Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
BMC Genomics ; 25(1): 177, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355406

ABSTRACT

BACKGROUND: Prion diseases, also known as transmissible spongiform encephalopathies (TSEs) remain one of the deleterious disorders, which have affected several animal species. Polymorphism of the prion protein (PRNP) gene majorly determines the susceptibility of animals to TSEs. However, only limited studies have examined the variation in PRNP gene in different Nigerian livestock species. Thus, this study aimed to identify the polymorphism of PRNP gene in Nigerian livestock species (including camel, dog, horse, goat, and sheep). We sequenced the open reading frame (ORF) of 65 camels, 31 village dogs and 12 horses from Nigeria and compared with PRNP sequences of 886 individuals retrieved from public databases. RESULTS: All the 994 individuals were assigned into 162 haplotypes. The sheep had the highest number of haplotypes (n = 54), and the camel had the lowest (n = 7). Phylogenetic tree further confirmed clustering of Nigerian individuals into their various species. We detected five non-synonymous SNPs of PRNP comprising of G9A, G10A, C11G, G12C, and T669C shared by all Nigerian livestock species and were in Hardy-Weinberg Equilibrium (HWE). The amino acid changes in these five non-synonymous SNP were all "benign" via Polyphen-2 program. Three SNPs G34C, T699C, and C738G occurred only in Nigerian dogs while C16G, G502A, G503A, and C681A in Nigerian horse. In addition, C50T was detected only in goats and sheep. CONCLUSION: Our study serves as the first to simultaneously investigate the polymorphism of PRNP gene in Nigerian livestock species and provides relevant information that could be adopted in programs targeted at breeding for prion diseases resistance.


Subject(s)
Prion Diseases , Prions , Scrapie , Animals , Horses/genetics , Sheep/genetics , Dogs , Prions/genetics , Prions/metabolism , Prion Proteins/genetics , Polymorphism, Single Nucleotide , Livestock/genetics , Open Reading Frames , Phylogeny , Camelus/genetics , Prion Diseases/genetics , Prion Diseases/veterinary , Goats/genetics , Goats/metabolism , Scrapie/genetics
2.
Biol Reprod ; 110(3): 501-508, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38145478

ABSTRACT

Studying testicular genes' expression may give key insights into precise regulation of its functions that influence epididymal sperm quality. The current study aimed to investigate the abundance of candidate genes involved in the regulation of testicular functions specially those regulate sperm function (PLA2G4D, SPP1, and CLUAP1), testicular steroidogenic function (ESR1 and AR), materials transport (AQP12B and LCN15), and defense mechanisms (DEFB110, GPX5, SOCS3, and IL6). Therefore, blood samples and testes with epididymis were collected from mature middle-aged (5-10 years) dromedary camels (n = 45) directly prior and after their slaughtering, respectively, during breeding season. Sera were evaluated for testosterone level and testicular biometry was measured with caliper. The epididymal tail semen was evaluated manually. Samples were distinguished based on testosterone level, testicular biometry, as well as epididymal semen features into high and low fertile groups. Total RNA was isolated from testicular tissues and gene expression was done using Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR). Results revealed that testosterone levels were significantly (P < 0.005) higher in camels with good semen quality than those of low quality. There was a significant (P < 0.0001) increase in testicular weight, length, width, thickness, and volume in high fertile than low fertile camels. PLA2G4D, SPP1, CLUAP1, ESR1, AR, AQP12B, LCN15, DEFB110, GPX5, and SOCS3 genes were upregulated (P < 0.001), and IL6 gene was downregulated (P < 0.01) in the testes of high fertile camels compared to the low fertile one. Thus, it could be concluded that examined genes might be valuable monitors of testicular functional status and fertility in dromedary camels.


Subject(s)
Epididymis , Semen Analysis , Animals , Male , Semen Analysis/veterinary , Camelus/genetics , Semen/metabolism , Interleukin-6/metabolism , Testis/physiology , Spermatozoa/physiology , Testosterone
3.
Protein Expr Purif ; 222: 106522, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38851552

ABSTRACT

OBJECTIVE: To screen and obtain specific anti-lymphocyte activation gene-3 (LAG3) nanobody sequences, purify and express recombinant anti-LAG3 nanobody, and verify its effect on promoting T cells to kill tumor cells. METHODS: Based on the camel derived natural nanobody phage display library constructed by the research group, the biotinylated LAG3 antigen was used as the target, and the anti-LAG3 nanobody sequences were screened by biotin-streptavidin liquid phase screening, phage-ELISA and sequencing. The sequence-conjµgated human IgG1 Fc fragment was obtained, the recombinant anti-LAG3 nanobody expression vector was constructed, the expression of the recombinant anti-LAG3 nanobody was induced by IPTG and purified, and the characteristics and functions of the recombinant anti-LAG3 nanobody were verified by SDS-PAGE, Western blot, cytotoxicity assay, etc. RESULTS: One anti-LAG3 nanobody sequence was successfully screened, and the corresponding recombinant anti-LAG3 nanobody-expressing bacteria were constructed. The results of SDS-PAGE, Western blot and cytotoxicity assay showed that the recombinant anti-LAG3 nanobody was successfully expressed, which was specific, and it could promote the killing ability of T cells against tumor cells, and the optimal concentration was 200 µg/mL. CONCLUSION: The recombinant anti-LAG3 nanobody screened and expressed has specific and auxiliary anti-tumor cell effects, which lays a foundation for its subsequent application.


Subject(s)
Lymphocyte Activation Gene 3 Protein , Single-Domain Antibodies , Single-Domain Antibodies/genetics , Single-Domain Antibodies/immunology , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/biosynthesis , Single-Domain Antibodies/pharmacology , Humans , Antigens, CD/genetics , Antigens, CD/immunology , Antigens, CD/metabolism , Antigens, CD/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/immunology , Recombinant Proteins/chemistry , Animals , Peptide Library , Camelus/immunology , Camelus/genetics , Cell Line, Tumor , Escherichia coli/genetics , T-Lymphocytes/immunology , Gene Expression
4.
Anim Biotechnol ; 35(1): 2331642, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38520296

ABSTRACT

Our study aimed to explore the genetic variation in the Toll-like receptor 4 (TLR4) gene and establish its association with somatic cell score (SCS) and milk production traits in four Indian camel breeds namely Bikaneri, Kachchhi, Jaisalmeri and Mewari. TLR4 gene fragment of 573 bp spanning 5' UTR, exon-1 and partial intron-1 region was amplified and genotyped using the PCR-sequence based typing method. Only one SNP located at position C472T was identified. Genotyping revealed two alleles (C and T) and three genotypes: CC, CT and TT. The genotype frequencies for CC, CT and TT were 0.116, 0.326 and 0.558 and allele frequencies for C and T alleles were 0.279 and 0.721, respectively. Association study inferred that the effect of genotype on SCS, lactation yield (LY) and peak yield (PY) was non-significant however heterozygote (CT) genotypes recorded lower SCS and higher LY and PY. It can be concluded that the TLR4 gene possesses limited genetic variation, depicting polymorphism at a single locus in Indian camel breeds with a predominance of the TT genotype. The association study indicated that heterozygote animals possess better udder health and production performance, the statistical significance of which needs to be established using a large data set.


Subject(s)
Camelus , Toll-Like Receptor 4 , Female , Animals , Camelus/genetics , Toll-Like Receptor 4/genetics , Milk , Polymorphism, Genetic , Gene Frequency , Genotype , Lactation/genetics , Polymorphism, Single Nucleotide/genetics
5.
J Dairy Sci ; 107(2): 1068-1084, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38122895

ABSTRACT

α-Lactalbumin (α-LA), which is encoded by the LALBA gene, is a major whey protein that binds to Ca2+ and facilitates lactose synthesis as a regulatory subunit of the synthase enzyme complex. In addition, it has been shown to play central roles in immune modulation, cell-growth regulation, and antimicrobial activity. In this study, a multitechnical approach was used to fully characterize the LALBA gene and its variants in both coding and regulatory regions for domestic camelids (dromedary, Bactrian camel, alpaca, and llama). The gene analysis revealed a conserved structure among the camelids, but a slight difference in size (2,012 bp on average) due to intronic variations. Promoters were characterized for the transcription factor binding sites (11 found in total). Intraspecies sequence comparison showed 36 SNPs in total (2 in the dromedary, none in the Bactrian camel, 22 in the alpaca, and 12 in the llama), whereas interspecies comparison showed 86 additional polymorphic sites. Eight SNPs were identified as trans-specific polymorphisms, and 2 of them (g.112A>G and g.1229A>G) were particularly interesting in the New World camels. The first creates a new binding site for transcription factor SP1. An enhancing effect of the g.112G variant on the expression was demonstrated by 3 independent pGL3 gene reporter assays. The latter is responsible for the p.78Ile>Val AA replacement and represents novel allelic variants (named LALBA A and B). A link to protein variants has been established by isoelectric focusing (IEF), and bioinformatics analysis revealed that carriers of valine (g.1229G) have a higher glycosylation rate. Genotyping methods based on restriction fragment length polymorphism (PCR-RFLP) were set up for both SNPs. Overall, adenine was more frequent (0.54 and 0.76) at both loci. Four haplotypes were found, and the AA and GA were the most common with a frequency of 0.403 and 0.365, respectively. Conversely, a putative biological gain characterizes the haplotype GG. Therefore, opportunities for rapid directional selection can be realized if this haplotype is associated with favorable milk protein properties. This study adds knowledge at the gene and protein level for α-LA (LALBA) in camelids and importantly contributes to a relatively unexplored research area in these species.


Subject(s)
Camelids, New World , Lactalbumin , Animals , Lactalbumin/genetics , Camelus/genetics , Alleles , Camelids, New World/genetics , Polymorphism, Single Nucleotide , Transcription Factors/genetics
6.
Reprod Domest Anim ; 59(7): e14678, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39031030

ABSTRACT

The scenario of the fertile spermatozoa with high fertilizing capability is basically dependent on gene expression-based epididymal function. The current investigation aimed to declare the varied expression of different candidate genes (PLA2G4D, LCN15, CLUAP1, SPP1, AQP12B, DEFB110 and ESR1) relevant to spermatozoa features between the different epididymal segments in the mature dromedary camels (n = 30). Scrotal contents were collected post-slaughtering, during the breeding season and the epididymis was separated from the testicles and divided into three segments (caput, corpus and cauda) based on its morphology and anatomical characteristics. Epididymal spermatozoa were harvested from each epididymal portion and evaluated for motility, count, viability and morphology. Samples were grouped depending on their epididymal sperm cells features into high-fertile (n = 15) and low-fertile (n = 15) groups. The gene expression of the candidate genes was defined in the isolated RNA from each epididymal portion tissue. The segmental sperm motion and count were significantly (p < .05 and p < .01) higher in the three epididymal parts of high-fertile camels than the lower ones. There were some candidate genes markedly up-regulated in its expression in epididymal head of high-fertile camels (PLA2G4D and LCN15) and low fertile (CLUAP1), while others in the body region of the high-fertile group (SPP1, AQP12B and DEFB110). Nevertheless, ER1 did not differ in the expression among the epididymal segments. In conclusion, the variant expression patterns of these epididymal genes in relation to the regional spermatozoa features might suggest important roles of these genes in sperm maturation process in the epididymis and focusing more interest on their potential utility as markers for male camel fertility prediction.


Subject(s)
Camelus , Epididymis , Fertility , Spermatozoa , Animals , Male , Epididymis/metabolism , Camelus/genetics , Spermatozoa/metabolism , Fertility/genetics , Sperm Motility , Transcriptome
7.
Int J Mol Sci ; 25(14)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39063078

ABSTRACT

Milk production is an important trait that influences the economic value of camels. However, the genetic regulatory mechanisms underlying milk production in camels have not yet been elucidated. We aimed to identify candidate molecular markers that affect camel milk production. We classified Junggar Bactrian camels (9-10-year-old) as low-yield (<1.96 kg/d) or high-yield (>2.75 kg/d) based on milk production performance. Milk fat (5.16 ± 0.51 g/100 g) and milk protein (3.59 ± 0.22 g/100 g) concentrations were significantly lower in high-yielding camels than those in low-yielding camels (6.21 ± 0.59 g/100 g, and 3.93 ± 0.27 g/100 g, respectively) (p < 0.01). There were no apparent differences in gland tissue morphology between the low- and high-production groups. Whole-genome resequencing of 12 low- and 12 high-yield camels was performed. The results of selection mapping methods, performed using two methods (FST and θπ), showed that 264 single nucleotide polymorphism sites (SNPs) overlapped between the two methods, identifying 181 genes. These genes were mainly associated with the regulation of oxytocin, estrogen, ErbB, Wnt, mTOR, PI3K-Akt, growth hormone synthesis/secretion/action, and MAPK signaling pathways. A total of 123 SNPs were selected, based on significantly associated genomic regions and important pathways for SNP genotyping, for verification in 521 additional Bactrian camels. This analysis showed that 13 SNPs were significantly associated with camel milk production yield and 18 SNPs were significantly associated with camel milk composition percentages. Most of these SNPs were located in coding regions of the genome. However, five and two important mutation sites were found in the introns of CSN2 (ß-casein) and CSN3 (κ-casein), respectively. Among the candidate genes, NR4A1, ADCY8, PPARG, CSN2, and CSN3 have previously been well studied in dairy livestock. These observations provide a basis for understanding the molecular mechanisms underlying milk production in camels as well as genetic markers for breeding programs aimed at improving milk production.


Subject(s)
Camelus , Milk , Polymorphism, Single Nucleotide , Whole Genome Sequencing , Animals , Camelus/genetics , Milk/metabolism , Whole Genome Sequencing/methods , Genome , Mutation , Female , Quantitative Trait Loci , Lactation/genetics
8.
Animal ; 18(3): 101098, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38377812

ABSTRACT

Dromedary camels are a domestic species characterized by various adaptive traits. Limited efforts have been employed toward identifying genetic regions and haplotypes under selection that might be related to such adaptations. These genetic elements are considered valuable sources that should be conserved to maintain the dromedaries' adaptability. Here, we have analyzed whole genome sequences of 40 dromedary camels from different Arabian Peninsula populations to assess their genetic relationship and define regions with signatures of selection. Genetic distinction based on geography was observed, classifying the populations into four groups: (1) North and Central, (2) West, (3) Southwest, and (4) Southeast, with substantial levels of genetic admixture. Using the de-correlated composite of multiple signal approach, which combines four intra-population analyses (Tajima's D index, nucleotide diversity, integrated haplotype score, and number of segregating sites by length), a total of 36 candidate regions harboring 87 genes were identified to be under positive selection. These regions overlapped with 185 haplotype blocks encompassing 1 340 haplotypes, of which 30 (∼2%) were found to be approaching fixation. The defined candidate genes are associated with different biological processes related to the dromedaries' adaptive physiologies, including neurological pathways, musculoskeletal development, fertility, fat distribution, immunity, visual development, and kidney physiology. The results of this study highlight opportunities for further investigations at the whole-genome level to enhance our understanding of the evolutionary pressures shaping the dromedary genome.


Subject(s)
Camelus , Selection, Genetic , Animals , Haplotypes/genetics , Camelus/genetics , Polymorphism, Single Nucleotide , Genome/genetics
9.
PeerJ ; 12: e16513, 2024.
Article in English | MEDLINE | ID: mdl-38313017

ABSTRACT

Background: Corynebacterium pseudotuberculosis is a zoonotic Gram-positive bacterial pathogen known to cause different diseases in many mammals, including lymph node abscesses in camels. Strains from biovars equi and ovis of C. pseudotuberculosis can infect camels. Comparative genomics could help to identify features related to host adaptation, and currently strain Cp162 from biovar equi is the only one from camel with a sequenced genome. Methods: In this work, we compared the quality of three genome assemblies of strain Cp162 that used data from the DNA sequencing platforms SOLiD v3 Plus, IonTorrent PGM, and Illumina HiSeq 2500 with an optical map and investigate the unique features of this strain. For this purpose, we applied comparative genomic analysis on the different Cp162 genome assembly versions and included other 129 genomes from the same species. Results: Since the first version of the genome, there was an increase of 88 Kbp and 121 protein-coding sequences, a decrease of pseudogenes from 139 to 53, and two inversions and one rearrangement corrected. We identified 30 virulence genes, none associated to the camel host, and the genes rpob2 and rbpA predicted to confer resistance to rifampin. In comparison to 129 genomes of the same species, strain Cp162 has four genes exclusively present, two of them code transposases and two truncated proteins, and the three exclusively absent genes lysG, NUDIX domain protein, and Hypothetical protein. All 130 genomes had the rifampin resistance genes rpob2 and rbpA. Our results found no unique gene that could be associated with tropism to camel host, and further studies should include more genomes and genome-wide association studies testing for genes and SNPs.


Subject(s)
Corynebacterium pseudotuberculosis , Animals , Sheep/genetics , Corynebacterium pseudotuberculosis/genetics , Camelus/genetics , Genome, Bacterial/genetics , Genome-Wide Association Study , Rifampin , Sequence Analysis, DNA
10.
Curr Biol ; 34(11): 2502-2508.e5, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38754423

ABSTRACT

Extant Old World camels (genus Camelus) contributed to the economic and cultural exchanges between the East and West for thousands of years.1,2 Although many remains have been unearthed,3,4,5 we know neither whether the prevalent hybridization observed between extant Camelus species2,6,7 also occurred between extinct lineages and the ancestors of extant Camelus species nor why some populations became extinct while others survived. To investigate these questions, we generated paleogenomic and stable isotope data from an extinct two-humped camel species, Camelus knoblochi. We find that in the mitochondrial phylogeny, all C. knoblochi form a paraphyletic group that nests within the diversity of modern, wild two-humped camels (Camelus ferus). In contrast, they are clearly distinguished from both wild and domesticated (Camelus bactrianus) two-humped camels on the nuclear level. Moreover, the divergence pattern of the three camel species approximates a trifurcation, because the most common topology is only slightly more frequent than the two other possible topologies. This mito-nuclear phylogenetic discordance likely arose due to interspecific gene flow between all three species, suggesting that interspecific hybridization is not exclusive to modern camels but a recurrent phenomenon throughout the evolutionary history of the genus Camelus. These results suggest that the genomic complexity of Old World camels' evolutionary history is underestimated when considering data from only modern species. Finally, we find that C. knoblochi populations began declining prior to the last glacial maximum and, by integrating palaeoecological evidence and stable isotope data, suggest that this was likely due to failure to adapt to a changing environment.


Subject(s)
Camelus , Phylogeny , Animals , Camelus/genetics , Genome , Biological Evolution
11.
J Genet ; 1032024.
Article in English | MEDLINE | ID: mdl-39049485

ABSTRACT

Knowledge of genetic variability within and among types and breeds of dromedary (Camelus dromedarius L.) can be a valuable asset in selective breeding of desirable characteristics and will shed light on their origin, dynamics of domestication, and dispersion. Variability in an 809 bp segment of the mtDNA genome was measured within and among dromedaries from eight indigenous and one exogenous breed from Ha'il in north-central Saudi Arabia. Sixteen mtDNA haplotypes were identified among 47 camels. Haplotypic diversity among breeds is high (Hd = 0.817); most of the AMOVA variance (55.05%) occurs within breeds. Phylogenetic comparison of these haplotypes with those obtained across their geographic range showed that most haplotypes were placed within the same cluster with ancient wild dromedaries and the two newly identified haplotypes in this study. The most prevalent haplotypes found in dromedaries from this area appear to be ancestral to most other dromedaries and differ from each other by only one SNP. These results support the hypothesis that the Arabian Peninsula is a hub of diversification for dromedaries.


Subject(s)
Camelus , DNA, Mitochondrial , Genetic Variation , Haplotypes , Phylogeny , Animals , Camelus/genetics , Camelus/classification , Saudi Arabia , DNA, Mitochondrial/genetics , Polymorphism, Single Nucleotide , Breeding
12.
Gene ; 921: 148541, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38723784

ABSTRACT

Camels play a crucial socio-economic role in sustaining the livelihoods of millions in arid and semi-arid regions. They possess remarkable physiological attributes which enable them to thrive in extreme environments, and provide a source of meat, milk and transportation. With their unique traits, camels embody an irreplaceable source of untapped genomic knowledge. This study introduces Axiom-MaruPri, a medium-density SNP chip meticulously designed and validated for both Camelus bactrianus and Camelus dromedarius. Comprising of 182,122 SNP markers, derived from the re-sequenced data of nine Indian dromedary breeds and the double-humped Bactrian camel, this SNP chip offers 34,894 markers that display polymorphism in both species. It achieves an estimated inter-marker distance of 14 Kb, significantly enhancing the coverage of the camel genome. The medium-density chip has been successfully genotyped using 480 camel samples, achieving an impressive 99 % call rate, with 96 % of the 182,122 SNPs being highly reliable for genotyping. Phylogenetic analysis and Discriminant Analysis of Principal Components yield clear distinctions between Bactrian camels and dromedaries. Moreover, the discriminant functions substantially enhance the classification of dromedary camels into different breeds. The clustering of various camel breeds reveals an apparent correlation between geographical and genetic distances. The results affirm the efficacy of this SNP array, demonstrating high genotyping precision and clear differentiation between Bactrian and dromedary camels. With an enhanced genome coverage, accuracy and economic efficiency the Axiom_MaruPri SNP chip is poised to advance genomic breeding research in camels. It holds the potential to serve as an invaluable genetic resource for investigating population structure, genome-wide association studies and implementing genomic selection in domesticated camelid species.


Subject(s)
Camelus , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Animals , Camelus/genetics , Oligonucleotide Array Sequence Analysis/methods , Phylogeny , Domestication , Breeding/methods , Genotype , Genotyping Techniques/methods
13.
PeerJ ; 12: e17552, 2024.
Article in English | MEDLINE | ID: mdl-38948234

ABSTRACT

Transmissible spongiform encephalopathies (TSEs) are a fatal neurogenerative disease that include Creutzfeldt-Jakob disease in humans, scrapie in sheep and goats, bovine spongiform encephalopathy (BSE), and several others as well as the recently described camel prion disease (CPD). CPD originally was documented in 3.1% of camels examined during an antemortem slaughterhouse inspection in the Ouargla region of Algeria. Of three individuals confirmed for CPD, two were sequenced for the exon 3 of the prion protein gene (PRNP) and were identical to sequences previously reported for Camelus dromedarius. Given that other TSEs, such as BSE, are known to be capable of cross-species transmission and that there is household consumption of meat and milk from Camelus, regulations to ensure camel and human health should be a One Health priority in exporting countries. Although the interspecies transmissibility of CPD currently is unknown, genotypic characterization of Camelus PRNP may be used for predictability of predisposition and potential susceptibility to CPD. Herein, eight breeds of dromedary camels from a previous genetic (mitochondrial DNA and microsatellites) and morphological study were genotyped for PRNP and compared to genotypes from CPD-positive Algerian camels. Sequence data from PRNP indicated that Ethiopian camels possessed 100% sequence identity to CPD-positive camels from Algeria. In addition, the camel PRNP genotype is unique compared to other members of the Orders Cetartiodactyla and Perissodactyla and provides an in-depth phylogenetic analysis of families within Cetartiodactyla and Perissodactyla that was used to infer the evolutionary history of the PRNP gene.


Subject(s)
Camelus , Prion Diseases , Animals , Camelus/genetics , Prion Diseases/genetics , Prion Diseases/veterinary , Algeria/epidemiology , Prion Proteins/genetics , Genotype , Phylogeny , Prions/genetics
14.
J Agric Food Chem ; 72(20): 11640-11651, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38725129

ABSTRACT

Milk and dairy products represent important sources of nutrition in our daily lives. The identification of species within dairy products holds importance for monitoring food adulteration and ensuring traceability. This study presented a method that integrated double-tube and duplex real-time polymerase chain reaction (PCR) with multiplex TaqMan probes to enable the high-throughput detection of animal-derived ingredients in milk and dairy products. The detection system utilized one pair of universal primers, two pairs of specific primers, and eight animal-derived specific probes for cow, buffalo, goat, sheep, camel, yak, horse, and donkey. These components were optimized within a double-tube and four-probe PCR multiplex system. The developed double-tube detection system could simultaneously identify the above eight targets with a detection limit of 10-0.1 pg/µL. Validation using simulated adulterated milk samples demonstrated a detection limit of 0.1%. The primary advantage of this method lies in the simplification of the multiplex quantitative real-time PCR (qPCR) system through the use of universal primers. This method provides an efficient approach for detecting ingredients in dairy products, providing powerful technical support for market supervision.


Subject(s)
Dairy Products , Food Contamination , Goats , Milk , Multiplex Polymerase Chain Reaction , Real-Time Polymerase Chain Reaction , Animals , Milk/chemistry , Real-Time Polymerase Chain Reaction/methods , Cattle/genetics , Food Contamination/analysis , Dairy Products/analysis , Multiplex Polymerase Chain Reaction/methods , Sheep/genetics , Goats/genetics , Horses/genetics , Buffaloes/genetics , Camelus/genetics , Equidae/genetics , DNA Primers/genetics
SELECTION OF CITATIONS
SEARCH DETAIL