Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 547
Filter
Add more filters

Publication year range
1.
BMC Microbiol ; 24(1): 46, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302896

ABSTRACT

BACKGROUND: Campylobacter jejuni and Campylobacter coli are the major causative agents of bacterial gastroenteritis worldwide and are known obligate microaerophiles. Despite being sensitive to oxygen and its reduction products, both species are readily isolated from animal food products kept under atmospheric conditions where they face high oxygen tension levels. RESULTS: In this study, Transposon Directed Insertion-site Sequencing (TraDIS) was used to investigate the ability of one C. jejuni strain and two C. coli strains to overcome oxidative stress, using H2O2 to mimic oxidative stress. Genes were identified that were required for oxidative stress resistance for each individual strain but also allowed a comparison across the three strains. Mutations in the perR and ahpC genes were found to increase Campylobacter tolerance to H2O2. The roles of these proteins in oxidative stress were previously known in C. jejuni, but this data indicates that they most likely play a similar role in C. coli. Mutation of czcD decreased Campylobacter tolerance to H2O2. The role of CzcD, which functions as a zinc exporter, has not previously been linked to oxidative stress. The TraDIS data was confirmed using defined deletions of perR and czcD in C. coli 15-537360. CONCLUSIONS: This is the first study to investigate gene fitness in both C. jejuni and C. coli under oxidative stress conditions and highlights both similar roles for certain genes for both species and highlights other genes that have a role under oxidative stress.


Subject(s)
Campylobacter Infections , Campylobacter coli , Campylobacter jejuni , Animals , Campylobacter jejuni/genetics , Campylobacter jejuni/metabolism , Campylobacter coli/genetics , Campylobacter coli/metabolism , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Oxidative Stress/genetics , Oxygen/metabolism , Campylobacter Infections/microbiology
2.
Avian Pathol ; 53(1): 1-13, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37722832

ABSTRACT

RESEARCH HIGHLIGHTS: High Campylobacter prevalence in chickens; C. jejuni more prevalent than C. coli.Susceptibility to macrolides but resistance to quinolones/tetracyclines in isolates.Homogeneous resistance patterns within farms; higher in broilers than in native birds.Partial association between phenotypic and genotypic resistance among isolates.


Subject(s)
Campylobacter Infections , Campylobacter coli , Campylobacter jejuni , Campylobacter , Animals , Chickens , Campylobacter jejuni/genetics , Campylobacter Infections/epidemiology , Campylobacter Infections/veterinary , Thailand/epidemiology , Anti-Bacterial Agents/pharmacology , Campylobacter coli/genetics , Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests/veterinary
3.
BMC Microbiol ; 23(1): 97, 2023 04 06.
Article in English | MEDLINE | ID: mdl-37024800

ABSTRACT

Campylobacter species are the major cause of bacterial gastroenteritis. As there is no effective vaccine, combined with the rapid increase in antimicrobial resistant strains, there is a need to identify new targets for intervention. Essential genes are those that are necessary for growth and/or survival, making these attractive targets. In this study, comprehensive transposon mutant libraries were created in six C. jejuni strains, four C. coli strains and one C. lari and C. hyointestinalis strain, allowing for those genes that cannot tolerate a transposon insertion being called as essential. Comparison of essential gene lists using core genome analysis can highlight those genes which are common across multiple strains and/or species. Comparison of C. jejuni and C. coli, the two species that cause the most disease, identified 316 essential genes. Genes of interest highlighted members of the purine pathway being essential for C. jejuni whilst also finding that a functional potassium uptake system is essential. Protein-protein interaction networks using these essential gene lists also highlighted proteins in the purine pathway being major 'hub' proteins which have a large number of interactors across the network. When adding in two more species (C. lari and C. hyointestinalis) the essential gene list reduces to 261. Within these 261 essential genes, there are many genes that have been found to be essential in other bacteria. These include htrB and PEB4, which have previously been found as core virulence genes across Campylobacter species in other studies. There were 21 genes which have no known function with eight of these being associated with the membrane. These surface-associated essential genes may provide attractive targets. The essential gene lists presented will help to prioritise targets for the development of novel therapeutic and preventative interventions.


Subject(s)
Campylobacter Infections , Campylobacter coli , Campylobacter jejuni , Campylobacter , Humans , Campylobacter jejuni/genetics , Campylobacter coli/genetics , Campylobacter Infections/microbiology
4.
BMC Microbiol ; 23(1): 66, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36899325

ABSTRACT

BACKGROUND: Campylobacter species (spp.) are one of the most important zoonotic bacteria possessing potential hazards for animal and human health worldwide. Migratory birds are implicated as significant carriers for microbes and a play very important role in the dissemination of Campylobacter to broiler chickens and their environment. The purpose of this investigation was to detect the prevalence, antibiotic resistant patterns, virulence and diversity of pathogenic Campylobacter spp. in 7 migratory bird species (Northern shoveler, Common pochard, Common teal, Northern pintail, Eared Grebe, Great Crested Grebe and Garganey) and broiler chickens that were collected from broiler poultry farms and live bird markets. RESULTS: The prevalence of Campylobacter was 12.5% (25/200), of which 15% (15/100) was recovered from 5 migratory bird species only and 10% (10/100) from broiler chickens. At the level of migratory birds, eight isolates (53.3%) were Campylobacter jejuni (C. jejuni) and 7 isolates (46.7%) were Campylobacter coli (C. coli) meanwhile, in broiler chickens C. jejuni and C. coli were 50% (5/10) for each. All isolated strains had phenotypic resistance to doxycycline, while all of the isolates were susceptible to amikacin. The multidrug resistance to three, four or five antimicrobial classes was found in 72% (18/25) of the isolated strains. The multiantibiotic resistance index between the examined isolates was 0.22-0.77, with 10 antibiotic resistance patterns. The virulence of isolated Campylobacter strains (from both migratory birds and broiler chicken birds) was detected by targeting the VirB11, ciaB and iam genes which were recorded at 16%, 52% and 100%, respectively. Additionally, 100% and 84% of the antibiotic resistance genes were identified as tetA and BlaOXA-61, respectively. CONCLUSIONS: The results of this study revealed the diversity between all the isolated strains from migratory birds and their similarity to broiler chicken isolates. The findings of the present study highlight the impact of migratory birds visiting Egypt and other countries on pathogenic Campylobacter spp. carrying pathogenic virulence and resistance genes, necessitating the application of biosecurity measures to prevent migratory birds from entering farms during their migration period.


Subject(s)
Campylobacter Infections , Campylobacter coli , Campylobacter jejuni , Campylobacter , Poultry Diseases , Animals , Humans , Chickens/microbiology , Poultry/microbiology , Farms , Campylobacter Infections/microbiology , Anti-Bacterial Agents , Campylobacter jejuni/genetics , Campylobacter coli/genetics , Poultry Diseases/microbiology
5.
Curr Microbiol ; 80(12): 402, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37930435

ABSTRACT

The genotyping of Campylobacter coli was done using three methods, pulsed-field gel electrophoresis (PFGE), Sau-polymerase chain reaction (Sau-PCR), and denaturing gradient gel electrophoresis assay of flagellin gene (fla-DGGE) and the characteristics of these assays were compared. The results showed that a total of 53 strains of C. coli were isolated from chicken and duck samples in three markets. All isolates were clustered into 31, 33, and 15 different patterns with Simpson's index of diversity (SID) values of 0.972, 0.974, and 0.919, respectively. Sau-PCR assay was simpler, more rapid, and had higher discriminatory power than PFGE assay. Fla-DGGE assay could detect and illustrate the number of contamination types of C. jejuni and C. coli without cultivation, which saved more time and cost than Sau-PCR and PFGE assays. Therefore, Sau-PCR and fla-DGGE assays are both rapid, economical, and easy to perform, which have the potential to be promising and accessible for primary laboratories in genotyping C. coli strains.


Subject(s)
Campylobacter coli , Animals , Campylobacter coli/genetics , Electrophoresis, Gel, Pulsed-Field , Flagellin/genetics , Genotype , Poultry , Polymerase Chain Reaction
6.
Food Microbiol ; 116: 104348, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37689422

ABSTRACT

Campylobacter remains the leading cause of bacterial foodborne illness in the U.S. and worldwide. Campylobacter plasmids may play a significant role in antimicrobial resistance (AMR) and virulence factor distribution, and potentially drive rapid adaptation. C. coli (n = 345) and C. jejuni (n = 199) isolates collected from live cattle, swine, turkey, and chickens, poultry carcasses at production, and retail meat in N.C. were analyzed to determine plasmid prevalence, extrachromosomal virulence and AMR genes, and the phylogeny of assembled plasmids. Putative plasmids ranging from <2 kb to 237kb were identified with virulence factors present in 66.1% (228/345) C. coli and 88.4% (176/199) C. jejuni plasmids (promoting adherence, invasion, exotoxin production, immune modulation, chemotaxis, mobility, and the type IV secretion system). AMR genes were identified in 21.2% (73/345) C. coli and 28.1% C. jejuni plasmids (conferring resistance to tetracyclines, aminoglycosides, beta-lactams, nucleosides, and lincosamides). Megaplasmids (>100 kb) were present in 25.7% (140/544) of the isolates and carried genes previously recognized to be involved with interspecies recombination. Our study highlights the extensive distribution and diversity of Campylobacter plasmids in food animal production and their role in the dissemination of biomedically important genes. Characterizing Campylobacter plasmids within the food animal production niche is important to understanding the epidemiology of potential emerging strains.


Subject(s)
Campylobacter coli , Campylobacter jejuni , Campylobacter , Animals , Cattle , Swine , Campylobacter coli/genetics , Campylobacter jejuni/genetics , Virulence/genetics , North Carolina , Chickens , Virulence Factors/genetics , Anti-Bacterial Agents/pharmacology , Plasmids/genetics
7.
Int J Mol Sci ; 24(22)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38003307

ABSTRACT

The aac(6')-Ib gene is the most widespread gene encoding aminoglycoside-modifying enzyme and conferring resistance to tobramycin, streptomycin and kanamycin. The variant aac(6')-Ib-cr gene confers resistance to both aminoglycosides and fluoroquinolones (FQ). A total of 132 Campylobacter isolates, including 91 C. jejuni and 41 C. coli, were selected from broiler hens isolates. The aac(6')-Ib gene was amplified using PCR and was subsequently digested with the BtsCI restriction enzyme to identify aac(6')-Ib-cr. Among these isolates, 31 out of 41 C. coli (75.6%) and 1 (0.98%) C. jejuni were positive for the aac(6')-Ib gene, which was identified as the aac(6')-Ib-cr variant in 10 (32.25%) C. coli isolates. This variant was correlated with mutations in gyrA (Thr-86-Ile), as well as resistance to FQs. This study is the first report in Tunisia on Campylobacter coli strains harboring both the aac(6')-Ib and aac(6')-Ib-cr variants. These genes were present in Campylobacter isolates exhibiting resistance to multiple antibiotics, which restricts the range of available treatments.


Subject(s)
Campylobacter coli , Fluoroquinolones , Animals , Female , Fluoroquinolones/pharmacology , Escherichia coli/genetics , Campylobacter coli/genetics , Chickens , Tunisia , Anti-Bacterial Agents/pharmacology , Mutation , Aminoglycosides/pharmacology , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics
8.
World J Microbiol Biotechnol ; 39(12): 353, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37874390

ABSTRACT

Campylobacters, especially C. jejuni and C. coli, have become one of the leading causes of acute gastroenteritis in humans worldwide in recent years. We aimed to investigate the presence, antimicrobial resistance, putative virulence genes, and molecular characterization of C. jejuni and C. coli recovered from human acute gastroenteritis cases in the study. In the study, suspected Campylobacter spp. isolates were obtained in 43 (5%) feces samples collected from a total of 850 patients who applied to the Erciyes University Medical Faculty acute clinic between March 2019 and February 2020. As a result of the phenotypic tests, these isolates were determined to be Campylobacter spp. According to the multiplex PCR, 33 of 43 Campylobacter spp. isolates were identified as C. jejuni (76%) and ten isolates were as C. coli (24%). In the disc diffusion test, the highest resistance rate was found in the trimethoprim/sulfamethoxazole (90.1%) and ciprofloxacin (90.1%), and the lowest rate was found in the amoxicillin-clavulanic acid (9.3%). In Campylobacter spp. isolates, the virulence genes cdtA, virB11, cdtB, cadF, iam, ceu, and flaA were found to be positive at rates of 26 (60%), 28 (65.6%), 13 (30%), 4 (9%), 27 (62%), 17 (39%), and 7 (16%), respectively. However, the cdtC gene was not detected in any of the isolates. The study searched tetO gene to examine the genetic aspect of tetracycline resistance, which was found in all Campylobacter spp. isolates. In the PCR reactions to investigate A2074C and A2075G mutations of macrolide resistance, it was determined as 7 (16%) and 21 (48%) of the isolates. To detect quinolone resistance, the rates of quinolone resistance-determining regions (QRDR) were 20 (45.4%) and the gyrA gene mutations in the mismatch amplification mutation assay PCR (MAMA-PCR), were 19 (43.1%) of isolates. In addition, the quinolone resistance gene (qnr) carried by plasmid in Campylobacter isolates was not found in the study. BlaOXA-61 and CmeB (multi-drug efflux pump) genes were detected as 28 (63.6%) and 30 (68.1), respectively. The Enterobacterial Repetitive Intergenic Consensus PCR (ERIC-PCR) used for typing the isolates revealed that the band profiles obtained from the isolates were different. In conclusion, this was a very comprehensive study revealing the presence of antibiotic-resistant C. jejuni and C. coli with various virulence genes in patients admitted to a university hospital with acute gastroenteritis. This is of utmost significance for public health. Since campylobacteria are foodborne, zoonotic pathogens and transmission occurs mostly through food. People should have detailed information about the transmission routes of campylobacteria and risky foods. In addition, staff, food processors and caterers, should be trained in hygiene.


Subject(s)
Campylobacter Infections , Campylobacter coli , Campylobacter jejuni , Campylobacter , Gastroenteritis , Humans , Campylobacter jejuni/genetics , Campylobacter coli/genetics , Anti-Bacterial Agents/pharmacology , Virulence/genetics , Drug Resistance, Bacterial/genetics , Macrolides , Virulence Factors/genetics , Campylobacter Infections/microbiology , Ciprofloxacin , Gastroenteritis/microbiology , Feces/microbiology
9.
Shokuhin Eiseigaku Zasshi ; 64(5): 185-190, 2023.
Article in Japanese | MEDLINE | ID: mdl-37880098

ABSTRACT

This study aimed to investigate the prevalence and antimicrobial sensitivity of Campylobacter jejuni and Campylobacter coli in retail meat (chicken, beef, pork, venison, wild boar, horse, lamb and mutton) in Tokyo (Japan) from 2010 to 2019. Furthermore, the resistance mechanism of erythromycin (EM)-resistant strains was analysed. C. jejuni had a highly positive rate in domestic chicken meat (53.4%, 334/626 samples), domestic chicken offal (49.3%, 34/69 samples), and domestic beef offal (28.3%, 47/166 samples), while C. coli had a high positivity rate in domestic pork offal (31.7%, 44/139 samples). The positive rate of C. jejuni was significantly higher in offal than that in meat in domestic beef, while the positive rate of C. coli was significantly higher in offal than that in meat in domestic beef and domestic pork (p<0.05). In the isolates, 1.0% (6/631 strains) of C. jejuni and 36.2% (55/152 strains) of C. coli were EM resistant, with 41.5% (262/631 strains) of C. jejuni and 65.1% (99/152 strains) of C. coli being ciprofloxacin resistant. A2075G mutation of the 23S rRNA gene was confirmed in all EM-resistant strains.


Subject(s)
Anti-Infective Agents , Campylobacter coli , Campylobacter jejuni , Cattle , Animals , Sheep , Horses , Campylobacter coli/genetics , Anti-Bacterial Agents/pharmacology , Campylobacter jejuni/genetics , Japan/epidemiology , Tokyo , Prevalence , Drug Resistance, Bacterial/genetics , Macrolides/pharmacology , Meat , Erythromycin/pharmacology , Chickens , Microbial Sensitivity Tests
10.
J Antimicrob Chemother ; 77(6): 1557-1560, 2022 05 29.
Article in English | MEDLINE | ID: mdl-35296903

ABSTRACT

OBJECTIVES: Recently, epidemiological research has shown an unusually high prevalence of telithromycin-resistant Campylobacter. This study was designed to investigate the potential resistance mechanism of telithromycin resistance in Campylobacter. METHODS: A total of 122 Campylobacter isolates of chicken origin collected in 2019 from three regions of China were tested for susceptibility to telithromycin. The potential mechanism of resistance to telithromycin in Campylobacter was revealed through WGS analysis and natural transformation. RESULTS: In this study, 51.3% (61/119) of Campylobacter coli and 100.0% (3/3) of Campylobacter jejuni were resistant to telithromycin. erm(B) or A2075G mutation in 23S rRNA (23S_A2075G) was identified in the telithromycin-resistant C. coli. Cloning of the erm(B) or 23S_A2075G into C. jejuni NCTC 11168 resulted in a 256-fold increase in the MIC of telithromycin. MLST results indicated that various STs were involved in the dissemination of 23S_A2075G and erm(B). Phylogenetic analysis showed that the C. coli isolates with 23S_A2075G and erm(B) from chickens and humans were closely related. CONCLUSIONS: 23S_A2075G and erm(B), which have been widely spread in different genotypes of C. coli isolated from animals and humans, could mediate high levels of resistance to telithromycin in C. coli. C. coli containing 23S_A2075G or erm(B) are clonally related and have the potential to spread zoonotic diseases.


Subject(s)
Campylobacter coli , Campylobacter jejuni , Campylobacter , Animals , Anti-Bacterial Agents/pharmacology , Campylobacter coli/genetics , Campylobacter jejuni/genetics , Chickens , Drug Resistance, Bacterial/genetics , Ketolides , Microbial Sensitivity Tests , Multilocus Sequence Typing , Mutation , Phylogeny , RNA, Ribosomal, 23S/genetics
11.
Curr Top Microbiol Immunol ; 431: 25-58, 2021.
Article in English | MEDLINE | ID: mdl-33620647

ABSTRACT

Campylobacter jejuni and Campylobacter coli are major causes of food-borne enteritis in humans. Poultry meat is known to be responsible for a large proportion of cases of human campylobacteriosis. However, other food-borne, environmental and animal sources are frequently associated with the disease in humans as well. Human campylobacteriosis causes gastroenteritis that in most cases is self-limiting. Nevertheless, the burden of the disease is relatively large compared with other food-borne diseases, which is mostly due to rare but long-lasting symptoms related to immunological sequelae. In order to pave the way to improved surveillance and control of human campylobacteriosis, we review here the data that is typically used for risk analysis to quantify the risk and disease burden, identify specific surveillance strategies and assist in choosing the most effective control strategies. Such data are mostly collected from the literature, and their nature is discussed here, for each of the three processes that are essential for a complete risk analysis procedure: risk assessment, risk management and risk communication. Of these, the first, risk assessment, is most dependent on data, and this process is subdivided into the steps of hazard identification, hazard characterization, exposure assessment and risk characterization. For each of these steps of risk assessment, information from published material that is typically collected will be summarized here. In addition, surveillance data are highly valuable for risk assessments. Different surveillance systems are employed in different countries, which can make international comparison of data challenging. Risk analysis typically results in targeted control strategies, and these again differ between countries. The applied control strategies are as yet not sufficient to eradicate human campylobacteriosis. The surveillance tools of Campylobacter in humans and exposure sources in place in different countries are briefly reviewed to better understand the Campylobacter dynamics and guide control strategies. Finally, the available control measures on different risk factors and exposure sources are presented.


Subject(s)
Campylobacter Infections , Campylobacter coli , Campylobacter jejuni , Animals , Campylobacter Infections/epidemiology , Campylobacter coli/genetics , Humans , Risk Assessment
12.
J Appl Microbiol ; 132(2): 1457-1466, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34465011

ABSTRACT

AIMS: To generate a murine experimental model of colonization by Campylobacter coli DSPV458. METHODS AND RESULTS: Twelve adult Balb/cCmedc female mice were housed in a treated group (T-G) and a control group (C-G) for 4 weeks. Both experimental groups received antibiotics for 5 days during the first week. The T-G was administered with 6.68log10 CFU of C. coli DSPV458 by oesophageal gavage. Necropsies were performed weekly to evaluate translocation and intestinal colonization in the spleen and liver and in the ileum and cecum respectively. Samples were cultured to quantify intestinal microbiota members. Faeces were cultured weekly for a C. coli DSPV458 count. Campylobacter coli DSPV458 was isolated from all the inoculated mice. The recovered level of C. coli DSPV458 was, on average, 6.9 log10 CFUg-1 , 8.0 log10 CFUg-1 and 1.6 log10 CFUg-1 in faeces, cecum and ileum respectively. Colonization by C. coli DSPV458 does not alter the normal clinical and physiological status. CONCLUSIONS: Campylobacter coli DSPV458 does not have an invasive capacity, and the model is suitable for evaluating strategies to reduce intestinal loads. SIGNIFICANCE AND IMPACT OF STUDY: Farm animals have an important impact on thermotolerant Campylobacter transmission to humans. Extremely few colonization models by C. coli have been reported to date. In food-producing animals, infection is mild or absent and thermotolerant Campylobacter colonize the intestines of animals. Colonization models are specific models that do not cause infection as they do not generally result in diarrhoea or other signs of disease. Therefore, this model will allow to evaluate the evolution of colonization by thermotolerant Campylobacter and the alternative tools development to antibiotics that limit their colonization in food-producing animals.


Subject(s)
Campylobacter Infections , Campylobacter coli , Campylobacter jejuni , Campylobacter , Animals , Campylobacter/genetics , Campylobacter Infections/veterinary , Campylobacter coli/genetics , Cecum , Feces , Female , Intestines , Mice
13.
J Appl Microbiol ; 132(4): 3249-3255, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34847282

ABSTRACT

AIMS: The aim of the study was to develop a microarray-based method for the detection of antibiotic-resistant Campylobacter in broiler farms to decrease the risk of contamination of chicken meat. METHODS AND RESULTS: A combination of DNA microarray and primer extension for rapid and simultaneous detection of fluoroquinolone- and macrolide-resistant Campylobacter jejuni/Campylobacter coli, termed Campylobacter Express Resistance Array (CAMERA), was used to analyse chicken caecal droppings. CAMERA assays could detect at least 105 colony forming units of C. jejuni/C. coli g-1 of chicken caecal contents spiked with C. jejuni/C. coli. To compare the CAMERA method and direct culturing method for screening antibiotic-resistant C. jejuni/C. coli in poultry farms, chicken caecal droppings obtained from 42 poultry houses were analysed using both methods. In total, 95.2% of the results (40/42 poultry houses) obtained using the CAMERA and culturing method were identical. In the remaining two poultry houses, the CAMERA could detect the prevalent strain of C. jejuni/C. coli based on results of the culturing method. CONCLUSIONS: The culturing method required >3 days to isolate and identify antibiotic-resistant C. jejuni/C. coli. In contrast, the CAMERA required only 6 h. SIGNIFICANCE AND IMPACT OF THE STUDY: This method can facilitate quick screening and control of fluoroquinolone- and macrolide-resistant C. jejuni/C. coli in broiler farms.


Subject(s)
Campylobacter Infections , Campylobacter coli , Campylobacter jejuni , Campylobacter , Poultry Diseases , Animals , Anti-Bacterial Agents/pharmacology , Campylobacter Infections/drug therapy , Campylobacter Infections/veterinary , Campylobacter coli/genetics , Campylobacter jejuni/genetics , Chickens , Farms , Fluoroquinolones/pharmacology , Macrolides/pharmacology , Poultry Diseases/drug therapy
14.
Food Microbiol ; 107: 104066, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35953186

ABSTRACT

The developed polymerase spiral reaction-based technique specifically amplified the ceuE gene of C. coli and involved a three-step centrifugation method for DNA extraction. PSR, real-time and end-point PCR were able to detect 62 fg, 620 fg and 6.2 pg C. coli DNA/tube, respectively. PSR detection limits for artificially contaminated pork samples without enrichment, with 12 h enrichment and after 24 h enrichment were 1000 CFU/g, 100 CFU/g, and 10 CFU/g samples, respectively which were ten times better than real-time PCR. The detection performance of PSR (with 12 h enrichment) was also compared to culture (ISO10272-1:2017) method using 75 naturally-contaminated samples, which revealed the sensitivity, specificity, PPV, NPV and accuracy of 100% (95%CI, 73.2%-100%), 98.4% (95%CI, 90%-99.9%), 93.3% (95%CI, 66%-99.6%), 100% (95%CI, 92.5%-100%) and 98.7% (95%CI, 92.8%-99.9%), respectively. The advantage and novelty of this assay are its equipment-free nature, dye-based interpretation by the naked eye, and the requirement of one enzyme and one primer pair. This assay could be a better alternative to other molecular methods and may help in reducing the possible troubles (e.g., gastroenteritis, hospitalization, or death) of belated detection of C. coli in food products. This is the primary report applying the PSR for C. coli detection.


Subject(s)
Campylobacter coli , Pork Meat , Red Meat , Animals , Campylobacter coli/genetics , DNA , Food Microbiology , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity , Swine
15.
Antimicrob Agents Chemother ; 65(11): e0112421, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34370579

ABSTRACT

Antimicrobial resistance in campylobacters has been described worldwide. The emergence of multiresistant isolates, particularly among Campylobacter coli isolates, is concerning. New resistance mechanisms appear frequently, and DNA-sequence-based methods such as whole-genome sequencing (WGS) have become useful tools to monitor their emergence. The genomes of 51 multiresistant French Campylobacter sp. clinical strains from 2018 to 2019 were analyzed to identify associated resistance mechanisms. Analyses of erythromycin-resistant strains revealed 23S rRNA mutations among most of them and two different methyltransferases in 4 strains: Erm(B) and a novel methyltransferase, named Erm(N) here. The erm(B) gene was found in multidrug-resistant genomic islands, whereas erm(N) was inserted within CRISPR arrays of the CRISPR-cas9 operon. Moreover, using PCR screening in erythromycin-resistant strains from our collection, we show that erm(N) was already present in 3 French clinical strains 2 years before its first report in 2018 in Quebec, Canada. Bacterial transformations confirmed that the insertion of erm(N) into a CRISPR-cas9 operon can confer macrolide resistance. Campylobacter species are easily able to adapt to their environment and acquire new resistance mechanisms, and the emergence of methyltransferases in campylobacters in France is a matter of concern in the coming years.


Subject(s)
Campylobacter coli , Campylobacter jejuni , Anti-Bacterial Agents/pharmacology , Campylobacter coli/genetics , Campylobacter jejuni/genetics , Drug Resistance, Bacterial/genetics , Erythromycin/pharmacology , Macrolides , Methyltransferases/genetics , Microbial Sensitivity Tests
16.
Protein Expr Purif ; 180: 105818, 2021 04.
Article in English | MEDLINE | ID: mdl-33418060

ABSTRACT

Campylobacteriosis is a disease in humans caused by the infection from Campylobacter spp. Human cases are mainly due to Campylobacter jejuni, although C. coli can cause gastroenteritis in humans as well. The bacteria are commensal in chicken tract and can be contaminated into chicken products during processing. Obviously, detecting reagents such as a specific antibody is essential for the development of immune-based detection methods for C. jejuni or C. coli. In this study, in silico techniques were used to design a chimeric recombinant antigen, named multiepitope antigen (MEA), for the production of specific polyclonal antibody. To design MEA polypeptide based on C. jejuni fibronectin-binding protein or CadF, four conserved and unique antigenic peptides were identified and fused together directly. The C. jejuni CadF-based MEA polypeptide fused with two single six-histidine tags at both C- and N-terminal ends was expressed under Escherichia coli expression system. The recombinant MEA was successfully produced and purified by Ni-NTA resin with a high satisfactory yield. Indirect ELISA results showed that anti-MEA polyclonal antibody derived from rabbit serum had a titer of 16,000, indicating high antigenicity of MEA polypeptide. Dot blot results also confirmed that the produced anti-MEA antibody could specifically recognize both C. jejuni and C. coli whole cells as expected while there was no cross-reactivity to non-Campylobacter spp. tested in this study.


Subject(s)
Antibodies, Bacterial/immunology , Antigens, Bacterial , Bacterial Outer Membrane Proteins , Campylobacter coli , Campylobacter jejuni , Carrier Proteins , Epitopes , Gene Expression , Recombinant Fusion Proteins , Animals , Antibodies, Bacterial/chemistry , Antigens, Bacterial/biosynthesis , Antigens, Bacterial/chemistry , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Bacterial Outer Membrane Proteins/biosynthesis , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/immunology , Campylobacter coli/chemistry , Campylobacter coli/genetics , Campylobacter coli/immunology , Campylobacter jejuni/chemistry , Campylobacter jejuni/genetics , Campylobacter jejuni/immunology , Carrier Proteins/biosynthesis , Carrier Proteins/chemistry , Carrier Proteins/genetics , Carrier Proteins/immunology , Epitopes/biosynthesis , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , Rabbits , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology
17.
J Appl Microbiol ; 130(4): 1368-1379, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32886839

ABSTRACT

AIM: To analyse the prevalence, genetic diversity and antimicrobial susceptibility of Campylobacter spp. in northern Spain. METHODS AND RESULTS: Campylobacter was isolated from 139 samples of broiler meat and faecal dropping of broiler and swine with a prevalence of 35·4, 62 and 42·8%, respectively. Campylobacter jejuni (n = 55) and Campylobacter coli (n = 31) were identified by multiplex-PCR in meat, faeces and human clinical samples while Campylobacter fetus (n = 3) was exclusively detected in the latter. Fingerprinting by flaA-RFLP and PFGE revealed 68 different genotypes from the 89 isolates with a Biodiversity Simpson's index of 0·98. The 86·5% of the isolates were resistant to ciprofloxacin, 85·4% to tetracycline and 49·4% to erythromycin; only three genotypes were susceptible to the three antimicrobial drugs. Multidrug resistance was detected in the 40·7% of the isolates. CONCLUSIONS: Campylobacter remains prevalent in northern Spain with a high biodiversity degree. About 93·3% of the isolates were resistant to one or more drugs. SIGNIFICANCE AND IMPACT OF THE STUDY: Although different measures are taken to control Campylobacter, the detection of isolates resistant to the drugs used in the treatment of campylobacteriosis is still high, including different species and genotypes. This evidences the need of additional strategies against this pathogen.


Subject(s)
Anti-Bacterial Agents/pharmacology , Campylobacter Infections/veterinary , Campylobacter coli/drug effects , Campylobacter jejuni/drug effects , Poultry Diseases/microbiology , Swine Diseases/microbiology , Animals , Campylobacter Infections/epidemiology , Campylobacter Infections/microbiology , Campylobacter coli/classification , Campylobacter coli/genetics , Campylobacter coli/isolation & purification , Campylobacter jejuni/classification , Campylobacter jejuni/genetics , Chickens , Ciprofloxacin/pharmacology , Drug Resistance, Bacterial , Erythromycin/pharmacology , Meat/microbiology , Microbial Sensitivity Tests , Molecular Typing , Phylogeny , Poultry Diseases/epidemiology , Prevalence , Spain/epidemiology , Swine , Swine Diseases/epidemiology , Tetracycline/pharmacology
18.
Foodborne Pathog Dis ; 18(2): 114-122, 2021 02.
Article in English | MEDLINE | ID: mdl-32931346

ABSTRACT

Consumption of Campylobacter-contaminated food is one of the most common causes of bacterial diarrhea. A previously developed quantitative polymerase chain reaction (qPCR) utilizing the SmartCycler instrument platform for identification of Campylobacter jejuni, Campylobacter coli, and Campylobacter lari had to be modified to address the recent discontinuation of the SmartCycler system. In this study, a multiplex qPCR assay was optimized on the Applied Biosystems 7500 Fast (AB7500F) platform to continue using qPCR for the identification of three target Campylobacter spp. AB7500F qPCR efficiencies obtained by testing reference genomic DNA (gDNA) were 90.9%, 86.4%, and 94.6% for C. jejuni, C. coli, and C. lari, respectively, with all correlation coefficient values >0.99. The qPCR results exhibited 100% specificity by testing gDNA samples from 37 non-target reference strains and 86 target strains (50 C. jejuni, 27 C. coli, and 9 C. lari strains) in this study. The lowest detection level using gDNA was 4, 7, and 2 genome copies per reaction for C. jejuni, C. coli, and C. lari, respectively. With a 2-day enrichment procedure, the qPCR method correctly detected target species in a spiked food matrix (frog leg, an aquaculture product). The sensitivity in 25 g food matrix was 4 colony-forming units (CFUs) for C. jejuni, 3 CFUs for C. coli, and 2 CFUs for C. lari. The results suggest that this AB7500F-based qPCR has potential applications for the identification of C. jejuni, C. coli, and C. lari in contaminated food.


Subject(s)
Campylobacter/genetics , DNA, Bacterial/analysis , Food Analysis/methods , Food Microbiology/methods , Multiplex Polymerase Chain Reaction/methods , Animals , Campylobacter/isolation & purification , Campylobacter Infections/microbiology , Campylobacter Infections/veterinary , Campylobacter coli/genetics , Campylobacter coli/isolation & purification , Campylobacter jejuni/genetics , Campylobacter jejuni/isolation & purification , Campylobacter lari/genetics , Campylobacter lari/isolation & purification , Meat/microbiology , Sensitivity and Specificity
19.
Clin Infect Dis ; 71(8): 1896-1904, 2020 11 05.
Article in English | MEDLINE | ID: mdl-31665255

ABSTRACT

BACKGROUND: Campylobacter species are among the most common causes of enteric bacterial infections worldwide. Men who have sex with men (MSM) are at increased risk for sexually transmitted enteric infections, including globally distributed strains of multidrug-resistant Shigella species. METHODS: This was a retrospective study of MSM-associated Campylobacter in Seattle, Washington and Montréal, Québec with phenotypic antimicrobial resistance profiles and whole genome sequencing (WGS). RESULTS: We report the isolation of 2 clonal lineages of multidrug-resistant Campylobacter coli from MSM in Seattle and Montréal. WGS revealed nearly identical strains obtained from the 2 regions over a 4-year period. Comparison with the National Center for Biotechnology Information's Pathogen Detection database revealed extensive Campylobacter species clusters carrying multiple drug resistance genes that segregated with these isolates. Examination of the genetic basis of antimicrobial resistance revealed multiple macrolide resistance determinants including a novel ribosomal RNA methyltransferase situated in a CRISPR (clustered regularly interspaced short palindromic repeats) array locus in a C. coli isolate. CONCLUSIONS: As previously reported for Shigella, specific multidrug-resistant strains of Campylobacter are circulating by sexual transmission in MSM populations across diverse geographic locations, suggesting a need to incorporate sexual behavior in the investigation of clusters of foodborne pathogens revealed by WGS data.


Subject(s)
Campylobacter Infections , Campylobacter coli , Sexual and Gender Minorities , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Campylobacter Infections/drug therapy , Campylobacter Infections/epidemiology , Campylobacter coli/genetics , Drug Resistance, Bacterial , Homosexuality, Male , Humans , Macrolides , Male , Microbial Sensitivity Tests , Quebec/epidemiology , Retrospective Studies , Washington/epidemiology
20.
BMC Genomics ; 21(1): 314, 2020 Apr 19.
Article in English | MEDLINE | ID: mdl-32306949

ABSTRACT

BACKGROUND: Campylobacter jejuni and Campylobacter coli are major global causes of bacterial gastroenteritis. Whilst several individual colonisation and virulence factors have been identified, our understanding of their role in the transmission, pathogenesis and ecology of Campylobacter has been hampered by the genotypic and phenotypic diversity within C. jejuni and C. coli. Autotransporter proteins are a family of outer membrane or secreted proteins in Gram-negative bacteria such as Campylobacter, which are associated with virulence functions. In this study we have examined the distribution and predicted functionality of the previously described capC and the newly identified, related capD autotransporter gene families in Campylobacter. RESULTS: Two capC-like autotransporter families, designated capC and capD, were identified by homology searches of genomes of the genus Campylobacter. Each family contained four distinct orthologs of CapC and CapD. The distribution of these autotransporter genes was determined in 5829 C. jejuni and 1347 C. coli genomes. Autotransporter genes were found as intact, complete copies and inactive formats due to premature stop codons and frameshift mutations. Presence of inactive and intact autotransporter genes was associated with C. jejuni and C. coli multi-locus sequence types, but for capC, inactivation was independent from the length of homopolymeric tracts in the region upstream of the capC gene. Inactivation of capC or capD genes appears to represent lineage-specific gene decay of autotransporter genes. Intact capC genes were predominantly associated with the C. jejuni ST-45 and C. coli ST-828 generalist lineages. The capD3 gene was only found in the environmental C. coli Clade 3 lineage. These combined data support a scenario of inter-lineage and interspecies exchange of capC and subsets of capD autotransporters. CONCLUSIONS: In this study we have identified two novel, related autotransporter gene families in the genus Campylobacter, which are not uniformly present and exhibit lineage-specific associations and gene decay. The distribution and decay of the capC and capD genes exemplifies the erosion of species barriers between certain lineages of C. jejuni and C. coli, probably arising through co-habitation. This may have implications for the phenotypic variability of these two pathogens and provide opportunity for new, hybrid genotypes to emerge.


Subject(s)
Campylobacter coli/genetics , Campylobacter jejuni/genetics , Gene Deletion , Type V Secretion Systems/classification , Type V Secretion Systems/genetics , Virulence Factors/classification , Virulence Factors/genetics , Campylobacter coli/pathogenicity , Campylobacter jejuni/pathogenicity , Genome, Bacterial , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL