Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
Add more filters

Publication year range
1.
Plant Biotechnol J ; 22(6): 1703-1723, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38319003

ABSTRACT

It is well known that calcium, ethylene and abscisic acid (ABA) can regulate fruit ripening, however, their interaction in the regulation of fruit ripening has not yet been fully clarified. The present study found that the expression of the papaya calcium sensor CpCML15 was strongly linked to fruit ripening. CpCML15 could bind Ca2+ and served as a true calcium sensor. CpCML15 interacted with CpPP2C46 and CpPP2C65, the candidate components of the ABA signalling pathways. CpPP2C46/65 expression was also related to fruit ripening and regulated by ethylene. CpCML15 was located in the nucleus and CpPP2C46/65 were located in both the nucleus and membrane. The interaction between CpCML15 and CpPP2C46/65 was calcium dependent and further repressed the activity of CpPP2C46/65 in vitro. The transient overexpression of CpCML15 and CpPP2C46/65 in papaya promoted fruit ripening and gene expression related to ripening. The reduced expression of CpCML15 and CpPP2C46/65 by virus-induced gene silencing delayed fruit colouring and softening and repressed the expression of genes related to ethylene signalling and softening. Moreover, ectopic overexpression of CpCML15 in tomato fruit also promoted fruit softening and ripening by increasing ethylene production and enhancing gene expression related to ripening. Additionally, CpPP2C46 interacted with CpABI5, and CpPP2C65 interacted with CpERF003-like, two transcriptional factors in ABA and ethylene signalling pathways that are closely related to fruit ripening. Taken together, our results showed that CpCML15 and CpPP2Cs positively regulated fruit ripening, and their interaction integrated the cross-talk of calcium, ABA and ethylene signals in fruit ripening through the CpCML15-CpPP2Cs-CpABI5/CpERF003-like pathway.


Subject(s)
Abscisic Acid , Calcium , Carica , Ethylenes , Fruit , Gene Expression Regulation, Plant , Plant Proteins , Signal Transduction , Abscisic Acid/metabolism , Ethylenes/metabolism , Carica/metabolism , Carica/genetics , Carica/growth & development , Calcium/metabolism , Fruit/metabolism , Fruit/genetics , Fruit/growth & development , Plant Proteins/metabolism , Plant Proteins/genetics , Calmodulin/metabolism , Calmodulin/genetics , Plant Growth Regulators/metabolism
2.
Plant Mol Biol ; 110(1-2): 107-130, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35725838

ABSTRACT

KEY MESSAGE: The interaction between exogenous IBA with sucrose, light and ventilation, alters the expression of ARFs and Aux/IAA genes in in vitro grown Carica papaya plantlets. In vitro papaya plantlets normally show low rooting percentages during their ex vitro establishment that eventually leads to high mortality when transferred to field conditions. Indole-3-butyric acid (IBA) auxin is normally added to culture medium, to achieve adventitious root formation on in vitro papaya plantlets. However, the molecular mechanisms occurring when IBA is added to the medium under varying external conditions of sugar, light and ventilation have not been studied. Auxin response factors (ARF) are auxin-transcription activators, while auxin/indole-3-acetic acid (Aux/IAA) are auxin-transcription repressors, that modulate key components involved in auxin signaling in plants. In the present study, we identified 12 CpARF and 18 CpAux/IAA sequences in the papaya genome. The cis-acting regulatory elements associated to those CpARFs and CpAux/IAA gene families were associated with stress and hormone responses. Furthermore, a comprehensive characterization and expression profiling analysis was performed on 6 genes involved in rhizogenesis formation (CpARF5, 6, 7 and CpAux/IAA11, 13, 14) from in vitro papaya plantlets exposed to different rhizogenesis-inducing treatments. In general, intact in vitro plantlets were not able to produce adventitious roots, when IBA (2 mg L-1) was added to the culture medium; they became capable to produce roots and increased their ex-vitro survival. However, the best rooting and survival % were obtained when IBA was added in combination with adequate sucrose supply (20 g L-1), increased light intensity (750 µmol photon m-2 s-1) and ventilation systems within the culture vessel. Interestingly, it was precisely under those conditions that promoted high rooting and survival %, where the highest expression of CpARFs, but the lowest expression of CpAux/IAAs occurred. One interesting case occurred when in vitro plantlets were exposed to high levels of light in the absence of added IBA, as high rooting and survival occurred, even though no exogenous auxin was added. In fact, plantlets from this treatment showed the right expression profile between auxin activators/repressors genes, in both stem base and root tissues.


Subject(s)
Carica , Carica/genetics , Carica/metabolism , Indoleacetic Acids/metabolism , Indoleacetic Acids/pharmacology , Indoles/metabolism , Indoles/pharmacology , Sucrose/pharmacology , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Hemoglobin ; 46(4): 260-264, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36073153

ABSTRACT

Fermented papaya preparation (FPP) is the source of antioxidants that may help in reducing the complications associated with oxidative stress and may improve the quality of life in sickle cell disease patients. In this study, we assessed the in vitro effect of FPP on sickled red blood cells (RBCs) using oxidative stress markers and observed that FPP has the potential to reduce the oxidative stress. Scanning electron microscopy (SEM) and eosin 5' malaemide (E5'M) dye test showed that FPP protects red cell morphology against the oxidative stress. Liquid chromatography mass spectrometry (LCMS) analysis of FPP suggests the presence of essential amino acids, vitamin D3, and its derivatives. Fermented papaya preparation can be of benefit either in reducing oxidative stress parameters or in preventing pathophysiological events in the sickle cell disease patients.


Subject(s)
Anemia, Sickle Cell , Carica , Humans , Carica/chemistry , Carica/metabolism , Quality of Life , Fermentation , Oxidative Stress , Antioxidants/pharmacology , Antioxidants/therapeutic use , Anemia, Sickle Cell/drug therapy
4.
Molecules ; 27(9)2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35566112

ABSTRACT

Thrombocytopenia is a clinical manifestation that refers to the low platelet count, i.e., <150 × 103/µL, of blood, resulting in imbalanced hemostasis, which leads to several fatal complications. The causative factors vary greatly, but, as a consequence, they interfere with platelet production and promote destruction, leading to death. Carica papaya leaf has unique therapeutic and medicinal characteristics against thrombocytopenia, and this is supported by scientific studies. Secondary metabolites and minerals in the leaf, such as carpaine and quercetin, promote platelet production, inhibit platelet destruction, and maintain platelet membrane through gene expression activity and the ceasing of viral proteases, respectively. This review explores the scientific studies that support the role of papaya leaf in the form of juice, extract, or powder against thrombocytopenia through animal modeling and clinical trials. Phytochemical profiles of C. papaya leaf revealed the presence of flavonoids, alkaloids, phenols, cardiac glycosides, tannins, terpenes, and saponins, which impart therapeutic potential to the leaf. The therapeutic benefits of the leaf include immunomodulatory, antiviral, antidiabetic, anticancer, antimalarial, antiangiogenic, antibacterial, and antioxidant activities. Several conducted scientific research studies have proved the efficacy of C. papaya leaf against thrombocytopenia, expanding the implication of natural sources to eradicate numerous ailments.


Subject(s)
Carica , Thrombocytopenia , Animals , Carica/metabolism , Phytochemicals/metabolism , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Plant Extracts/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Leaves/metabolism , Thrombocytopenia/drug therapy
5.
Plant J ; 103(4): 1318-1337, 2020 08.
Article in English | MEDLINE | ID: mdl-32391615

ABSTRACT

Papaya (Carica papaya L.) is a commercially important fruit crop. Various phytohormones, particularly ethylene and auxin, control papaya fruit ripening. However, little is known about the interaction between auxin and ethylene signaling during the fruit ripening process. In the present study, we determined that the interaction between the CpARF2 and CpEIL1 mediates the interaction between auxin and ethylene signaling to regulate fruit ripening in papaya. We identified the ethylene-induced auxin response factor CpARF2 and demonstrated that it is essential for fruit ripening in papaya. CpARF2 interacts with an important ethylene signal transcription factor CpEIL1, thus increasing the CpEIL1-mediated transcription of the fruit ripening-associated genes CpACS1, CpACO1, CpXTH12 and CpPE51. Moreover, CpEIL1 is ubiquitinated by CpEBF1 and is degraded through the 26S proteasome pathway. However, CpARF2 weakens the CpEBF1-CpEIL1 interaction and interferes with CpEBF1-mediated degradation of CpEIL1, promoting fruit ripening. Therefore, CpARF2 functions as an integrator in the auxin-ethylene interaction and regulates fruit ripening by stabilizing CpEIL1 protein and promoting the transcriptional activity of CpEIL1. To our knowledge, we have revealed a novel module of CpARF2/CpEIL1/CpEBF1 that fine-tune fruit ripening in papaya. Manipulating this mechanism could help growers tightly control papaya fruit ripening and prolong shelf life.


Subject(s)
Carica/metabolism , Ethylenes/metabolism , Fruit/metabolism , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Plant Proteins/physiology , Transcription Factors/physiology , Carica/growth & development , Fruit/growth & development , Phylogeny , Plant Proteins/metabolism , Transcription Factors/metabolism
6.
Biosci Biotechnol Biochem ; 85(5): 1194-1204, 2021 Apr 24.
Article in English | MEDLINE | ID: mdl-33704369

ABSTRACT

Papaya (Carica papaya L.) is widely cultivated in tropical and subtropical countries. While ripe fruit is a popular food item globally, the unripe fruit is only consumed in some Asian countries. To promote the utilization of unripe papaya based on the compositional changes of biological active metabolites, we performed liquid chromatography-Orbitrap-mass spectrometry-based analysis to reveal the comprehensive metabolite profile of the peel and pulp of unripe and ripe papaya fruits. The number of peaks annotated as phenolics and aminocarboxylic acids increased in the pulp and peel of ripe fruit, respectively. Putative carpaine derivatives, known alkaloids with cardiovascular effects, decreased, while carpamic acid derivatives increased in the peel of ripe fruit. Furthermore, the functionality of unripe fruit, the benzyl glucosinolate content, total polyphenol content, and proteolytic activity were detectable after heating and powder processing treatments, suggesting a potential utilization in powdered form as functional material.


Subject(s)
Alkaloids/metabolism , Carboxylic Acids/metabolism , Carica/metabolism , Glucosinolates/metabolism , Metabolic Networks and Pathways/physiology , Polyphenols/metabolism , Alkaloids/chemistry , Alkaloids/classification , Alkaloids/isolation & purification , Carboxylic Acids/chemistry , Carboxylic Acids/classification , Carboxylic Acids/isolation & purification , Carica/chemistry , Chromatography, Liquid , Cooking/methods , Fruit/chemistry , Fruit/metabolism , Functional Food/analysis , Glucosinolates/chemistry , Glucosinolates/classification , Glucosinolates/isolation & purification , Humans , Plant Extracts/chemistry , Polyphenols/chemistry , Polyphenols/classification , Polyphenols/isolation & purification , Principal Component Analysis , Tandem Mass Spectrometry
7.
Biochem Genet ; 59(6): 1599-1616, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34009493

ABSTRACT

Plant 14-3-3 proteins play key roles in regulating growth, development, and stress responses. However, little is known about this gene family in papaya (Carica papaya L.). We characterized eight 14-3-3 genes from the papaya genome and designed them as CpGRF1-8. Based on phylogenetic, conserved motif, and gene structure analyses, papaya CpGRFs were divided into ε and non-ε groups. Expression analysis showed differential and class-specific transcription patterns in different organs. Quantitative real-time polymerase chain reaction analysis showed that most CpGRFs had large changes in expression during fruit development and ripening. This indicated that the CpGRFs were involved in regulating fruit development and ripening. Significant expression changes occurred after cold, salt, and drought treatments in papaya seedlings, indicating that CpGRFs were also involved in signaling responses to abiotic stress. These results provide a transcription profile of 14-3-3 genes in organs, during fruit development and ripening and in response to stress. Some highly expressed, fruit-specific, and stress-responsive candidate CpGRFs will be identified for further genetic improvement of papayas.


Subject(s)
Carica , Carica/genetics , Carica/metabolism , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics
8.
Genomics ; 112(4): 2734-2747, 2020 07.
Article in English | MEDLINE | ID: mdl-32194147

ABSTRACT

SQUAMOSA promoter binding protein-like (SPL) family plays vital regulatory roles in plant growth and development. The SPL family in climacteric fruit Carica papaya has not been reported. This study identified 14 papaya SPLs (CpSPL) from papaya genome and analyzed their sequence features, phylogeny, intron/exon structure, conserved motif, miR156-mediated posttranscriptional regulation, and expression patterns. 14 CpSPLs were clustered into 8 groups, and two distinct expression patterns were revealed for miR156-targeted and nontargeted CpSPLs in different tissues and fruit development stages. The expression changes of CpSPLs in ethephon and 1-MCP treated fruit during ripening suggested that the CpSPLs guided by CpmiR156 play crucial roles in ethylene signaling pathway. This study sheds light on the new function of SPL family in fruit development and ripening, providing insights on understanding evolutionary divergence of the members of SPL family among plant species.


Subject(s)
Carica/genetics , Multigene Family , Plant Proteins/genetics , Transcription Factors/genetics , Amino Acid Motifs , Carica/drug effects , Carica/growth & development , Carica/metabolism , Cyclopropanes/pharmacology , Fruit/drug effects , Fruit/genetics , Fruit/growth & development , Fruit/metabolism , Genome, Plant , MicroRNAs/metabolism , Organophosphorus Compounds/pharmacology , Phylogeny , Plant Growth Regulators/pharmacology , Plant Proteins/chemistry , Plant Proteins/classification , Plant Proteins/metabolism , Transcription Factors/chemistry , Transcription Factors/classification , Transcription Factors/metabolism
9.
Molecules ; 26(5)2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33803330

ABSTRACT

The leaves of Carica papaya (CP) are rich in natural antioxidants. Carica papaya has traditionally been used to treat various ailments, including skin diseases. This study aims to decipher the antioxidant effects and phytochemical content of different CP leaf extracts (CPEs) obtained using supercritical carbon dioxide (scCO2) and conventional extraction methods. The antioxidant activities of CPEs were evaluated by cell-free (1,1-diphenyl-2-picryl-hydrazyl (DPPH) and ferric-reduced antioxidative power (FRAP)) and cell-based (H2O2) assay. Both C. papaya leaf scCO2 extract with 5% ethanol (CPSCE) and C. papaya leaf scCO2 extract (CPSC) exhibited stronger DPPH radical scavenging activity than conventional extracts. In the FRAP assay, two hydrophilic extracts (C. papaya leaf ethanol extract (CPEE) and C. papaya freeze-dried leaf juice (CPFD)) showed relatively stronger reducing power compared to lipophilic extracts. Cell-based assays showed that CPFD significantly protected skin fibroblasts from H2O2-induced oxidative stress in both pre-and post-treatment. CPEE protected skin fibroblasts from oxidative stress in a dose-dependent manner while CPSCE significantly triggered the fibroblast recovery after treatment with H2O2. GC-MS analysis indicated that CPSCE had the highest α-tocopherol and squalene contents. By contrast, both CP hydrophilic extracts (CPEE and CPFD) had a higher total phenolic content (TPC) and rutin content than the lipophilic extracts. Overall, CPEs extracted using green and conventional extraction methods showed antioxidative potential in both cell-based and cell-free assays due to their lipophilic and hydrophilic antioxidants, respectively.


Subject(s)
Carica/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Antioxidants/chemistry , Biphenyl Compounds , Carica/metabolism , Ethanol , Freeze Drying , Oxidative Stress/drug effects , Phenols/analysis , Phytochemicals/analysis , Plant Extracts/pharmacology , Plant Leaves/metabolism
10.
J Sci Food Agric ; 100(12): 4442-4448, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32388883

ABSTRACT

BACKGROUND: MYB transcription factors (TFs) are common in plants and play important functions in growth and development, including fruit development and ripening. However, the role of MYB proteins in papaya ripening (fruit ripening and carotenoid biosynthesis) remains unclear. RESULTS: Two MYB genes were cloned from papaya pulp. They were named CpMYB1 (MYB44-like) and CpMYB2, and belong to the S22 subgroup of the R2R3-MYB family. Their expression levels decreased during fruit ripening. Subcellular localization analysis showed that both CpMYB1 and CpMYB2 were nuclear proteins, indicating that they might function in the nucleus. Moreover, CpMYB1 and CpMYB2 could bind to the promoters of cell-wall degradation genes (CpPME1, CpPME2, and CpPG5) and carotenoid biosynthesis genes (CpPDS2, CpPDS4, and CpCHY-b). Further research found that both CpMYB1 and CpMYB2 were transcriptional repressors, and they could suppress the activities of the promoters of CpPME1, CpPME2, CpPG5, CpPDS2, CpPDS4, and CpCHY-b. CONCLUSION: These results indicated that MYB TFs CpMYB1 and CpMYB2 might have a function in papaya fruit softening and carotenoid accumulation by regulating cell-wall degradation and carotenoid biosynthesis related genes, which provide a new view about the role of MYB TFs in fruit ripening. © 2020 Society of Chemical Industry.


Subject(s)
Carica/metabolism , Carotenoids/metabolism , Cell Wall/metabolism , Fruit/growth & development , Plant Proteins/metabolism , Transcription Factors/metabolism , Carica/chemistry , Carica/genetics , Carica/growth & development , Cell Wall/genetics , Fruit/chemistry , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Promoter Regions, Genetic , Transcription Factors/genetics
11.
BMC Genomics ; 20(1): 49, 2019 Jan 16.
Article in English | MEDLINE | ID: mdl-30651061

ABSTRACT

BACKGROUND: Red-fleshed papaya is a good material to study the different carotenoids accumulation mechanism in the peel and flesh. Although the peel and flesh of papaya closely integrated into one body, the flesh coloration changing from white to red, while the exocarp coloration changing from green to yellow. In this study, the major carotenoids accumulation and the expression patterns of key carotenoid biosynthesis pathway genes in the process of papaya fruit ripening were studied, and the carotenoid biosynthetic pathways in the yellow peel and red flesh of papaya were investigated. RESULTS: The carotenoid composition in papaya flesh and peel were different. The major carotenoids were lutein and ß-carotene in the peel, while lycopene in the flesh. The accumulation of carotenoids, including lycopene, ß-carotene, and ß-cryptoxanthin were considered to cause the orange-red color of papaya cv. 'Daqing No.10' flesh. The color of peel changed from green to yellow because of the fast degradation of chlorophyll and the appearance of carotenoids such as lutein and ß-carotene. Thirteen genes that encode enzymes in the carotenoid biosynthetic pathway were detected in papaya fruit transcriptome: two phytoene synthase (PSY1, PSY2), two phytoene desaturase (PDS1, PDS2), one ζ-carotene desaturase (ZDS), four lycopene cyclase (CYCB, LCYB1, LCYB2, LCYE), one ß-carotene hydroxylase (CHYB), one carotene ε-monooxygenase (LUT1), one violaxanthin de-epoxidase (VDE), and one zeaxanthin epoxidase (ZEP). The results of RNA-Seq and RT-qPCR showed the expression of carotenoid biosynthetic pathway genes was consistent with the change of carotenoid content. Carotenoid biosynthetic pathways in the yellow peel and red flesh of papaya were analysed based on the major carotenoids accumulation and the expression patterns of key carotenoid biosynthesis pathway genes. There was only a ß-branch of carotenoid biosynthesis in the flesh of papaya, while there were both α- and ß-branch of carotenoid biosynthesis in papaya peel. In the process of papaya fruit ripening, the α-branch was inhibited and the ß-branch was enhanced in the peel. CONCLUSIONS: The differential carotenoid accumulation and biosynthesis pathway genes expression in peel and flesh, lay a foundation for further study and provide further insights to control fruit color and improve fruit quality and appearance.


Subject(s)
Biosynthetic Pathways , Carica/metabolism , Carotenoids/biosynthesis , Fruit/metabolism , Pigmentation , Biosynthetic Pathways/genetics , Chlorophyll/metabolism , Fruit/growth & development , Gene Expression Regulation, Plant , Genes, Plant , Transcriptome/genetics
12.
J Plant Res ; 132(2): 181-195, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30649676

ABSTRACT

Papaya is one of the most nutritional fruits, rich in vitamins, carotenoids, flavonoids and other antioxidants. Previous studies showed phytonutrient improvement without affecting quality in tomato fruit and rapeseed through the suppression of DE-ETIOLATED-1 (DET1), a negative regulator in photomorphogenesis. This study is conducted to study the effects of DET1 gene suppression in papaya embryogenic callus. Immature zygotic embryos were transformed with constitutive expression of a hairpin DET1 construct (hpDET1). PCR screening of transformed calli and reverse transcription quantitative PCR (RT-qPCR) verified that DET1 gene downregulation in two of the positive transformants. High-throughput cDNA 3' ends sequencing on DET1-suppressed and control calli for transcriptomic analysis of global gene expression identified a total of 452 significant (FDR < 0.05) differentially expressed genes (DEGs) upon DET1 suppression. The 123 upregulated DEGs were mainly involved in phenylpropanoid biosynthesis and stress responses, compared to 329 downregulated DEGs involved in developmental processes, lipid metabolism, and response to various stimuli. This is the first study to demonstrate transcriptome-wide relationship between light-regulated pathway and secondary metabolite biosynthetic pathways in papaya. This further supports that the manipulation of regulatory gene involved in light-regulated pathway is possible for phytonutrient improvement of tropical fruit crops.


Subject(s)
Carica/metabolism , Carica/embryology , Carica/growth & development , DNA, Plant , Down-Regulation , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Silencing , Genes, Plant/physiology , Plant Proteins/physiology , RNA, Small Interfering , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Seeds/metabolism , Transcriptome
13.
J Sci Food Agric ; 99(15): 6868-6881, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31386200

ABSTRACT

BACKGROUND: Papaya, as one of the most important tropical fruits in the world, is easily subjected to chilling injury (CI). Research on the effect of chilling temperature storage on the metabolic changes of papaya peel is limited. RESULTS: Chilling temperature (4 °C) inhibited fruit ripening and induced CI on papaya fruit. Additionally, low temperature altered the concentrations of 45 primary metabolites and 52 aroma volatile compounds in the papaya peel. Papaya fruit stored at different temperatures could be separated using partial least squares-discriminant analysis (PLS-DA) with primary metabolites and volatile compounds as variables. In total, 18 primary metabolites and 22 volatiles with variable importance in projection (VIP) score higher than one might be considered as potential markers in papaya peel in response to chilling stress. Metabolites related to aroma, such as organic acid, amino acids, hexanal, carbonic acid, pentadecyl propyl ester and methyl geranate, caryophyllene accounted for major part of the metabolism changes of papaya peel and contributed a lot in response to cold stress. CONCLUSION: This study added new insights regarding effect of chilling stress on metabolites in papaya peel. Some important metabolites might be indicator for chilling stress and detection of these metabolites will guide us to regulate the storage temperature to avoid chilling and to prolong storage of papaya fruit. © 2019 Society of Chemical Industry.


Subject(s)
Carica/metabolism , Fruit/chemistry , Carica/chemistry , Cold Temperature , Food Storage , Fruit/metabolism , Plant Proteins/metabolism , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/metabolism
14.
Protein Expr Purif ; 146: 17-22, 2018 06.
Article in English | MEDLINE | ID: mdl-29373846

ABSTRACT

Plant methionine sulfoxide reductase B1 (MsrB1) protects the photosynthetic apparatus from oxidative damage by scavenging reactive oxygen species to repair Met-oxidized proteins in response to abiotic stresses and biotic attack. Papaya MsrB1 (PaMsrB1) was identified previously to interact with papaya ringspot virus NIa-Pro, and this interaction inhibits the import of PaMsrB1 into the chloroplast. Further functional characterization of PaMsrB1 requires the production of a biologically active purified recombinant protein. In this report, PaMsrB1 as a fusion protein containing an N-terminal maltose-binding protein (MBP) was expressed in Escherichia coli Rosetta (DE3) cells and purified. Production of soluble fusion protein was greater when the cells were cultured at 16 °C than at 37 °C. The Factor Xa protease digested MBP-PaMsrB1 fusion protein and subsequently purified recombinant PaMsrB1 specifically reduced the R-diastereomer of methionine sulfoxide (MetSO) and Dabsyl-MetSO to Met in the presence of dithiothreitol. Eight chloroplast-localized and five non-chloroplast-localized candidate proteins that interact with PaMsrB1 were isolated by affinity chromatography and liquid chromatography coupled to tandem mass spectrometry. The results provide a platform to further understand the anti-oxidative defense mechanism of PaMsrB1.


Subject(s)
Carica/enzymology , Methionine Sulfoxide Reductases/metabolism , Protein Interaction Maps , Amino Acid Sequence , Carica/chemistry , Carica/genetics , Carica/metabolism , Chloroplasts/genetics , Chloroplasts/metabolism , Escherichia coli/genetics , Gene Expression , Methionine Sulfoxide Reductases/chemistry , Methionine Sulfoxide Reductases/genetics , Oxidation-Reduction , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Solubility
15.
Mol Biol Rep ; 45(5): 1013-1021, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30009342

ABSTRACT

To clarify the effect of lactic acid bacteria (LAB) fermentation on the immunomodulation capacity of green-loofah and green-papaya, aqueous suspensions prepared from the fresh and dry-powdered vegetables were fermented by Lactococcus lactis subsp. lactis Uruma-SU1 and Lactobacillus plantarum Uruma-SU4. Fermented and non-fermented suspensions were added to murine macrophage RAW264.7 culture with and without Escherichia coli O111 lipopolysaccharide (LPS). In the absence of LPS, nitric oxide (NO) secretion was elevated significantly in LAB fermented suspensions compared to that in non-fermented suspensions. NO production in fermented suspensions was observed even at low sample concentrations, but it was attenuated in the centrifuged supernatant. With LPS treatment, inhibition of NO secretion was shown with the high concentration of the non-fermented and also fermented samples. These results suggest that fermented green-loofah and green-papaya suspensions can play both immunostimulatory and anti-inflammatory roles at low and high doses, respectively.


Subject(s)
Carica/metabolism , Luffa/metabolism , RAW 264.7 Cells/drug effects , Animals , Carica/physiology , Fermentation/physiology , Food Microbiology , Lactobacillus plantarum/drug effects , Lactococcus lactis/drug effects , Luffa/physiology , Macrophages/metabolism , Mice , Nitric Oxide/metabolism , Vegetables
16.
Planta ; 245(5): 1037-1048, 2017 May.
Article in English | MEDLINE | ID: mdl-28194565

ABSTRACT

MAIN CONCLUSION: Transgenic papaya callus lines expressing the components of the S3Pvac vaccine constitute a stable platform to produce an oral vaccine against cysticercosis caused by Taenia solium or T. crassiceps. The development of effective delivery systems to cope with the reduced immunogenicity of new subunit vaccines is a priority in vaccinology. Herein, experimental evidence supporting a papaya-based platform to produce needle-free, recombinant, highly immunogenic vaccines is shown. Papaya (Carica papaya) callus lines were previously engineered by particle bombardment to express the three protective peptides of the S3Pvac anti-cysticercosis vaccine (KETc7, KETc12, KETc1). Calli were propagated in vitro, and a stable integration and expression of the target genes has been maintained, as confirmed by PCR, qRT-PCR, and HPLC. These results point papaya calli as a suitable platform for long-term transgenic expression of the vaccine peptides. The previously demonstrated protective immunogenic efficacy of S3Pvac-papaya orally administered to mice is herein confirmed in a wider dose-range and formulated with different delivery vehicles, adequate for oral vaccination. This protection is accompanied by an increase in anti-S3Pvac antibody titers and a delayed hypersensitivity response against the vaccine. A significant increase in CD4+ and CD8+ lymphocyte proliferation was induced in vitro by each vaccine peptide in mice immunized with the lowest dose of S3Pvac papaya (0.56 ng of the three peptides in 0.1 µg of papaya callus total protein per mouse). In pigs, the obliged intermediate host for Taenia solium, S3Pvac papaya was also immunogenic when orally administered in a two-log dose range. Vaccinated pigs significantly increased anti-vaccine antibodies and mononuclear cell proliferation. Overall, the oral immunogenicity of this stable S3Pvac-papaya vaccine in mice and pigs, not requiring additional adjuvants, supports the interest in papaya callus as a useful platform for plant-based vaccines.


Subject(s)
Antigens, Helminth/immunology , Carica/metabolism , Cysticercosis/veterinary , Swine Diseases/prevention & control , Taenia solium/immunology , Vaccines, Synthetic/immunology , Administration, Oral , Animals , Antigens, Helminth/administration & dosage , Carica/genetics , Carica/immunology , Cysticercosis/parasitology , Cysticercosis/prevention & control , Female , Immunization , Male , Mice , Mice, Inbred BALB C , Plants, Genetically Modified , Swine , Swine Diseases/parasitology , Vaccines, Synthetic/administration & dosage
17.
Prep Biochem Biotechnol ; 47(3): 236-244, 2017 Mar 16.
Article in English | MEDLINE | ID: mdl-27341632

ABSTRACT

In this study, reverse micellar extraction of papain model system was performed using cetyltrimethylammonium bromide (CTAB)/iso-octane/hexanol/butanol system to optimize the forward and back extraction efficiency (BEE). A maximum forward extraction efficiency of 55.0, 61.0, and 54% was achieved with an aqueous phase pH of 11.0, 150 mM CTAB/iso-octane and 0.1 M NaCl, respectively. Taguchi's orthogonal array was applied to optimize the pH of stripping phase, concentration of isopropyl alcohol (IPA) and potassium chloride (KCl) for maximizing BEE. The optimal levels of stripping phase pH, concentration of IPA and KCl were found to be 6, 20% (v/v), and 0.8 M, respectively. Under these optimal levels, the BEE was found to be 88% after which enzyme activity was recovered with 2.5-fold purification. Further optimization was performed using artificial neural network-linked genetic algorithm, where the BEE was improved to 90.52% with pH 6, IPA (%) = 19.938, and KCl (M) = 0.729.


Subject(s)
Carica/enzymology , Cetrimonium Compounds/chemistry , Detergents/chemistry , Micelles , Papain/isolation & purification , Carica/metabolism , Cations/chemistry , Cetrimonium , Neural Networks, Computer , Papain/metabolism , Salts/chemistry
18.
Plant Mol Biol ; 90(4-5): 359-73, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26694866

ABSTRACT

Sex chromosomes have evolved from a pair of homologous autosomes which differentiated into sex determination systems, such as XY or ZW system, as a consequence of successive recombination suppression between the gametologous chromosomes. Identifying the regions of recombination suppression, namely, the "evolutionary strata", is central to understanding the history and dynamics of sex chromosome evolution. Evolution of sex chromosomes as a consequence of serial recombination suppressions is well-studied for mammals and birds, but not for plants, although 48 dioecious plants have already been reported. Only two plants Silene latifolia and papaya have been studied until now for the presence of evolutionary strata on their X chromosomes, made possible by the sequencing of sex-linked genes on both the X and Y chromosomes, which is a requirement of all current methods that determine stratum structure based on the comparison of gametologous sex chromosomes. To circumvent this limitation and detect strata even if only the sequence of sex chromosome in the homogametic sex (i.e. X or Z chromosome) is available, we have developed an integrated segmentation and clustering method. In application to gene sequences on the papaya X chromosome and protein-coding sequences on the S. latifolia X chromosome, our method could decipher all known evolutionary strata, as reported by previous studies. Our method, after validating on known strata on the papaya and S. latifolia X chromosome, was applied to the chromosome 19 of Populus trichocarpa, an incipient sex chromosome, deciphering two, yet unknown, evolutionary strata. In addition, we applied this approach to the recently sequenced sex chromosome V of the brown alga Ectocarpus sp. that has a haploid sex determination system (UV system) recovering the sex determining and pseudoautosomal regions, and then to the mating-type chromosomes of an anther-smut fungus Microbotryum lychnidis-dioicae predicting five strata in the non-recombining region of both the chromosomes.


Subject(s)
Carica/genetics , Fungi/genetics , Genes, Mating Type, Fungal/genetics , Populus/genetics , Silene/genetics , Algorithms , Carica/metabolism , Chromosomes, Fungal/genetics , Chromosomes, Plant/genetics , Cluster Analysis , DNA, Plant/genetics , Evolution, Molecular
19.
J Exp Bot ; 67(22): 6373-6384, 2016 12.
Article in English | MEDLINE | ID: mdl-27811004

ABSTRACT

Carica papaya (papaya) seed germinate readily fresh from the fruit, but desiccation induces a dormant state. Dormancy can be released by exposure of the hydrated seed to a pulse of elevated temperature, typical of that encountered in its tropical habitat. Carica papaya is one of only a few species known to germinate in response to heat shock (HS) and we know little of the mechanisms that control germination in tropical ecosystems. Here we investigate the mechanisms that mediate HS-induced stimulation of germination in pre-dried and re-imbibed papaya seed. Exogenous gibberellic acid (GA3 ≥250 µM) overcame the requirement for HS to initiate germination. However, HS did not sensitise seeds to GA3, indicative that it may act independently of GA biosynthesis. Seed coat removal also overcame desiccation-imposed dormancy, indicative that resistance to radicle emergence is coat-imposed. Morphological and biomechanical studies identified that neither desiccation nor HS alter the physical structure or the mechanical strength of the seed coat. However, cycloheximide prevented both seed coat weakening and germination, implicating a requirement for de novo protein synthesis in both processes. The germination antagonist abscisic acid prevented radicle emergence but had no effect on papaya seed coat weakening. Desiccation therefore appears to reduce embryo growth potential, which is reversed by HS, without physically altering the mechanical properties of the seed coat. The ability to germinate in response to a HS may confer a competitive advantage to C. papaya, an opportunistic pioneer species, through detection of canopy removal in tropical forests.


Subject(s)
Carica/metabolism , Germination/physiology , Heat-Shock Response/physiology , Seeds/metabolism , Carica/physiology , Cycloheximide/pharmacology , Dehydration , Germination/drug effects , Gibberellins/pharmacology , Hot Temperature , Plant Dormancy/drug effects , Plant Dormancy/physiology , Plant Growth Regulators/pharmacology , Protein Synthesis Inhibitors/pharmacology , Seeds/physiology
20.
J Sci Food Agric ; 96(9): 2963-8, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26374618

ABSTRACT

BACKGROUND: There have been no reports on the effects of preharvest calcium application on anthracnose disease severity, antioxidant activity and cellular changes during ambient storage of papaya, and therefore the objective of this study was to investigate these effects. RESULTS: Higher calcium concentrations (1.5 and 2% w/v) increased calcium concentration in the peel and pulp tissues, maintained firmness, and reduced anthracnose incidence and severity. While leakage of calcium-treated fruit was lower for 1.5 and 2% calcium treatments compared to the control, microscopic results confirmed that pulp cell wall thickness was higher after 6 days in storage, for the 2% calcium treatment compared to the control. Calcium-treated fruit also had higher total antioxidant activity and total phenolic compounds during storage. CONCLUSION: Calcium chloride, especially at higher concentrations, is effective in maintaining papaya fruit quality during ambient storage. © 2015 Society of Chemical Industry.


Subject(s)
Antioxidants/analysis , Calcium Chloride/chemistry , Calcium, Dietary/analysis , Carica/chemistry , Fertilizers , Food Storage , Fruit/chemistry , Absorption, Physiological , Aerosols , Antioxidants/chemistry , Antioxidants/metabolism , Calcium Chloride/adverse effects , Calcium Chloride/metabolism , Carica/growth & development , Carica/metabolism , Carica/ultrastructure , Cell Wall/metabolism , Cell Wall/ultrastructure , Crop Production , Crops, Agricultural/chemistry , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Crops, Agricultural/ultrastructure , Fertilizers/adverse effects , Food Preservation , Food Quality , Fruit/growth & development , Fruit/metabolism , Fruit/ultrastructure , Humans , Malaysia , Mechanical Phenomena , Microscopy, Electron, Scanning , Nutritive Value , Phenols/agonists , Phenols/analysis , Phenols/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL