in CD28 played a crucial role in this linkage. These results indicate that CD28 and CD80/86 molecules interact with each other, and their binding may modulate T lymphocytes immune response in flounder. This study proved the existence of CD28-CD80/86 signaling pathway in flounder.


Subject(s)
CD28 Antigens , Flounder , Animals , CD28 Antigens/genetics , Lymphocyte Activation , B7-1 Antigen/genetics , Cell Adhesion Molecules , CD4-Positive T-Lymphocytes
13.
Mol Ther ; 31(1): 35-47, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36045585

ABSTRACT

CD19-targeting chimeric antigen receptors (CARs) with CD28 and CD3ζ signaling domains have been approved by the US FDA for treating B cell malignancies. Mutation of immunoreceptor tyrosine-based activation motifs (ITAMs) in CD3ζ generated a single-ITAM containing 1XX CAR, which displayed superior antitumor activity in a leukemia mouse model. Here, we investigated whether the 1XX design could enhance therapeutic potency against solid tumors. We constructed both CD19- and AXL-specific 1XX CARs and compared their in vitro and in vivo functions with their wild-type (WT) counterparts. 1XX CARs showed better antitumor efficacy in both pancreatic and melanoma mouse models. Detailed analysis revealed that 1XX CAR-T cells persisted longer in vivo and had a higher percentage of central memory cells. With fluorescence resonance energy transfer (FRET)-based biosensors, we found that decreased ITAM numbers in 1XX resulted in similar 70-kDa zeta chain-associated protein (ZAP70) activation, while 1XX induced higher Ca2+ elevation and faster extracellular signal-regulated kinase (Erk) activation than WT CAR. Thus, our results confirmed the superiority of 1XX against two targets in different solid tumor models and shed light on the underlying molecular mechanism of CAR signaling, paving the way for the clinical applications of 1XX CARs against solid tumors.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , T-Lymphocytes , Animals , Mice , CD28 Antigens/genetics , Cell Line, Tumor , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/antagonists & inhibitors , Receptors, Chimeric Antigen/chemistry , Receptors, Chimeric Antigen/genetics , T-Lymphocytes/immunology , Xenograft Model Antitumor Assays , Neoplasms/therapy
14.
Mol Ther ; 31(7): 2120-2131, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37081789

ABSTRACT

IL-17-producing antigen-specific human T cells elicit potent antitumor activity in mice. Yet, refinement of this approach is needed to position it for clinical use. While activation signal strength regulates IL-17 production by CD4+ T cells, the degree to which T cell antigen receptor (TCR) and costimulation signal strength influences Th17 immunity remains unknown. We discovered that decreasing TCR/costimulation signal strength by incremental reduction of αCD3/costimulation beads progressively altered Th17 phenotype. Moreover, Th17 cells stimulated with αCD3/inducible costimulator (ICOS) beads produced more IL-17A, IFNγ, IL-2, and IL-22 than those stimulated with αCD3/CD28 beads. Compared with Th17 cells stimulated with the standard, strong signal strength (three beads per T cell), Th17 cells propagated with 30-fold fewer αCD3/ICOS beads were less reliant on glucose and favored the central carbon pathway for bioenergetics, marked by abundant intracellular phosphoenolpyruvate (PEP). Importantly, Th17 cells stimulated with weak αCD3/ICOS beads and redirected with a chimeric antigen receptor that recognizes mesothelin were more effective at clearing human mesothelioma. Less effective CAR Th17 cells generated with high αCD3/ICOS beads were rescued by overexpressing phosphoenolpyruvate carboxykinase 1 (PCK1), a PEP regulator. Thus, Th17 therapy can be improved by using fewer activation beads during manufacturing, a finding that is cost effective and directly translatable to patients.


Subject(s)
Inducible T-Cell Co-Stimulator Protein , Interleukin-17 , Receptors, Chimeric Antigen , Animals , Humans , Mice , CD28 Antigens/genetics , Inducible T-Cell Co-Stimulator Protein/metabolism , Interleukin-17/metabolism , Lymphocyte Activation , Phosphoenolpyruvate/metabolism , Receptors, Antigen, T-Cell/metabolism , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Signal Transduction , Th17 Cells/metabolism
15.
BMC Pulm Med ; 24(1): 242, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755605

ABSTRACT

INTRODUCTION: Lung cancer is a common malignant tumor, and different types of immune cells may have different effects on the occurrence and development of lung cancer subtypes, including lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD). However, the causal relationship between immune phenotype and lung cancer is still unclear. METHODS: This study utilized a comprehensive dataset containing 731 immune phenotypes from the European Bioinformatics Institute (EBI) to evaluate the potential causal relationship between immune phenotypes and LUSC and LUAD using the inverse variance weighted (IVW) method in Mendelian randomization (MR). Sensitivity analyses, including MR-Egger intercept, Cochran Q test, and others, were conducted for the robustness of the results. The study results were further validated through meta-analysis using data from the Transdisciplinary Research Into Cancer of the Lung (TRICL) data. Additionally, confounding factors were excluded to ensure the robustness of the findings. RESULTS: Among the final selection of 729 immune cell phenotypes, three immune phenotypes exhibited statistically significant effects with LUSC. CD28 expression on resting CD4 regulatory T cells (OR 1.0980, 95% CI: 1.0627-1.1344, p < 0.0001) and CD45RA + CD28- CD8 + T cell %T cell (OR 1.0011, 95% CI: 1.0007; 1.0015, p < 0.0001) were associated with increased susceptibility to LUSC. Conversely, CCR2 expression on monocytes (OR 0.9399, 95% CI: 0.9177-0.9625, p < 0.0001) was correlated with a decreased risk of LUSC. However, no significant causal relationships were established between any immune cell phenotypes and LUAD. CONCLUSION: This study demonstrates that specific immune cell types are associated with the risk of LUSC but not with LUAD. While these findings are derived solely from European populations, they still provide clues for a deeper understanding of the immunological mechanisms underlying lung cancer and may offer new directions for future therapeutic strategies and preventive measures.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Mendelian Randomization Analysis , Phenotype , Humans , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/immunology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/immunology , Receptors, CCR2/genetics , CD8-Positive T-Lymphocytes/immunology , CD28 Antigens/genetics
16.
Gene Ther ; 30(5): 411-420, 2023 05.
Article in English | MEDLINE | ID: mdl-33953316

ABSTRACT

Chimeric antigen receptor T (CAR-T) cell therapy has demonstrated remarkable efficacies in treating hematopoietic malignancies, but not in the solid tumors. Incorporating costimulatory signaling domains, such as ICOS or 4-1BB, can positively influence CAR-T cell functions and then the immune responses. These CAR-engineered T cells have showed their enhanced persistence and effector functions with improved antitumor activities, and provided a new approach for the treatment of solid tumors. Here, we designed novel 2nd generation CARs with a costimulatory signaling molecule, dectin-1. The impacts of dectin-1 signaling domain on CAR-T cells were evaluated in vitro and in vivo. Our data show that in vitro cytokine secretions by HER2 or CD19 specific CAR-T cells increase significantly via incorporating this dectin-1 signaling domain. Additional properties of these novel CAR-T cells are affected by this costimulatory domain. Compared with a popular reference (i.e., anti-HER2 CAR-T cells with 4-1BB), in vitro T cell functions and in vivo antitumor activity of the dectin-1 engineered CAR-T cells are similar to the 4-1BB based, and both are discrete to the mock T cells. Furthermore, we found that the CAR-T cells with dectin-1 show distinct phenotype and exhaustion marker expression. These collective results suggest that the incorporation of this new signaling domain, dectin-1, into the CARs may provide the clinical potential of the CAR-T cells through this signaling domain in treating solid tumors.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , CD28 Antigens/genetics , CD28 Antigens/metabolism , Receptors, Antigen, T-Cell , T-Lymphocytes , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Immunotherapy, Adoptive/methods , Neoplasms/therapy , Xenograft Model Antitumor Assays
17.
Mol Carcinog ; 62(2): 200-209, 2023 02.
Article in English | MEDLINE | ID: mdl-36300887

ABSTRACT

Liquid biopsy has been experimented with to identify the mutation of lymphoma based on next-generation sequencing (NGS). We applied NGS analysis to circulating tumor DNA (ctDNA) in 20 lymphoma patients. Then, we compared treatment outcomes, and clinical characteristics among these patients, then investigated mutational profiling. Two independent cohorts of 241 patients with mature B cell lymphoma in Mature B-cell malignancies data set (MBN) data set and 50 diffuse large B-cell lymphoma (DLBCL) patients in DLBCL data set, were used to examine the association between gene mutations and prognosis. We found ctDNA positive group had significantly more relapsed/PD (7/12, 58.3%) and less CR/PR patients (1/12, 8.3%) compared to negative group (0, 0%) (5/8, 62.5%) (p < 0.001). Somatic alterations were identified in 12 of 20 patients and the total 11 mutations were: Ataxia telangiectasia mutated (ATM), TP53, BCL2, BTG2, CD28, EP300, IDH2, IRF8, JAK3, NOTCH1, and NRAS. ATM (S2168L) was found in SLL and TLBL for the first time. BTG2 (c.292_293del), CD28 (P119T), IRF8 (E74D) and NOTCH1 (c.4348 G > A) were newly detected in DLBCL, angioimmunoblastic T-cell lymphoma, primary central nervous system lymphoma, and BCL for the first time respectively. We also disclosed an unreported mutation EP300 (c.1058_1059insC) in DLBCL. Our cases implied ctDNA detection consistent with the FISH of tissue samples to some extent, speculating new molecular subtypes of DLBCL, finding some potential drug-resistant mutations, and suggesting disease recurrence. Moreover, in MBN and DLBCL datasets, patients with TP53 mutation had a significantly shorter OS (all p < 0.05) in both circulating free DNA and tumor tissue. The mutations (no SNP) of NOTCH1 (all p < 0.05) significantly contributed to worse OS in the two cohorts.


Subject(s)
Circulating Tumor DNA , Immediate-Early Proteins , Lymphoma, Large B-Cell, Diffuse , Humans , Circulating Tumor DNA/genetics , High-Throughput Nucleotide Sequencing , CD28 Antigens/genetics , Neoplasm Recurrence, Local , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Mutation , Interferon Regulatory Factors/genetics , Immediate-Early Proteins/genetics , Tumor Suppressor Proteins/genetics
18.
Hepatology ; 76(3): 564-575, 2022 09.
Article in English | MEDLINE | ID: mdl-35184318

ABSTRACT

BACKGROUND AND AIMS: Autoimmune hepatitis (AIH) is a rare and chronic autoimmune liver disease. While genetic factors are believed to play a crucial role in the etiopathogenesis of AIH, our understanding of these genetic risk factors is still limited. In this study, we aimed to identify susceptibility loci to further understand the pathogenesis of this disease. APPROACH AND RESULTS: We conducted a case-control association study of 1,622 Chinese patients with AIH type 1 and 10,466 population controls from two independent cohorts. A meta-analysis was performed to ascertain variants associated with AIH type 1. A single-nucleotide polymorphism within the human leukocyte antigen (HLA) region showed the strongest association with AIH (rs6932730: OR = 2.32; p = 9.21 × 10-73 ). The meta-analysis also identified two non-HLA loci significantly associated with AIH: CD28/CTLA4/ICOS on 2q33.3 (rs72929257: OR = 1.31; p = 2.92 × 10-9 ) and SYNPR on 3p14.2 (rs6809477: OR = 1.25; p = 5.48 × 10-9 ). In silico annotation, reporter gene assays, and CRISPR activation experiments identified a distal enhancer at 2q33.3 that regulated expression of CTLA4. In addition, variants near STAT1/STAT4 (rs11889341: OR = 1.24; p = 1.34 × 10-7 ), LINC00392 (rs9564997: OR = 0.81; p = 2.53 × 10-7 ), IRF8 (rs11117432: OR = 0.72; p = 6.10 × 10-6 ), and LILRA4/LILRA5 (rs11084330: OR = 0.65; p = 5.19 × 10-6 ) had suggestive association signals with AIH. CONCLUSIONS: Our study identifies two novel loci (CD28/CTLA4/ICOS and SYNPR) exceeding genome-wide significance and suggests four loci as potential risk factors. These findings highlight the importance of costimulatory signaling and neuro-immune interaction in the pathogenesis of AIH.


Subject(s)
Hepatitis, Autoimmune , CD28 Antigens/genetics , CTLA-4 Antigen/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , HLA Antigens , Hepatitis, Autoimmune/genetics , Humans , Polymorphism, Single Nucleotide
19.
Cytotherapy ; 25(2): 148-161, 2023 02.
Article in English | MEDLINE | ID: mdl-36396553

ABSTRACT

BACKGROUND AIMS: Cholangiocarcinoma (CCA) is a lethal bile-duct cancer that is difficult to treat by current standard procedures. This drawback has prompted us to develop adoptive T-cell therapy for CCA, which requires an appropriate target antigen for binding of chimeric antigen receptor (CAR) T cells. Mucin 1 (MUC1), an overexpressed protein in CCA cells, is a potential target antigen for the CAR T-cell development. However, MUC1 overexpression also is associated with the upregulation of programmed death-ligand 1 (PD-L1), an immune checkpoint protein that prohibits anti-tumor functions of T cells, probably causing poor overall survival of patients with CCA. METHODS: To overcome this problem, we developed anti-MUC1-CAR T cells containing PD-1-CD28 switch receptor (SR), namely αM.CAR/SR T cells, to target MUC1 and switch on the inhibitory signal of PD-1/PD-L1 interaction to activate CD28 signaling. Our lentiviral construct contains the sequences that encode anti-MUC1-single chain variable fragment, CD137 and CD3ζ, linked with P2A, PD-1 and CD28. RESULTS: Initially, the upregulations of MUC1 and PD-L1 proteins were confirmed in CCA cell lines. αM.CAR and SR were co-expressed in 53.53 ± 13.89% of transduced T cells, mainly CD8+ T cells (85.7 ± 0.75%, P<0.0001) with the effector memory phenotype (59.22 ± 16.31%, P < 0.01). αM.CAR/SR T cells produced high levels of intracellular tumor necrosis factor-α and interferon-γ in response to the activation by CCA cells expressing MUC1, including KKU-055 (27.18 ± 4.38% and 27.33 ± 5.55%, respectively, P < 0.05) and KKU-213A (47.37 ± 12.67% and 54.55 ± 8.66%, respectively, P < 0.01). Remarkably, the cytotoxic function of αM.CAR/SR T cells against KKU-213A cells expressing PD-L1 was significantly enhanced compared with the αM.CAR T cells (70.69 ± 14.38% versus 47.15 ± 8.413%, respectively; P = 0.0301), correlated with increased granzyme B production (60.6 ± 9.89% versus 43.2 ± 8.95%, respectively; P = 0.0402). Moreover, the significantly enhanced disruption of KKU-213A spheroids by αM.CAR/SR T cells (P = 0.0027), compared with αM.CAR T cells, was also observed. CONCLUSION: Taken together, the cytotoxic function of αM.CAR/SR T cells was enhanced over the αM.CAR T cells, which are potential to be further tested for CCA treatment.


Subject(s)
Cholangiocarcinoma , Receptors, Chimeric Antigen , Humans , Receptors, Antigen, T-Cell , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , CD8-Positive T-Lymphocytes/metabolism , Programmed Cell Death 1 Receptor/metabolism , B7-H1 Antigen/genetics , CD28 Antigens/genetics , Cell Line, Tumor , Cholangiocarcinoma/therapy , Immunotherapy, Adoptive/methods
20.
Hum Genomics ; 16(1): 46, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36271469

ABSTRACT

BACKGROUND: Ligation of CD28 with ligands such as CD80 or CD86 provides a critical second signal alongside antigen presentation by class II major histocompatibility complex expressed on antigen-presenting cells through the T cell antigen receptor for naïve T cell activation. A number of studies suggested that CD28 plays an important role in the pathogenesis of various human diseases. Recent genome-wide association studies (GWASs) identified CD28 as a susceptibility locus for lymphocyte and eosinophil counts, multiple sclerosis, ulcerative colitis, celiac disease, rheumatoid arthritis, asthma, and primary biliary cholangitis. However, the primary functional variant and molecular mechanisms of disease susceptibility in this locus remain to be elucidated. This study aimed to identify the primary functional variant from thousands of genetic variants in the CD28 locus and elucidate its functional effect on the CD28 molecule. RESULTS: Among the genetic variants exhibiting stronger linkage disequilibrium (LD) with all GWAS-lead variants in the CD28 locus, rs2013278, located in the Rbfox binding motif related to splicing regulation, was identified as a primary functional variant related to multiple immunological traits. Relative endogenous expression levels of CD28 splicing isoforms (CD28i and CD28Δex2) compared with full-length CD28 in allele knock-in cell lines generated using CRISPR/Cas9 were directly regulated by rs2013278 (P < 0.05). Although full-length CD28 protein expressed on Jurkat T cells showed higher binding affinity for CD80/CD86, both CD28i and CD28Δex2 encoded loss-of-function isoforms. CONCLUSION: The present study demonstrated for the first time that CD28 has a shared disease-related primary functional variant (i.e., rs2013278) that regulates the CD28 alternative splicing that generates loss-of-function isoforms. They reduce disease risk by inducing anergy of effector T cells that over-react to autoantigens and allergens.


Subject(s)
CD28 Antigens , Genome-Wide Association Study , Humans , CD28 Antigens/genetics , CD28 Antigens/metabolism , B7-1 Antigen/genetics , B7-1 Antigen/metabolism , Protein Isoforms/genetics , Autoantigens
SELECTION OF CITATIONS
SEARCH DETAIL