Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 171
Filter
Add more filters

Publication year range
1.
Cell ; 184(1): 272-288.e11, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33378642

ABSTRACT

Comprehensively resolving neuronal identities in whole-brain images is a major challenge. We achieve this in C. elegans by engineering a multicolor transgene called NeuroPAL (a neuronal polychromatic atlas of landmarks). NeuroPAL worms share a stereotypical multicolor fluorescence map for the entire hermaphrodite nervous system that resolves all neuronal identities. Neurons labeled with NeuroPAL do not exhibit fluorescence in the green, cyan, or yellow emission channels, allowing the transgene to be used with numerous reporters of gene expression or neuronal dynamics. We showcase three applications that leverage NeuroPAL for nervous-system-wide neuronal identification. First, we determine the brainwide expression patterns of all metabotropic receptors for acetylcholine, GABA, and glutamate, completing a map of this communication network. Second, we uncover changes in cell fate caused by transcription factor mutations. Third, we record brainwide activity in response to attractive and repulsive chemosensory cues, characterizing multimodal coding for these stimuli.


Subject(s)
Atlases as Topic , Brain Mapping , Brain/physiology , Caenorhabditis elegans/physiology , Neurons/physiology , Software , Algorithms , Anatomic Landmarks , Animals , Cell Body/physiology , Cell Lineage , Drosophila/physiology , Mutation/genetics , Nerve Net/physiology , Phenotype , Receptors, Metabotropic Glutamate/metabolism , Receptors, Neurotransmitter/metabolism , Smell/physiology , Taste/physiology , Transcription Factors/metabolism , Transgenes
2.
Cell ; 183(6): 1600-1616.e25, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33248024

ABSTRACT

Rapid phasic activity of midbrain dopamine neurons is thought to signal reward prediction errors (RPEs), resembling temporal difference errors used in machine learning. However, recent studies describing slowly increasing dopamine signals have instead proposed that they represent state values and arise independent from somatic spiking activity. Here we developed experimental paradigms using virtual reality that disambiguate RPEs from values. We examined dopamine circuit activity at various stages, including somatic spiking, calcium signals at somata and axons, and striatal dopamine concentrations. Our results demonstrate that ramping dopamine signals are consistent with RPEs rather than value, and this ramping is observed at all stages examined. Ramping dopamine signals can be driven by a dynamic stimulus that indicates a gradual approach to a reward. We provide a unified computational understanding of rapid phasic and slowly ramping dopamine signals: dopamine neurons perform a derivative-like computation over values on a moment-by-moment basis.


Subject(s)
Dopamine/metabolism , Signal Transduction , Action Potentials/physiology , Animals , Axons/metabolism , Calcium/metabolism , Calcium Signaling , Cell Body/metabolism , Cues , Dopaminergic Neurons/physiology , Fluorometry , Male , Mice, Inbred C57BL , Models, Neurological , Photic Stimulation , Reward , Sensation , Time Factors , Ventral Tegmental Area/metabolism , Virtual Reality
3.
PLoS Pathog ; 20(4): e1012139, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38578790

ABSTRACT

Alpha herpesviruses naturally infect the peripheral nervous system, and can spread to the central nervous system, causing severe debilitating or deadly disease. Because alpha herpesviruses spread along synaptic circuits, and infected neurons exhibit altered electrophysiology and increased spontaneous activity, we hypothesized that alpha herpesviruses use activity-dependent synaptic vesicle-like regulated secretory mechanisms for egress and spread from neurons. Using live-cell fluorescence microscopy, we show that Pseudorabies Virus (PRV) particles use the constitutive Rab6 post-Golgi secretory pathway to exit from the cell body of primary neurons, independent of local calcium signaling. Some PRV particles colocalize with Rab6 in the proximal axon, but we did not detect colocalization/co-transport in the distal axon. Thus, the specific secretory mechanisms used for viral egress from axons remains unclear. To address the role of neuronal activity more generally, we used a compartmentalized neuron culture system to measure the egress and spread of PRV from axons, and pharmacological and optogenetics approaches to modulate neuronal activity. Using tetrodotoxin to silence neuronal activity, we observed no inhibition, and using potassium chloride or optogenetics to elevate neuronal activity, we also show no increase in virus spread from axons. We conclude that PRV egress from neurons uses constitutive secretory mechanisms: generally, activity-independent mechanisms in axons, and specifically, the constitutive Rab6 post-Golgi secretory pathway in cell bodies.


Subject(s)
Alphaherpesvirinae , Herpesvirus 1, Suid , Pseudorabies , Animals , Cell Body/metabolism , Viral Envelope Proteins/metabolism , Axons , Alphaherpesvirinae/metabolism , Neurons , Herpesvirus 1, Suid/metabolism , Pseudorabies/metabolism , Exocytosis
4.
Proc Natl Acad Sci U S A ; 120(38): e2301003120, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37695902

ABSTRACT

Clustered protocadherin (Pcdh) functions as a cell recognition molecule through the homophilic interaction in the central nervous system. However, its interactions have not yet been visualized in neurons. We previously reported PcdhγB2-Förster resonance energy transfer (FRET) probes to be applicable only to cell lines. Herein, we designed γB2-FRET probes by fusing FRET donor and acceptor fluorescent proteins to a single γB2 molecule and succeeded in visualizing γB2 homophilic interaction in cultured hippocampal neurons. The γB2-FRET probe localized in the soma and neurites, and FRET signals, which were observed at contact sites between neurites, eliminated by ethylene glycol tetraacetic acid (EGTA) addition. Live imaging revealed that the FRET-negative γB2 signals rapidly moved along neurites and soma, whereas the FRET-positive signals remained in place. We observed that the γB2 proteins at synapses rarely interact homophilically. The γB2-FRET probe might allow us to elucidate the function of the homophilic interaction and the cell recognition mechanism.


Subject(s)
Neurons , Protocadherins , Neurites , Cell Body , Cell Communication
5.
Proc Natl Acad Sci U S A ; 120(25): e2218951120, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37307440

ABSTRACT

We report a label-free acoustic microfluidic method to confine single, cilia-driven swimming cells in space without limiting their rotational degrees of freedom. Our platform integrates a surface acoustic wave (SAW) actuator and bulk acoustic wave (BAW) trapping array to enable multiplexed analysis with high spatial resolution and trapping forces that are strong enough to hold individual microswimmers. The hybrid BAW/SAW acoustic tweezers employ high-efficiency mode conversion to achieve submicron image resolution while compensating for parasitic system losses to immersion oil in contact with the microfluidic chip. We use the platform to quantify cilia and cell body motion for wildtype biciliate cells, investigating effects of environmental variables like temperature and viscosity on ciliary beating, synchronization, and three-dimensional helical swimming. We confirm and expand upon the existing understanding of these phenomena, for example determining that increasing viscosity promotes asynchronous beating. Motile cilia are subcellular organelles that propel microorganisms or direct fluid and particulate flow. Thus, cilia are critical to cell survival and human health. The unicellular alga Chlamydomonas reinhardtii is widely used to investigate the mechanisms underlying ciliary beating and coordination. However, freely swimming cells are difficult to image with sufficient resolution to capture cilia motion, necessitating that the cell body be held during experiments. Acoustic confinement is a compelling alternative to use of a micropipette, or to magnetic, electrical, and optical trapping that may modify the cells and affect their behavior. Beyond establishing our approach to studying microswimmers, we demonstrate a unique ability to mechanically perturb cells via rapid acoustic positioning.


Subject(s)
Acoustics , Swimming , Humans , Sound , Cilia , Cell Body
6.
Dev Biol ; 503: 83-94, 2023 11.
Article in English | MEDLINE | ID: mdl-37619713

ABSTRACT

Within the chordates, only some colonial ascidians experience whole body regeneration (WBR), where amputated small colonial fragments containing blood-vessels have the capability to regenerate the entire functional adult zooid within 1-3 weeks. Studying WBR in small colonial fragments taken at different blastogenic stages (the weekly developmental process characteristic to botryllid ascidians) from the ascidian Botrylloides leachii, about half of the fragments were able to complete regeneration (cWBR) three weeks following separation, about half were still in uncomplete, running regeneration (rWBR), and only a small percentage died. cWBR significantly increased in fragments that originated from a late blastogenic stage compared to an early stage. Most B. leachii populations reside in shallow waters, under variable daily natural UV irradiation, and it is of interest to elucidate irradiation effects on development and regeneration. Here, we show that UV-B irradiation resulted in enhanced mortality, with abnormal morphological changes in surviving fragments, yet with non-significant cWBR vs. rWBRs. Further, UV-B irradiation influenced the proportion of blood cells (morula cells, hemoblasts) and of multinucleated cells, a new WBR-associated cell type. At 24-h post-amputation we observed enhanced expression of ß-catenin (a signaling pathway that plays indispensable roles in cell renewal and regeneration), H3 and PCNA in all cell types of non-irradiated as compared to irradiated fragments. These elevated levels were considerably reduced 9-days later. Since WBR is a highly complex phenomenon, the employment of specific experimental conditions, as UV-B irradiation, alongside blastogenesis (the weekly developmental process), elucidates undisclosed facets of this unique biological occurrence such as transient expression of signature genes.


Subject(s)
Chordata , Gastropoda , Urochordata , Animals , Amputation, Surgical , Cell Body
7.
Neuroendocrinology ; 114(3): 291-301, 2024.
Article in English | MEDLINE | ID: mdl-38029731

ABSTRACT

INTRODUCTION: The superficial pineal gland of the Sprague Dawley rat is a neuroendocrine structure secreting the hormone melatonin. By use of block face scanning electron microscopy, our aim here was to identify the 3-dimensional ultrastructure of the gland. METHODS: A series of 2,731 block face images of the rat pineal tissue, 30 nm in thickness, was obtained in a Teneo volume scanning electron microscope and used for 3-dimensional reconstruction by use of the TrakEM2-plugin in the ImageJ software. Thin sections of the tissue were cut for transmission electron microscopy. RESULTS: Our analyses revealed cellular bulbous processes, containing 50-100 nm clear vesicles, that emerged from a neck-like area at the cell body of the pinealocyte. These bulbous processes extend into small canaliculi located in the center of parenchymal folliculi of the gland as well as into the perivascular spaces. Junctional complexes, comprising both gap and tight junctions, connected the lateral cellular membranes of the pinealocytes, where the bulbous processes emerged from the cell bodies. The canaliculi were, via the extracellular space, connected to the perivascular spaces. DISCUSSION: The junctional complexes reported here would prevent a substance, released from the vesicles in the bulbous processes, from targeting the cell body from which they emerge. In line with previous combined morphological and biochemical demonstrations of glutamate located in clear vesicles of bulbous processes in the rat pineal gland, our data ultrastructurally support the concept that bulbous processes could participate in a paracrine glutamatergic inhibition of the melatonin secretion in the pineal gland. CONCLUSION: Bulbous secretory projections separated from the cell body by a junctional complex represents a new feature of neuroendocrine cells.


Subject(s)
Melatonin , Pineal Gland , Rats , Animals , Cell Body , Rats, Sprague-Dawley , Melatonin/metabolism , Pineal Gland/metabolism
8.
Cereb Cortex ; 33(7): 3882-3909, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36058205

ABSTRACT

Perisomatic GABAergic innervation in the cerebral cortex is carried out mostly by basket and chandelier cells, which differentially participate in the control of pyramidal cell action potential output and synchronization. These cells establish multiple synapses with the cell body (and proximal dendrites) and the axon initial segment (AIS) of pyramidal neurons, respectively. Using multiple immunofluorescence, confocal microscopy and 3D quantification techniques, we have estimated the number and density of GABAergic boutons on the cell body and AIS of pyramidal neurons located through cortical layers of the human and mouse neocortex. The results revealed, in both species, that there is clear variability across layers regarding the density and number of perisomatic GABAergic boutons. We found a positive linear correlation between the surface area of the soma, or the AIS, and the number of GABAergic terminals in apposition to these 2 neuronal domains. Furthermore, the density of perisomatic GABAergic boutons was higher in the human cortex than in the mouse. These results suggest a selectivity for the GABAergic innervation of the cell body and AIS that might be related to the different functional attributes of the microcircuits in which neurons from different layers are involved in both human and mouse.


Subject(s)
Axon Initial Segment , Neocortex , Humans , Mice , Animals , Cell Body , Neurons/physiology , Pyramidal Cells/metabolism , Axons/physiology , Synapses/physiology
9.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Article in English | MEDLINE | ID: mdl-34670838

ABSTRACT

To form synaptic connections and store information, neurons continuously remodel their proteomes. The impressive length of dendrites and axons imposes logistical challenges to maintain synaptic proteins at locations remote from the transcription source (the nucleus). The discovery of thousands of messenger RNAs (mRNAs) near synapses suggested that neurons overcome distance and gain autonomy by producing proteins locally. It is not generally known, however, if, how, and when localized mRNAs are translated into protein. To investigate the translational landscape in neuronal subregions, we performed simultaneous RNA sequencing (RNA-seq) and ribosome sequencing (Ribo-seq) from microdissected rodent brain slices to identify and quantify the transcriptome and translatome in cell bodies (somata) as well as dendrites and axons (neuropil). Thousands of transcripts were differentially translated between somatic and synaptic regions, with many scaffold and signaling molecules displaying increased translation levels in the neuropil. Most translational changes between compartments could be accounted for by differences in RNA abundance. Pervasive translational regulation was observed in both somata and neuropil influenced by specific mRNA features (e.g., untranslated region [UTR] length, RNA-binding protein [RBP] motifs, and upstream open reading frames [uORFs]). For over 800 mRNAs, the dominant source of translation was the neuropil. We constructed a searchable and interactive database for exploring mRNA transcripts and their translation levels in the somata and neuropil [MPI Brain Research, The mRNA translation landscape in the synaptic neuropil. https://public.brain.mpg.de/dashapps/localseq/ Accessed 5 October 2021]. Overall, our findings emphasize the substantial contribution of local translation to maintaining synaptic protein levels and indicate that on-site translational control is an important mechanism to control synaptic strength.


Subject(s)
Axons/metabolism , Cell Body/metabolism , Dendrites/metabolism , Neurons/metabolism , Protein Biosynthesis , Sequence Analysis, RNA/methods , Animals , Proteome , RNA, Messenger/genetics , Transcriptome
10.
Int J Mol Sci ; 25(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38338696

ABSTRACT

Tumor cells release exosomes, extracellular vesicle containing various bioactive molecules such as protein, DNA and RNA. The analysis of RNA molecules packaged in exosomes may provide new potential diagnostic or prognostic tumor biomarkers. The treatment of radioiodine-refractory aggressive thyroid cancer is still an unresolved clinical challenge, and the search for biomarkers that are detectable in early phase of the disease has become a fundamental goal for thyroid cancer research. By using transcriptome analysis, this study aimed to analyze the gene expression profiles of exosomes secreted by a non-tumorigenic thyroid cell line (Nthy-ori 3.1-exo) and a papillary thyroid cancer (TPC-1-exo) cell line, comparing them with those of cell bodies (Nthy-ori 3.1-cells and TPC-1-cells). A total of 9107 transcripts were identified as differentially expressed when comparing TPC-1-exo with TPC-1-cells and 5861 when comparing Nthy-ori 3.1-exo with Nthy-ori 3.1-cells. Among them, Sialic acid-binding immunoglobulin-like lectins 10 and 11 (SIGLEC10, SIGLEC11) and Keratin-associated protein 5 (KRTAP5-3) transcripts, genes known to be involved in cancer progression, turned out to be up-regulated only in TPC-1-exo. Gene ontology analysis revealed significantly enriched pathways, and only in TPC-1-exo were the differential expressed genes associated with an up-regulation in epigenetic processes. These findings provide a proof of concept that some mRNA species are specifically packaged in tumor-cell-derived exosomes and may constitute a starting point for the identification of new biomarkers for thyroid tumors.


Subject(s)
Exosomes , Thyroid Neoplasms , Humans , RNA/metabolism , Exosomes/metabolism , Cell Body/metabolism , Cell Body/pathology , Iodine Radioisotopes/metabolism , Cell Line, Tumor , Thyroid Neoplasms/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation
11.
Neurobiol Dis ; 184: 106190, 2023 08.
Article in English | MEDLINE | ID: mdl-37290578

ABSTRACT

Embryonic and early postnatal deletion of the gene phosphatase and tensin homolog (PTEN) results in neuronal hypertrophy, formation of aberrant neural networks and spontaneous seizures. Our previous studies document that deletion of PTEN in mature neurons also causes growth of cortical neuron cell bodies and dendrites, but it is unknown how this growth alters connectivity in mature circuits. Here, we explore consequences of deleting PTEN in a focal area of the dentate gyrus in adult male and female mice. PTEN deletion was accomplished by injecting AAV-Cre unilaterally into the dentate gyrus of double transgenic mice with lox-P sites flanking exon 5 of the PTEN gene and stop/flox tdTomato in the Rosa locus (PTENf/f/RosatdTomato). Focal deletion led to progressive increases in the size of the dentate gyrus at the injection site, enlargement of granule cell bodies, and increases in dendritic length and caliber. Quantitative analysis of dendrites by Golgi staining revealed dramatic increases in spine numbers throughout the proximo-distal extent of the dendritic tree, suggesting that dendritic growth is sufficient to induce new synapse formation by input neurons with intact PTEN expression. Tract tracing of input pathways to the dentate gyrus from the ipsilateral entorhinal cortex and commissural/associational system revealed that laminar specificity of termination of inputs is maintained. Mossy fiber axons from PTEN-deleted granule cells expanded their terminal field in CA3 where PTEN expression was intact and supra-granular mossy fibers developed in some mice. These findings document that persistent activation of mTOR via PTEN deletion in fully mature neurons re-initiates a state of robust cell-intrinsic growth, upending connectional homeostasis in fully mature hippocampal circuits.


Subject(s)
Cell Body , Mossy Fibers, Hippocampal , Mice , Animals , Mossy Fibers, Hippocampal/physiology , Hippocampus/physiology , Mice, Transgenic , Dendrites , Dentate Gyrus
12.
Cereb Cortex ; 32(11): 2321-2331, 2022 05 30.
Article in English | MEDLINE | ID: mdl-34546353

ABSTRACT

Soma spacing and dendritic arborization during brain development are key events for the establishment of proper neural circuitry and function. Transcription factor Satb2 is a molecular node in regulating the development of the cerebral cortex, as shown by the facts that Satb2 is required for the regionalization of retrosplenial cortex, the determination of callosal neuron fate, and the regulation of soma spacing and dendritic self-avoidance of cortical pyramidal neurons. In this study, we explored downstream effectors that mediate the Satb2-implicated soma spacing and dendritic self-avoidance. First, RNA-seq analysis of the cortex revealed differentially expressed genes between control and Satb2 CKO mice. Among them, EphA7 transcription was dramatically increased in layers II/III of Satb2 CKO cortex. Overexpression of EphA7 in the late-born cortical neurons of wild-type mice via in utero electroporation resulted in soma clumping and impaired self-avoidance of affected pyramidal neurons, which resembles the phenotypes caused by knockdown of Satb2 expression. Importantly, the phenotypes by Satb2 knockdown was rescued by reducing EphA7 expression in the cortex. Finally, ChIP and luciferase reporter assays indicated a direct suppression of EphA7 expression by Satb2. These findings provide new insights into the complexity of transcriptional regulation of the morphogenesis of cerebral cortex.


Subject(s)
Cerebral Cortex , Neurons , Animals , Cell Body/metabolism , Cerebral Cortex/metabolism , Matrix Attachment Region Binding Proteins , Mice , Neurons/metabolism , Pyramidal Cells/metabolism , Receptor, EphA7 , Transcription Factors/metabolism
13.
Biol Pharm Bull ; 46(12): 1820-1825, 2023.
Article in English | MEDLINE | ID: mdl-38044101

ABSTRACT

The polarity of the biological membrane, or lipid order, regulates many cellular events. It is generally believed that the plasma membrane polarity is regulated according to cell type and function, sometimes even within a cell. Neurons have a variety of functionally specialized subregions, each of which bears distinct proteins and lipids, and the membrane polarity of the subregions may differ accordingly. However, no direct experimental evidence of it has been presented to date. In the present study, we used a cell-impermeable solvatochromic membrane probe NR12A to investigate the local polarity of the plasma membrane of neurons. Both in hippocampal and cerebellar granule neurons, growth cones have higher membrane polarity than the cell body. In addition, the overall variation in the polarity value of each pixel was greater in the growth cone than in cell bodies, suggesting that the lateral diffusion and/or dynamics of the growth cone membrane are greater than other parts of the neuron. These tendencies were much less notably observed in the lamellipodia of a non-neuronal cell. Our results suggest that the membrane polarity of neuronal growth cones is unique and this characteristic may be important for its structure and function.


Subject(s)
Cell Body , Growth Cones , Neurons/metabolism , Cell Membrane , Hippocampus , Cells, Cultured
14.
Dev Biol ; 478: 1-12, 2021 10.
Article in English | MEDLINE | ID: mdl-34147472

ABSTRACT

Dorsal root ganglion (DRG) neurons are the predominant cell type that innervates the vertebrate skin. They are typically described as pseudounipolar cells that have central and peripheral axons branching from a single root exiting the cell body. The peripheral axon travels within a nerve to the skin, where free sensory endings can emerge and branch into an arbor that receives and integrates information. In some immature vertebrates, DRG neurons are preceded by Rohon-Beard (RB) neurons. While the sensory endings of RB and DRG neurons function like dendrites, we use live imaging in zebrafish to show that they have axonal plus-end-out microtubule polarity at all stages of maturity. Moreover, we show both cell types have central and peripheral axons with plus-end-out polarity. Surprisingly, in DRG neurons these emerge separately from the cell body, and most cells never acquire the signature pseudounipolar morphology. Like another recently characterized cell type that has multiple plus-end-out neurites, ganglion cells in Nematostella, RB and DRG neurons maintain a somatic microtubule organizing center even when mature. In summary, we characterize key cellular and subcellular features of vertebrate sensory neurons as a foundation for understanding their function and maintenance.


Subject(s)
Ganglia, Spinal/ultrastructure , Microtubules/ultrastructure , Sensory Receptor Cells/ultrastructure , Skin/innervation , Animals , Animals, Genetically Modified , Axons/physiology , Axons/ultrastructure , Cell Body/ultrastructure , Cell Polarity , Dendrites/physiology , Drosophila/cytology , Drosophila/growth & development , Ganglia, Spinal/physiology , Microtubule-Organizing Center/ultrastructure , Sea Anemones/cytology , Sea Anemones/growth & development , Sea Anemones/ultrastructure , Sensory Receptor Cells/physiology , Zebrafish
15.
Neuroimage ; 254: 119135, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35339686

ABSTRACT

Diffusion MRI (dMRI) provides unique insights into the neural tissue milieu by probing interactions between diffusing molecules and tissue microstructure. Most dMRI techniques focus on white matter (WM) tissues, nevertheless, interest in gray matter characterizations is growing. The Soma and Neurite Density MRI (SANDI) methodology harnesses a model incorporating water diffusion in spherical objects (assumed to be associated with cell bodies) and in impermeable "sticks" (assumed to represent neurites), which potentially enables the characterization of cellular and neurite densities. Recognising the importance of rodents in animal models of development, aging, plasticity, and disease, we here employ SANDI for in-vivo preclinical imaging and provide a first validation of the methodology by comparing SANDI metrics with cellular density reflected by the Allen mouse brain atlas. SANDI was implemented on a 9.4T scanner equipped with a cryogenic coil, and in-vivo experiments were carried out on N = 6 mice. Pixelwise, ROI-based, and atlas comparisons were performed, magnitude vs. real-valued analyses were compared, and shorter acquisitions with reduced the number of b-value shells were investigated. Our findings reveal good reproducibility of the SANDI parameters, including the sphere and stick fractions, as well as sphere size (CoV < 7%, 12% and 3%, respectively). Additionally, we find a very good rank correlation between SANDI-driven sphere fraction and Allen mouse brain atlas contrast that represents cellular density. We conclude that SANDI is a viable preclinical MRI technique that can greatly contribute to research on brain tissue microstructure.


Subject(s)
Neurites , White Matter , Animals , Brain/diagnostic imaging , Cell Body , Diffusion Magnetic Resonance Imaging/methods , Humans , Magnetic Resonance Imaging , Mice , Reproducibility of Results , White Matter/diagnostic imaging
16.
Anal Chem ; 94(45): 15729-15737, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36315965

ABSTRACT

Currently, single-cell lipidomic mass spectrometry (MS) techniques are mostly limited to detection of high-abundance phosphatidylcholines (PCs). Herein, for enhancing the coverage to low-abundance sphingolipids in single-cell analysis, in-tube solid-phase microextraction (SPME) was combined with a single-probe MS system for selective enrichment of sphingolipids during singe-cell sampling. From the results, a lab-made single probe with a 30 µm tip size proved to be able to resolve the axon from the cell body of neuron HT22 in ambient conditions. TiO2 was immobilized onto the inner wall of the transfer capillary of the single-probe device for online selective capture of sphingolipids in ammonia-acetonitrile and rapid desorption in formic acid-methanol. The results showed that the breakthrough volume of the capillary with sample loading flow rate at 500 nL/min was >14 µL. Standard experiments showed that the signals of cerebroside (CB), ceramide (Cer), and sphingomyelin (SM) were largely enhanced after selective capture in the coated capillary, while PCs were totally removed. The reusability (>10 times) and stability of the lab-made TiO2-coated capillary was verified. By introducing the coated capillary into the single-probe MS system, the new system proved to have low detection limits of SM, Cer, and CB (0.007-0.027 µg/mm2) and acceptable linearity (r > 0.98) and repeatability (RSD < 30%). Lipid coverage of the new method to SMs and CBs proved to be largely improved (SM, 21 vs 2; CB, 10 vs 0) with the new method in comparison to conventional single-probe MS without selective capture by ambient analysis of a single spot of rat cerebellum. Finally, the new system was used to perform single-neuron analysis of sphingolipids in the control and lipopolysaccharide (LPS)-treated HT22 with differentiation of the cell body from the axonal synapse. Results showed that 5 sphingolipids had significantly higher concentrations in the synapse than in the cell body, while 3 oxidized sphingolipids had significantly higher levels in the cell body than in the synapse. After LPS treatment, most of the sphingolipids largely decreased and became more accumulated in the synapse, providing new information on LPS-induced neuroinflammation.


Subject(s)
Sphingolipids , Tandem Mass Spectrometry , Rats , Animals , Tandem Mass Spectrometry/methods , Cell Body , Lipopolysaccharides , Ceramides , Sphingomyelins , Synapses , Neurons
17.
Vis Neurosci ; 39: E004, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35534787

ABSTRACT

The vertebrate retina contains a large number of different types of neurons that can be distinguished by their morphological properties. Assuming that no location should be without a contribution from the circuitry and function linked to a specific type of neuron, it is expected that the dendritic trees of neurons belonging to a type will cover the retina in a regular manner. Thus, for most types of neurons, the contribution to visual processing is thought to be independent of the exact location of individual neurons across the retina. Here, we have investigated the distribution of AII amacrine cells in rat retina. The AII is a multifunctional amacrine cell found in mammals and involved in synaptic microcircuits that contribute to visual processing under both scotopic and photopic conditions. Previous investigations have suggested that AIIs are regularly distributed, with a nearest-neighbor distance regularity index of ~4. It has been argued, however, that this presumed regularity results from treating somas as points, without taking into account their actual spatial extent which constrains the location of other cells of the same type. When we simulated random distributions of cell bodies with size and density similar to real AIIs, we confirmed that the simulated distributions could not be distinguished from the distributions observed experimentally for AIIs in different regions and eccentricities of the retina. The developmental mechanisms that generate the observed distributions of AIIs remain to be investigated.


Subject(s)
Amacrine Cells , Retina , Amacrine Cells/physiology , Animals , Cell Body , Mammals , Rats , Retina/physiology , Software
18.
J Neurosci ; 40(29): 5531-5548, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32487697

ABSTRACT

3-Phosphoinositide-dependent protein kinase-1 (PDK1) plays a critical role in the development of mammalian brain. Here, we investigated the role of PDK1 in Purkinje cells (PCs) by generating the PDK1-conditional knock-out mice (cKO) through crossing PV-cre or Pcp2-cre mice with Pdk1fl/fl mice. The male mice were used in the behavioral testing, and the other experiments were performed on mice of both sexes. These PDK1-cKO mice displayed decreased cerebellar size and impaired motor balance and coordination. By the electrophysiological recording, we observed the reduced spontaneous firing of PCs from the cerebellar slices of the PDK1-cKO mice. Moreover, the cell body size of PCs in the PDK1-cKO mice was time dependently reduced compared with that in the control mice. And the morphologic complexity of PCs was also decreased after PDK1 deletion. These effects may have contributed to the reduction of the rpS6 (reduced ribosomal protein S6) phosphorylation and the PKCγ expression in PDK1-cKO mice since the upregulation of pS6 by treatment of 3-benzyl-5-((2-nitrophenoxy) methyl)-dihydrofuran-2(3H)-1, the agonist of mTOR1, partly rescued the reduction in the cell body size of the PCs, and the delivery of recombinant adeno-associated virus-PKCγ through cerebellar injection rescued the reduced complexity of the dendritic arbor in PDK1-cKO mice. Together, our data suggest that PDK1, by regulating rpS6 phosphorylation and PKCγ expression, controls the cell body maintenance and the dendritic development in PCs and is critical for cerebellar motor coordination.SIGNIFICANCE STATEMENT Here, we show the role of 3-phosphoinositide-dependent protein kinase-1 (PDK1) in Purkinje cells (PCs). The ablation of PDK1 in PCs resulted in a reduction of cell body size, and dendritic complexity and abnormal spontaneous firing, which attributes to the motor defects in PDK1-conditional knock-out (cKO) mice. Moreover, the ribosomal protein S6 (rpS6) phosphorylation and the expression of PKCγ are downregulated after the ablation of PDK1. Additionally, upregulation of rpS6 phosphorylation by3-benzyl-5-((2-nitrophenoxy) methyl)-dihydrofuran-2(3H)-1 partly rescued the reduction in cell body size of PCs, and the overexpression of PKCγ in PDK1-KO PCs rescued the reduction in the dendritic complexity. These findings indicate that PDK1 contributes to the maintenance of the cell body and the dendritic development of PCs by regulating rpS6 phosphorylation and PKCγ expression.


Subject(s)
Cell Body/physiology , Cerebellum/physiology , Dendrites/physiology , Purkinje Cells/physiology , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/physiology , Signal Transduction , Action Potentials , Animals , Behavior, Animal , Cerebellum/cytology , Cerebellum/growth & development , Female , Male , Mice , Mice, Knockout , Protein Kinase C/metabolism , Purkinje Cells/cytology , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Ribosomal Protein S6/metabolism , TOR Serine-Threonine Kinases/metabolism
19.
J Neurophysiol ; 126(1): 28-46, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34038184

ABSTRACT

The action potential of most vertebrate neurons initiates in the axon initial segment (AIS) and is then transmitted to the soma where it is regenerated by somatodendritic sodium channels. For successful transmission, the AIS must produce a strong axial current, so as to depolarize the soma to the threshold for somatic regeneration. Theoretically, this axial current depends on AIS geometry and Na+ conductance density. We measured the axial current of mouse retinal ganglion cells using whole cell recordings with post hoc AIS labeling. We found that this current is large, implying high Na+ conductance density, and carries a charge that covaries with capacitance so as to depolarize the soma by ∼30 mV. Additionally, we observed that the axial current attenuates strongly with depolarization, consistent with sodium channel inactivation, but temporally broadens so as to preserve the transmitted charge. Thus, the AIS appears to be organized so as to reliably backpropagate the axonal action potential.NEW & NOTEWORTHY We measured the axial current produced at spike initiation by the axon initial segment of mouse retinal ganglion cells. We found that it is a large current, requiring high sodium channel conductance density, which covaries with cell capacitance so as to ensure a ∼30 mV depolarization. During sustained depolarization the current attenuated, but it broadened to preserve somatic depolarization. Thus, properties of the initial segment are adjusted to ensure backpropagation of the axonal action potential.


Subject(s)
Action Potentials/physiology , Axons/physiology , Cell Body/physiology , Dendrites/physiology , Retinal Ganglion Cells/physiology , Animals , Animals, Newborn , Mice , Mice, Inbred C57BL , Sodium Channels/physiology
20.
Mol Ther ; 28(4): 1167-1176, 2020 04 08.
Article in English | MEDLINE | ID: mdl-32087148

ABSTRACT

Lysosomal storage diseases (LSDs) are inherited disorders caused by lysosomal deficiencies and characterized by dysfunction of the autophagy-lysosomal pathway (ALP) often associated with neurodegeneration. No cure is currently available to treat neuropathology in LSDs. By studying a mouse model of mucopolysaccharidosis (MPS) type IIIA, one of the most common and severe forms of LSDs, we found that multiple amyloid proteins including α-synuclein, prion protein (PrP), Tau, and amyloid ß progressively aggregate in the brain. The amyloid deposits mostly build up in neuronal cell bodies concomitantly with neurodegeneration. Treating MPS-IIIA mice with CLR01, a "molecular tweezer" that acts as a broad-spectrum inhibitor of amyloid protein self-assembly reduced lysosomal enlargement and re-activates autophagy flux. Restoration of the ALP was associated with reduced neuroinflammation and amelioration of memory deficits. Together, these data provide evidence that brain deposition of amyloid proteins plays a gain of neurotoxic function in a severe LSD by affecting the ALP and identify CLR01 as new potent drug candidate for MPS-IIIA and likely for other LSDs.


Subject(s)
Autophagy/drug effects , Bridged-Ring Compounds/administration & dosage , Mucopolysaccharidosis III/drug therapy , Neurodegenerative Diseases/drug therapy , Organophosphates/administration & dosage , Amyloid/antagonists & inhibitors , Amyloid/metabolism , Animals , Brain/metabolism , Bridged-Ring Compounds/pharmacology , Cell Body/metabolism , Disease Models, Animal , Male , Mice , Mucopolysaccharidosis III/complications , Mucopolysaccharidosis III/metabolism , Neurodegenerative Diseases/etiology , Organophosphates/pharmacology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL