Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33.301
Filter
Add more filters

Uruguay Oncology Collection
Publication year range
1.
Cell ; 180(4): 729-748.e26, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32059776

ABSTRACT

We undertook a comprehensive proteogenomic characterization of 95 prospectively collected endometrial carcinomas, comprising 83 endometrioid and 12 serous tumors. This analysis revealed possible new consequences of perturbations to the p53 and Wnt/ß-catenin pathways, identified a potential role for circRNAs in the epithelial-mesenchymal transition, and provided new information about proteomic markers of clinical and genomic tumor subgroups, including relationships to known druggable pathways. An extensive genome-wide acetylation survey yielded insights into regulatory mechanisms linking Wnt signaling and histone acetylation. We also characterized aspects of the tumor immune landscape, including immunogenic alterations, neoantigens, common cancer/testis antigens, and the immune microenvironment, all of which can inform immunotherapy decisions. Collectively, our multi-omic analyses provide a valuable resource for researchers and clinicians, identify new molecular associations of potential mechanistic significance in the development of endometrial cancers, and suggest novel approaches for identifying potential therapeutic targets.


Subject(s)
Carcinoma/genetics , Endometrial Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Proteome/genetics , Transcriptome , Acetylation , Animals , Antigens, Neoplasm/genetics , Carcinoma/immunology , Carcinoma/pathology , Endometrial Neoplasms/immunology , Endometrial Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , Feedback, Physiological , Female , Genomic Instability , Humans , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Microsatellite Repeats , Phosphorylation , Protein Processing, Post-Translational , Proteome/metabolism , Signal Transduction
2.
Cell ; 168(4): 670-691, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28187288

ABSTRACT

Metastases account for the great majority of cancer-associated deaths, yet this complex process remains the least understood aspect of cancer biology. As the body of research concerning metastasis continues to grow at a rapid rate, the biological programs that underlie the dissemination and metastatic outgrowth of cancer cells are beginning to come into view. In this review we summarize the cellular and molecular mechanisms involved in metastasis, with a focus on carcinomas where the most is known, and we highlight the general principles of metastasis that have begun to emerge.


Subject(s)
Carcinoma/pathology , Neoplasm Metastasis/pathology , Animals , Blood Platelets/metabolism , Carcinoma/genetics , Carcinoma/metabolism , Cell Movement , Epithelial-Mesenchymal Transition , Humans , Neoplasm Invasiveness , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Neutrophils/metabolism , T-Lymphocytes/immunology , Tumor Microenvironment
3.
Cell ; 167(1): 187-202.e17, 2016 Sep 22.
Article in English | MEDLINE | ID: mdl-27662089

ABSTRACT

Inflammasome complexes function as key innate immune effectors that trigger inflammation in response to pathogen- and danger-associated signals. Here, we report that germline mutations in the inflammasome sensor NLRP1 cause two overlapping skin disorders: multiple self-healing palmoplantar carcinoma (MSPC) and familial keratosis lichenoides chronica (FKLC). We find that NLRP1 is the most prominent inflammasome sensor in human skin, and all pathogenic NLRP1 mutations are gain-of-function alleles that predispose to inflammasome activation. Mechanistically, NLRP1 mutations lead to increased self-oligomerization by disrupting the PYD and LRR domains, which are essential in maintaining NLRP1 as an inactive monomer. Primary keratinocytes from patients experience spontaneous inflammasome activation and paracrine IL-1 signaling, which is sufficient to cause skin inflammation and epidermal hyperplasia. Our findings establish a group of non-fever inflammasome disorders, uncover an unexpected auto-inhibitory function for the pyrin domain, and provide the first genetic evidence linking NLRP1 to skin inflammatory syndromes and skin cancer predisposition.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/genetics , Carcinoma/genetics , Genetic Predisposition to Disease , Inflammasomes/metabolism , Keratosis/genetics , Skin Neoplasms/genetics , Adaptor Proteins, Signal Transducing/chemistry , Amino Acid Sequence , Apoptosis Regulatory Proteins/chemistry , Carcinoma/pathology , Chromosomes, Human, Pair 17/genetics , Epidermis/pathology , Germ-Line Mutation , Humans , Hyperplasia/genetics , Hyperplasia/pathology , Inflammasomes/genetics , Interleukin-1/metabolism , Keratosis/pathology , NLR Proteins , Paracrine Communication , Pedigree , Protein Domains , Pyrin/chemistry , Signal Transduction , Skin Neoplasms/pathology , Syndrome
4.
Nat Immunol ; 19(10): 1112-1125, 2018 10.
Article in English | MEDLINE | ID: mdl-30224822

ABSTRACT

Activation-induced cell death (AICD) of T lymphocytes can be exploited by cancers to escape immunological destruction. We demonstrated that tumor-specific cytotoxic T lymphocytes (CTLs) and type 1 helper T (TH1) cells, rather than type 2 helper T cells and regulatory T cells, were sensitive to AICD in breast and lung cancer microenvironments. NKILA, an NF-κB-interacting long noncoding RNA (lncRNA), regulates T cell sensitivity to AICD by inhibiting NF-κB activity. Mechanistically, calcium influx in stimulated T cells via T cell-receptor signaling activates calmodulin, thereby removing deacetylase from the NKILA promoter and enhancing STAT1-mediated transcription. Administering CTLs with NKILA knockdown effectively inhibited growth of breast cancer patient-derived xenografts in mice by increasing CTL infiltration. Clinically, NKILA overexpression in tumor-specific CTLs and TH1 cells correlated with their apoptosis and shorter patient survival. Our findings underscore the importance of lncRNAs in determining tumor-mediated T cell AICD and suggest that engineering lncRNAs in adoptively transferred T cells might provide a novel antitumor immunotherapy.


Subject(s)
Carcinoma/immunology , RNA, Long Noncoding/immunology , T-Lymphocytes, Cytotoxic/immunology , Th1 Cells/immunology , Tumor Escape/genetics , Animals , Apoptosis/immunology , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Carcinoma/genetics , Carcinoma/pathology , Female , Heterografts , Humans , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Male , Mice, Inbred NOD , Mice, SCID , RNA, Long Noncoding/genetics
5.
Cell ; 159(3): 676-90, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25417114

ABSTRACT

Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer. Here, we describe the genomic landscape of 496 PTCs. We observed a low frequency of somatic alterations (relative to other carcinomas) and extended the set of known PTC driver alterations to include EIF1AX, PPM1D, and CHEK2 and diverse gene fusions. These discoveries reduced the fraction of PTC cases with unknown oncogenic driver from 25% to 3.5%. Combined analyses of genomic variants, gene expression, and methylation demonstrated that different driver groups lead to different pathologies with distinct signaling and differentiation characteristics. Similarly, we identified distinct molecular subgroups of BRAF-mutant tumors, and multidimensional analyses highlighted a potential involvement of oncomiRs in less-differentiated subgroups. Our results propose a reclassification of thyroid cancers into molecular subtypes that better reflect their underlying signaling and differentiation properties, which has the potential to improve their pathological classification and better inform the management of the disease.


Subject(s)
Carcinoma/genetics , Mutation , Thyroid Neoplasms/genetics , Carcinoma/pathology , Carcinoma, Papillary , DNA Copy Number Variations , Gene Fusion , Humans , Thyroid Cancer, Papillary , Thyroid Gland/cytology , Thyroid Gland/metabolism , Thyroid Neoplasms/pathology
6.
Cell ; 150(1): 165-78, 2012 Jul 06.
Article in English | MEDLINE | ID: mdl-22770218

ABSTRACT

Metastasis and chemoresistance in cancer are linked phenomena, but the molecular basis for this link is unknown. We uncovered a network of paracrine signals between carcinoma, myeloid, and endothelial cells that drives both processes in breast cancer. Cancer cells that overexpress CXCL1 and 2 by transcriptional hyperactivation or 4q21 amplification are primed for survival in metastatic sites. CXCL1/2 attract CD11b(+)Gr1(+) myeloid cells into the tumor, which produce chemokines including S100A8/9 that enhance cancer cell survival. Although chemotherapeutic agents kill cancer cells, these treatments trigger a parallel stromal reaction leading to TNF-α production by endothelial and other stromal cells. TNF-α via NF-kB heightens the CXCL1/2 expression in cancer cells, thus amplifying the CXCL1/2-S100A8/9 loop and causing chemoresistance. CXCR2 blockers break this cycle, augmenting the efficacy of chemotherapy against breast tumors and particularly against metastasis. This network of endothelial-carcinoma-myeloid signaling interactions provides a mechanism linking chemoresistance and metastasis, with opportunities for intervention.


Subject(s)
Breast Neoplasms/pathology , Carcinoma/pathology , Chemokine CXCL1/metabolism , Drug Resistance, Neoplasm , Neoplasm Metastasis , Paracrine Communication , Animals , Breast Neoplasms/metabolism , Calgranulin A/metabolism , Calgranulin B/metabolism , Carcinoma/metabolism , Chemokine CXCL1/genetics , Disease Models, Animal , Endothelial Cells/metabolism , Female , Gene Knockdown Techniques , Humans , Lung Neoplasms/secondary , Lymph Nodes/pathology , Lymphatic Metastasis , Mice , Mice, Inbred C57BL , Myeloid Cells/metabolism , Neoplasm Transplantation , Transplantation, Heterologous
7.
Cancer Metastasis Rev ; 43(3): 977-980, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38466528

ABSTRACT

We identified a progenitor cell population highly enriched in samples from invasive and chemo-resistant carcinomas, characterized by a well-defined multigene signature including APOD, DCN, and LUM. This cell population has previously been labeled as consisting of inflammatory cancer-associated fibroblasts (iCAFs). The same signature characterizes naturally occurring fibro-adipogenic progenitors (FAPs) as well as stromal cells abundant in normal adipose tissue. Our analysis of human gene expression databases provides evidence that adipose stromal cells (ASCs) are recruited by tumors and undergo differentiation into CAFs during cancer progression to invasive and chemotherapy-resistant stages.


Subject(s)
Adipogenesis , Humans , Animals , Carcinoma/pathology , Carcinoma/genetics , Carcinoma/metabolism , Stem Cells/pathology , Stem Cells/metabolism , Stem Cells/cytology , Cancer-Associated Fibroblasts/pathology , Cancer-Associated Fibroblasts/metabolism , Adipose Tissue/cytology , Adipose Tissue/pathology , Neoplasms/pathology , Neoplasms/genetics
8.
Nature ; 574(7779): 532-537, 2019 10.
Article in English | MEDLINE | ID: mdl-31645730

ABSTRACT

The colorectal adenoma-carcinoma sequence has provided a paradigmatic framework for understanding the successive somatic genetic changes and consequent clonal expansions that lead to cancer1. However, our understanding of the earliest phases of colorectal neoplastic changes-which may occur in morphologically normal tissue-is comparatively limited, as for most cancer types. Here we use whole-genome sequencing to analyse hundreds of normal crypts from 42 individuals. Signatures of multiple mutational processes were revealed; some of these were ubiquitous and continuous, whereas others were only found in some individuals, in some crypts or during certain periods of life. Probable driver mutations were present in around 1% of normal colorectal crypts in middle-aged individuals, indicating that adenomas and carcinomas are rare outcomes of a pervasive process of neoplastic change across morphologically normal colorectal epithelium. Colorectal cancers exhibit substantially increased mutational burdens relative to normal cells. Sequencing normal colorectal cells provides quantitative insights into the genomic and clonal evolution of cancer.


Subject(s)
Colon/cytology , Epithelial Cells/cytology , Epithelial Cells/metabolism , Mutation , Prodromal Symptoms , Rectum/cytology , Adenoma/genetics , Adenoma/pathology , Aged , Axin Protein/genetics , Carcinoma/genetics , Carcinoma/pathology , Cell Transformation, Neoplastic , Clone Cells/cytology , Clone Cells/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , DNA Copy Number Variations , DNA Mutational Analysis , Female , Humans , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Male , Middle Aged , Stem Cells/cytology , Stem Cells/metabolism
9.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35046049

ABSTRACT

Cancer immunotherapy frequently fails because most carcinomas have few T cells, suggesting that cancers can suppress T cell infiltration. Here, we show that cancer cells of human pancreatic ductal adenocarcinoma (PDA), colorectal cancer, and breast cancer are coated with transglutaminase-2 (TGM2)-dependent covalent CXCL12-keratin-19 (KRT19) heterodimers that are organized as filamentous networks. Since a dimeric form of CXCL12 suppresses the motility of human T cells, we determined whether this polymeric CXCL12-KRT19 coating mediated T cell exclusion. Mouse tumors containing control PDA cells exhibited the CXCL12-KRT19 coating, excluded T cells, and did not respond to treatment with anti-PD-1 antibody. Tumors containing PDA cells not expressing either KRT19 or TGM2 lacked the CXCL12-KRT19 coating, were infiltrated with activated CD8+ T cells, and growth was suppressed with anti-PD-1 antibody treatment. Thus, carcinomas assemble a CXCL12-KRT19 coating to evade cancer immune attack.


Subject(s)
Carcinoma/etiology , Carcinoma/metabolism , Chemokine CXCL12/metabolism , Cytotoxicity, Immunologic , Keratin-19/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Breast Neoplasms , Carcinoma/pathology , Cell Line, Tumor , Chemokine CXCL12/chemistry , Female , Humans , Keratin-19/chemistry , Male , Mice , Microsatellite Repeats , Pancreatic Neoplasms , Protein Binding , Protein Multimerization , Pancreatic Neoplasms
10.
Genes Dev ; 31(15): 1573-1587, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28887414

ABSTRACT

Epithelial cancers (carcinoma) account for 80%-90% of all cancers. The development of carcinoma is associated with disrupted epithelial organization and solid ductal structures. The mechanisms underlying the morphological development of carcinoma are poorly understood, but it is thought that loss of cell polarity is an early event. Here we report the characterization of the development of human breast lesions leading to carcinoma. We identified a unique mechanism that generates solid ducts in carcinoma through progressive loss of polarity and collapse of the luminal architecture. This program initiates with asymmetric divisions of polarized cells that generate a stratified epithelium containing both polarized and depolarized cells. Stratified regions form cords that penetrate into the lumen, subdividing it into polarized secondary lumina. The secondary lumina then collapse with a concomitant decrease in RhoA and myosin II activity at the apical membrane and ultimately lose apical-basal polarity. By restoring RhoA activity in mice, ducts maintained lumen and cell polarity. Notably, disrupted tissue architecture through luminal collapse was reversible, and ducts with a lumen were re-established after oncogene suppression in vivo. This reveals a novel and common mechanism that contributes to carcinoma development by progressively disrupting cell and tissue organization.


Subject(s)
Breast Neoplasms/pathology , Carcinogenesis , Carcinoma/pathology , Cell Polarity/physiology , Animals , Cell Membrane , Cells, Cultured , Female , Fluorescent Antibody Technique , Humans , Mice , Microscopy, Confocal , Myosin Type II/metabolism , Primary Cell Culture , rhoA GTP-Binding Protein/metabolism
11.
Genes Chromosomes Cancer ; 63(9): e23267, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39258844

ABSTRACT

AIMS: Identifying molecular alterations in the adenoma and carcinoma components within the same tumor would greatly contribute to understanding the neoplastic progression of early colorectal cancer. METHODS AND RESULTS: We examined somatic copy number alterations (SCNAs) and mutations involved in the adenoma and carcinoma components obtained from the same tumor in 46 cases of microsatellite-stable carcinoma in adenoma, using a genome-wide SNP array and gene mutation panel. In addition, we also performed hierarchical clustering to determine the SCNA frequencies in the tumors, resulting in stratification of the samples into two subgroups according to SCNA frequency. Subgroup 1 was characterized by multiple SCNAs and carcinoma components exclusively, while Subgroup 2 was characterized by a low frequency of SCNAs and both the adenoma and carcinoma components. The numbers of total genes and genes with gains were higher in the carcinoma than adenoma components. The three most frequent gains in both components were located at 1p36.33-1q44, 2p25.3-2q37.3, and 3p26.3-3q29. However, no candidate genes mapped to these regions. APC and KRAS mutations were common in both components, whereas the frequency of TP53 mutations was statistically higher in the carcinoma than adenoma component. However, TP53 mutations were not correlated with SCNA frequency. CONCLUSIONS: We suggest that considerable SCNAs and TP53 mutations are required for progression from adenoma to carcinoma within the same intramucosal neoplastic lesion.


Subject(s)
Adenoma , Colorectal Neoplasms , DNA Copy Number Variations , Mutation , Humans , Adenoma/genetics , Adenoma/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Female , Male , Middle Aged , Aged , Polymorphism, Single Nucleotide , Carcinoma/genetics , Carcinoma/pathology , Adult , Gene Dosage , Tumor Suppressor Protein p53/genetics
12.
Am J Physiol Cell Physiol ; 327(2): C380-C386, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38953842

ABSTRACT

Cell surface receptors play crucial roles in cellular responses to extracellular ligands, helping to modulate the functions of a cell based on information coming from outside the cell. Syndecan refers to a family of cell adhesion receptors that regulate both extracellular and cytosolic events. Alteration of syndecan expression disrupts regulatory mechanisms in a cell type-specific fashion, often leading to serious diseases, notably cancer. Given the multifaceted functions and distinct tissue distributions of syndecan, it will be important to unravel the gene-level intricacies of syndecan expression and thereby further understand its involvement in various carcinogenic processes. Although accumulating evidence indicates that the protein expression patterns of syndecan family members are significantly altered in cancer cells, the underlying gene-level mechanisms remain largely unknown. This review endeavors to explore syndecan gene expression levels across different cancer types by scrutinizing extensive cancer genome datasets using tools such as cBioPortal. Our analysis unveils that somatic mutations in SDC genes are rare occurrences, whereas copy number alterations are frequently observed across diverse cancers, particularly in SDC2 and SDC4. Notably, amplifications of SDC2 and SDC4 correlate with heightened metastatic potential and dismal prognosis. This underscores the recurrent nature of SDC2 and SDC4 amplifications during carcinogenesis and sheds light on their role in promoting cancer activity through augmented protein expression. The identification of these amplifications not only enriches our understanding of carcinogenic mechanisms but also hints at the potential therapeutic avenue of targeting SDC2 and SDC4 to curb cancer cell proliferation and metastasis.


Subject(s)
Gene Amplification , Humans , Gene Expression Regulation, Neoplastic , Neoplasm Metastasis , Animals , Syndecan-4/genetics , Syndecan-4/metabolism , Syndecans/genetics , Syndecans/metabolism , Carcinoma/genetics , Carcinoma/pathology , Carcinoma/metabolism , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
13.
Lab Invest ; 104(8): 102104, 2024 08.
Article in English | MEDLINE | ID: mdl-38945481

ABSTRACT

The glycosaminoglycan hyaluronan (HA) plays an important role in tumor progression. However, its biological and clinical significance in papillary thyroid cancer (PTC) remains unknown. Immunohistochemistry was performed to examine HA expression in tissues from PTC patients. Two PTC cell lines were treated with HA synthesized inhibitor against HA production to assess its function. Serum HA levels from 107 PTC patients, 30 Hashimoto thyroiditis patients, and 45 normal controls (NC) were measured by chemiluminescence immunoassay. HA levels in fine needle aspiration (FNA) washouts obtained from thyroid nodules and lymph nodes (LNs) were measured by chemiluminescence immunoassay. Area under the curve (AUC) was computed to evaluate HA's clinical value. HA was highly expressed in PTC. Reducing HA production significantly inhibited PTC cell proliferation and invasion. Importantly, serum HA levels in PTC were significantly higher than those in NCs and Hashimoto thyroiditis and allowed distinguishing of thyroid cancers from NCs with high accuracy (AUC = 0.782). Moreover, elevated serum HA levels in PTC correlate with LN metastasis. HA levels in FNA washouts from PTC patients were significantly higher than those in benign controls, with a high AUC value (0.8644) for distinguishing PTC from benign controls. Furthermore, HA levels in FNA washouts from metastatic LN were significantly higher than those in nonmetastatic LN, with a high AUC value (0.8007) for distinguishing metastatic LNs from nonmetastatic LNs. HA levels in serum and FNA washout exhibited a potential significance for PTC diagnosis and an indicator for LN metastasis in patients with PTC.


Subject(s)
Carcinoma, Papillary , Hyaluronic Acid , Lymphatic Metastasis , Thyroid Cancer, Papillary , Thyroid Neoplasms , Humans , Hyaluronic Acid/blood , Hyaluronic Acid/metabolism , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/diagnosis , Male , Female , Middle Aged , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/metabolism , Thyroid Cancer, Papillary/diagnosis , Adult , Carcinoma, Papillary/metabolism , Carcinoma, Papillary/diagnosis , Cell Line, Tumor , Carcinoma/metabolism , Carcinoma/diagnosis , Carcinoma/pathology , Lymph Nodes/pathology , Lymph Nodes/metabolism , Hashimoto Disease/metabolism , Hashimoto Disease/blood , Hashimoto Disease/pathology , Hashimoto Disease/diagnosis , Biopsy, Fine-Needle , Aged , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/blood , Cell Proliferation
14.
Int J Cancer ; 154(8): 1492-1503, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-37971144

ABSTRACT

Salivary glands have essential roles in maintaining oral health, mastication, taste and speech, by secreting saliva. Salivary glands are composed of several types of cells, and each cell type is predicted to be involved in the carcinogenesis of different types of cancers including adenoid cystic carcinoma (ACC), acinic cell carcinoma (AciCC), salivary duct carcinoma (SDC), myoepithelial carcinoma (MECA) and other histology. In our study, we performed single nucleus RNA-seq on three human salivary gland samples to clarify the gene expression profile of each complex cellular component of the salivary glands and related these expression patterns to expression found in salivary gland cancers (SGC) to infer cell of origin. By single nucleus RNA-seq, salivary gland cells were stratified into four clusters: acinar cells, ductal cells 1, ductal cells 2 and myoepithelial cells/stromal cells. The localization of each cell group was verified by IHC of each cluster marker gene, and one group of ductal cells was found to represent intercalated ductal cells labeled with HES1. Furthermore, in comparison with SGC RNA-seq data, acinar cell markers were upregulated in AciCC, but downregulated in ACC and ductal cell markers were upregulated in SDC but downregulated in MECA, suggesting that markers of origin are highly expressed in some SGC. Cell type expressions in specific SGC histology are similar to those found in normal salivary gland populations, indicating a potential etiologic relationship.


Subject(s)
Carcinoma, Acinar Cell , Carcinoma, Adenoid Cystic , Carcinoma , Salivary Gland Neoplasms , Humans , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Salivary Glands/pathology , Salivary Gland Neoplasms/genetics , Salivary Gland Neoplasms/pathology , Carcinoma, Adenoid Cystic/pathology , Carcinoma/pathology , Carcinoma, Acinar Cell/metabolism , RNA/metabolism
15.
Gastroenterology ; 164(5): 841-846, 2023 04.
Article in English | MEDLINE | ID: mdl-36702361

ABSTRACT

Using colorectal cancer as a model, we review some of the insights into cancer evolution afforded by cancer sequencing. These include nonlinear and neutral evolution; polyclonality of driver mutations and parallel evolution in adenomas, although these are rare in carcinomas; the ability of mutational processes to shape evolution against the force of selection; the presence of rare driver genes that function in the same signaling pathways as the longstanding canonical drivers; and the existence of selective windows that constrain the functional effects of cancer driver mutations within limits. Many of these nascent evolutionary paradigms are potentially important for treating colorectal cancers as well as understanding their development.


Subject(s)
Carcinoma , Colorectal Neoplasms , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Carcinogenesis/genetics , Cell Transformation, Neoplastic/genetics , Mutation , Carcinoma/pathology
16.
Mod Pathol ; 37(1): 100371, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38015043

ABSTRACT

B7-H4 (VTCN1), a member of the B7 family, is overexpressed in several types of cancer. Here we investigated the pattern of expression of B7-H4 in salivary gland carcinomas (SGC) and assessed its potential as a prognostic marker and therapeutic target. Immunohistochemistry (IHC) analyses were performed in a cohort of 340 patient tumors, composed of 124 adenoid cystic carcinomas (ACC), 107 salivary duct carcinomas (SDC), 64 acinic cell carcinomas, 36 mucoepidermoid carcinomas (MEC), 9 secretory carcinomas (SC), as well as 20 normal salivary glands (controls). B7-H4 expression was scored and categorized into negative (<5% expression of any intensity), low (5%-70% expression of any intensity or >70% with weak intensity), or high (>70% moderate or strong diffuse intensity). The associations between B7-H4 expression and clinicopathologic characteristics, as well as overall survival, were assessed. Among all tumors, B7-H4 expression was more prevalent in ACC (94%) compared with those of SC (67%), MEC (44%), SDC (32%), and acinic cell carcinomas (0%). Normal salivary gland tissue did not express B7-H4. High expression of B7-H4 was found exclusively in ACC (27%), SDC (11%), and MEC (8%). In SDC, B7-H4 expression was associated with female gender (P = .002) and lack of androgen receptor expression (P = .012). In ACC, B7-H4 expression was significantly associated with solid histology (P < .0001) and minor salivary gland primary (P = .02). High B7-H4 expression was associated with a poorer prognosis in ACC, regardless of clinical stage and histologic subtype. B7-H4 expression was not prognostic in the non-ACC SGC evaluated. Our comparative study revealed distinct patterns of B7-H4 expression according to SGC histology, which has potential therapeutic implications. B7-H4 expression was particularly high in solid ACC and was an independent prognostic marker in this disease but not in the other SGC assessed.


Subject(s)
Breast Neoplasms , Carcinoma, Acinar Cell , Carcinoma, Adenoid Cystic , Carcinoma, Mucoepidermoid , Carcinoma , Salivary Gland Neoplasms , Humans , Female , Carcinoma, Adenoid Cystic/pathology , Prognosis , Carcinoma, Acinar Cell/pathology , Salivary Gland Neoplasms/pathology , Carcinoma, Mucoepidermoid/pathology , Carcinoma/pathology , Salivary Glands/chemistry , Salivary Glands/metabolism , Salivary Glands/pathology , Biomarkers, Tumor/analysis
17.
Mod Pathol ; 37(1): 100374, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37925057

ABSTRACT

Dedifferentiated and undifferentiated ovarian carcinomas (DDOC/UDOC) are rare neoplasms defined by the presence of an undifferentiated carcinoma. In this study, we detailed the clinical, pathological, immunohistochemical, and molecular features of a series of DDOC/UDOC. We collected a multi-institutional cohort of 23 DDOC/UDOC and performed immunohistochemistry for core switch/sucrose nonfermentable (SWI/SNF) complex proteins (ARID1A, ARID1B, SMARCA4, and SMARCB1), mismatch repair (MMR) proteins, and p53. Array-based genome-wide DNA methylation and copy number variation analyses were performed on a subset of cases with comparison made to a previously reported cohort of undifferentiated endometrial carcinoma (UDEC), small cell carcinoma of the ovary, hypercalcemic type (SCCOHT), and tubo-ovarian high-grade serous carcinoma (HGSC). The age of all 23 patients with DDOC/UDOC ranged between 22 and 71 years (with an average age of 50 years), and a majority of them presented with extraovarian disease (16/23). Clinical follow-up was available for 19 patients. Except for 2 patients, the remaining 17 patients died from disease, with rapid disease progression resulting in mortality within a year in stage II-IV settings (median disease-specific survival of 3 months). Eighteen of 22 cases with interpretable immunohistochemistry results showed loss of expression of core SWI/SNF protein(s) that are expected to result in SWI/SNF complex inactivation as 10 exhibited coloss of ARID1A and ARID1B, 7 loss of SMARCA4, and 1 loss of SMARCB1. Six of 23 cases were MMR-deficient. Two of 20 cases exhibited mutation-type p53 immunoreactivity. Methylation profiles showed coclustering of DDOC/UDOC with UDEC, which collectively were distinct from SCCOHT and HGSC. However, DDOC/UDOC showed an intermediate degree of copy number variation, which was slightly greater, compared with SCCOHT but much less compared with HGSC. Overall, DDOC/UDOC, like its endometrial counterpart, is highly aggressive and is characterized by frequent inactivation of core SWI/SNF complex proteins and MMR deficiency. Its molecular profile overlaps with UDEC while being distinct from SCCOHT and HGSC.


Subject(s)
Brain Neoplasms , Carcinoma, Small Cell , Carcinoma , Colorectal Neoplasms , Endometrial Neoplasms , Neoplastic Syndromes, Hereditary , Ovarian Neoplasms , Female , Humans , Middle Aged , Young Adult , Adult , Aged , Tumor Suppressor Protein p53/genetics , DNA Copy Number Variations , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Carcinoma/pathology , Carcinoma, Ovarian Epithelial , Endometrial Neoplasms/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , Nuclear Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
18.
Ann Surg Oncol ; 31(3): 2069-2077, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37996643

ABSTRACT

BACKGROUND OR PURPOSE: Carcinomatosis, a distinct pattern of metastatic cancer in the peritoneal cavity, poses challenges for treatment and has limited therapeutic options. Understanding the immune environment of peritoneal surface malignancies is crucial for developing effective immunotherapeutic approaches. This study characterizes soluble immune mediators in the peritoneal fluid of patients with and without carcinomatosis to identify targets for novel treatment strategies. PATIENTS AND METHODS: Serum and peritoneal fluid samples were collected from surgical patients, and a multianalyte analysis was performed using the Luminex platform. Patient characteristics, tumor sites, and sample collection details were recorded. Soluble immune mediator levels were measured and compared between peritoneal fluid and serum samples and among clinical subgroups. Statistical analysis was conducted to assess differences in analyte concentrations and correlations between samples. RESULTS: There were 39 patients included in the study, with varying surgical indications. Significant differences were observed in soluble immune mediator levels between peritoneal fluid and serum, with peritoneal fluid exhibiting lower concentrations. Carcinomatosis was associated with elevated levels of proinflammatory mediators, including IL-6 and IL-8, while adaptive immune response markers were low in peritoneal fluid. CONCLUSIONS: The peritoneal immune microenvironment in carcinomatosis favors innate immunity, presenting a challenging environment for effective antitumor response. High levels of proinflammatory mediators suggest potential targets for intervention, such as the IL-6 axis, FGF2, IL-8, and CCL2; these could be explored as potential mitigators of malignant ascites and enhance anti-tumor immune responses. These findings provide valuable insights for developing immunotherapy strategies and improving outcomes in patients with peritoneal carcinomatosis.


Subject(s)
Carcinoma , Peritoneal Neoplasms , Humans , Peritoneal Neoplasms/secondary , Interleukin-8 , Interleukin-6 , Ascitic Fluid , Carcinoma/pathology , Immunotherapy , Tumor Microenvironment
19.
Histopathology ; 84(1): 86-101, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37873676

ABSTRACT

NUT carcinoma and thoracic SMARCA4-deficient undifferentiated tumour are unique entities in the 5th edition of the World Health Organisation (WHO) Classification of Thoracic Tumours, whose definitions include molecular genetic abnormalities. These aggressive tumours require rapid work-ups on biopsies, but a broad list of differential diagnoses poses challenges for practising pathologists. This review provides an update on their key clinicopathological and molecular characteristics, as well as controversies regarding tumour classification and diagnostic strategy. Phenotypical assessment plays a substantial role in diagnosis because recurrent and predictable clinicopathological findings exist, including robust immunohistochemical phenotypes. Accurate diagnosis is crucial for appropriate management and a clearer understanding of the disease.


Subject(s)
Carcinoma , Thoracic Neoplasms , Humans , Transcription Factors/genetics , Nuclear Proteins/genetics , DNA Helicases/genetics , Biomarkers, Tumor , Carcinoma/diagnosis , Carcinoma/pathology , Thoracic Neoplasms/diagnosis , Thoracic Neoplasms/genetics , Thoracic Neoplasms/pathology
20.
Histopathology ; 84(1): 102-123, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37694812

ABSTRACT

Primary pulmonary salivary gland-type tumours are rare neoplasms that are thought to arise from seromucinous glands that are located in the submucosa of large airways. These neoplasms have clinical and pathologic features that are distinct from other pulmonary neoplasms. The majority of primary pulmonary salivary gland-type tumours are malignant, with the most common entities being mucoepidermoid carcinoma, adenoid cystic carcinoma, and epithelial-myoepithelial carcinoma. Less commonly seen are myoepithelial carcinoma, hyalinizing clear cell carcinoma, acinic cell carcinoma, secretory carcinoma, salivary duct carcinoma, intraductal carcinoma, and polymorphous adenocarcinoma. Benign salivary gland-type tumours of the lung include pleomorphic adenoma and sialadenoma papilliferum. Morphologic, immunophenotypic, and molecular features of these neoplasms are largely similar to salivary gland tumours elsewhere, and therefore the exclusion of metastatic disease requires clinical and radiologic correlation. However, the differential diagnostic considerations are different in the lung. The distinction of salivary gland-type tumours from their histologic mimics is important for both prognostication and treatment decisions. Overall, salivary gland type-tumours tend to have a more favourable outcome than other pulmonary carcinomas, although high-grade variants exist for many of these tumour types. Recent advances in our understanding of the spectrum of salivary gland-type tumours reported in the lung and their diversity of molecular and immunohistochemical features have helped to refine the classification of these tumours and have highlighted a few differences between salivary gland-type tumours of the lung and those primary to other sites.


Subject(s)
Adenoma, Pleomorphic , Carcinoma, Acinar Cell , Carcinoma, Adenoid Cystic , Carcinoma, Mucoepidermoid , Carcinoma , Lung Neoplasms , Salivary Gland Neoplasms , Humans , Salivary Gland Neoplasms/pathology , Carcinoma, Adenoid Cystic/pathology , Adenoma, Pleomorphic/pathology , Carcinoma/pathology , Carcinoma, Mucoepidermoid/diagnosis , Carcinoma, Mucoepidermoid/pathology , Carcinoma, Acinar Cell/pathology , Salivary Glands/pathology , Lung/pathology , Lung Neoplasms/pathology , Biomarkers, Tumor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL