Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22.232
Filter
Add more filters

Publication year range
1.
Cell ; 180(1): 188-204.e22, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31883794

ABSTRACT

Glioblastomas exhibit vast inter- and intra-tumoral heterogeneity, complicating the development of effective therapeutic strategies. Current in vitro models are limited in preserving the cellular and mutational diversity of parental tumors and require a prolonged generation time. Here, we report methods for generating and biobanking patient-derived glioblastoma organoids (GBOs) that recapitulate the histological features, cellular diversity, gene expression, and mutational profiles of their corresponding parental tumors. GBOs can be generated quickly with high reliability and exhibit rapid, aggressive infiltration when transplanted into adult rodent brains. We further demonstrate the utility of GBOs to test personalized therapies by correlating GBO mutational profiles with responses to specific drugs and by modeling chimeric antigen receptor T cell immunotherapy. Our studies show that GBOs maintain many key features of glioblastomas and can be rapidly deployed to investigate patient-specific treatment strategies. Additionally, our live biobank establishes a rich resource for basic and translational glioblastoma research.


Subject(s)
Cell Culture Techniques/methods , Glioblastoma/metabolism , Organoids/growth & development , Adult , Aged , Aged, 80 and over , Animals , Biological Specimen Banks , Female , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Male , Mice , Mice, Nude , Middle Aged , Models, Biological , Organoids/metabolism , Reproducibility of Results , Xenograft Model Antitumor Assays/methods
2.
Cell ; 180(2): 233-247.e21, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31978343

ABSTRACT

Wnt dependency and Lgr5 expression define multiple mammalian epithelial stem cell types. Under defined growth factor conditions, such adult stem cells (ASCs) grow as 3D organoids that recapitulate essential features of the pertinent epithelium. Here, we establish long-term expanding venom gland organoids from several snake species. The newly assembled transcriptome of the Cape coral snake reveals that organoids express high levels of toxin transcripts. Single-cell RNA sequencing of both organoids and primary tissue identifies distinct venom-expressing cell types as well as proliferative cells expressing homologs of known mammalian stem cell markers. A hard-wired regional heterogeneity in the expression of individual venom components is maintained in organoid cultures. Harvested venom peptides reflect crude venom composition and display biological activity. This study extends organoid technology to reptilian tissues and describes an experimentally tractable model system representing the snake venom gland.


Subject(s)
Cell Culture Techniques/methods , Organoids/growth & development , Snake Venoms/metabolism , Adult Stem Cells/metabolism , Animals , Coral Snakes/metabolism , Gene Expression Profiling/methods , Organoids/metabolism , Salivary Glands/metabolism , Snake Venoms/genetics , Snakes/genetics , Snakes/growth & development , Stem Cells/metabolism , Toxins, Biological/genetics , Transcriptome/genetics
3.
Cell ; 182(6): 1623-1640.e34, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32946783

ABSTRACT

Human organoids recapitulating the cell-type diversity and function of their target organ are valuable for basic and translational research. We developed light-sensitive human retinal organoids with multiple nuclear and synaptic layers and functional synapses. We sequenced the RNA of 285,441 single cells from these organoids at seven developmental time points and from the periphery, fovea, pigment epithelium and choroid of light-responsive adult human retinas, and performed histochemistry. Cell types in organoids matured in vitro to a stable "developed" state at a rate similar to human retina development in vivo. Transcriptomes of organoid cell types converged toward the transcriptomes of adult peripheral retinal cell types. Expression of disease-associated genes was cell-type-specific in adult retina, and cell-type specificity was retained in organoids. We implicate unexpected cell types in diseases such as macular degeneration. This resource identifies cellular targets for studying disease mechanisms in organoids and for targeted repair in human retinas.


Subject(s)
Cell Differentiation/genetics , Organoids/cytology , Organoids/metabolism , Retina/cytology , Retina/metabolism , Single-Cell Analysis/methods , Synapses/physiology , Transcriptome/genetics , Cell Culture Techniques/methods , Cell Line , Electrophysiology , Female , Gene Expression Regulation, Developmental/genetics , Genetic Predisposition to Disease/genetics , Humans , In Situ Hybridization , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Microscopy, Electron , Multigene Family , Naphthoquinones , Organoids/radiation effects , Organoids/ultrastructure , Retina/pathology , Retina/radiation effects
4.
Cell ; 180(6): 1198-1211.e19, 2020 03 19.
Article in English | MEDLINE | ID: mdl-32200801

ABSTRACT

It has generally proven challenging to produce functional ß cells in vitro. Here, we describe a previously unidentified protein C receptor positive (Procr+) cell population in adult mouse pancreas through single-cell RNA sequencing (scRNA-seq). The cells reside in islets, do not express differentiation markers, and feature epithelial-to-mesenchymal transition characteristics. By genetic lineage tracing, Procr+ islet cells undergo clonal expansion and generate all four endocrine cell types during adult homeostasis. Sorted Procr+ cells, representing ∼1% of islet cells, can robustly form islet-like organoids when cultured at clonal density. Exponential expansion can be maintained over long periods by serial passaging, while differentiation can be induced at any time point in culture. ß cells dominate in differentiated islet organoids, while α, δ, and PP cells occur at lower frequencies. The organoids are glucose-responsive and insulin-secreting. Upon transplantation in diabetic mice, these organoids reverse disease. These findings demonstrate that the adult mouse pancreatic islet contains a population of Procr+ endocrine progenitors.


Subject(s)
Cell Culture Techniques/methods , Endothelial Protein C Receptor/metabolism , Islets of Langerhans/cytology , Animals , Cell Differentiation/physiology , Cell Line , Cells, Cultured , Diabetes Mellitus, Experimental/metabolism , Epithelial-Mesenchymal Transition/physiology , Female , Glucose/metabolism , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/cytology , Islets of Langerhans/growth & development , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Nude , Organoids/growth & development , Organoids/metabolism , Pancreas/cytology , Pancreas/metabolism , Protein C/metabolism , Stem Cells/cytology
5.
Cell ; 176(4): 743-756.e17, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30735633

ABSTRACT

Direct comparisons of human and non-human primate brains can reveal molecular pathways underlying remarkable specializations of the human brain. However, chimpanzee tissue is inaccessible during neocortical neurogenesis when differences in brain size first appear. To identify human-specific features of cortical development, we leveraged recent innovations that permit generating pluripotent stem cell-derived cerebral organoids from chimpanzee. Despite metabolic differences, organoid models preserve gene regulatory networks related to primary cell types and developmental processes. We further identified 261 differentially expressed genes in human compared to both chimpanzee organoids and macaque cortex, enriched for recent gene duplications, and including multiple regulators of PI3K-AKT-mTOR signaling. We observed increased activation of this pathway in human radial glia, dependent on two receptors upregulated specifically in human: INSR and ITGB8. Our findings establish a platform for systematic analysis of molecular changes contributing to human brain development and evolution.


Subject(s)
Cerebral Cortex/cytology , Organoids/metabolism , Animals , Biological Evolution , Brain/cytology , Cell Culture Techniques/methods , Cell Differentiation/genetics , Cerebral Cortex/metabolism , Gene Regulatory Networks/genetics , Humans , Induced Pluripotent Stem Cells/cytology , Macaca , Neurogenesis/genetics , Organoids/growth & development , Pan troglodytes , Pluripotent Stem Cells/cytology , Single-Cell Analysis , Species Specificity , Transcriptome/genetics
6.
Cell ; 179(5): 1144-1159.e15, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31708126

ABSTRACT

The colonic epithelium can undergo multiple rounds of damage and repair, often in response to excessive inflammation. The responsive stem cell that mediates this process is unclear, in part because of a lack of in vitro models that recapitulate key epithelial changes that occur in vivo during damage and repair. Here, we identify a Hopx+ colitis-associated regenerative stem cell (CARSC) population that functionally contributes to mucosal repair in mouse models of colitis. Hopx+ CARSCs, enriched for fetal-like markers, transiently arose from hypertrophic crypts known to facilitate regeneration. Importantly, we established a long-term, self-organizing two-dimensional (2D) epithelial monolayer system to model the regenerative properties and responses of Hopx+ CARSCs. This system can reenact the "homeostasis-injury-regeneration" cycles of epithelial alterations that occur in vivo. Using this system, we found that hypoxia and endoplasmic reticulum stress, insults commonly present in inflammatory bowel diseases, mediated the cyclic switch of cellular status in this process.


Subject(s)
Cell Culture Techniques/methods , Colon/pathology , Stem Cells/pathology , 3T3 Cells , Animals , Colitis/pathology , Epithelial Cells/drug effects , Epithelial Cells/pathology , Homeodomain Proteins/metabolism , Mice , Models, Biological , Oxygen/pharmacology , Regeneration/drug effects , Stem Cells/drug effects , Stress, Physiological/drug effects
7.
Cell ; 174(3): 636-648.e18, 2018 07 26.
Article in English | MEDLINE | ID: mdl-30017246

ABSTRACT

The ex vivo generation of platelets from human-induced pluripotent cells (hiPSCs) is expected to compensate donor-dependent transfusion systems. However, manufacturing the clinically required number of platelets remains unachieved due to the low platelet release from hiPSC-derived megakaryocytes (hiPSC-MKs). Here, we report turbulence as a physical regulator in thrombopoiesis in vivo and its application to turbulence-controllable bioreactors. The identification of turbulent energy as a determinant parameter allowed scale-up to 8 L for the generation of 100 billion-order platelets from hiPSC-MKs, which satisfies clinical requirements. Turbulent flow promoted the release from megakaryocytes of IGFBP2, MIF, and Nardilysin to facilitate platelet shedding. hiPSC-platelets showed properties of bona fide human platelets, including circulation and hemostasis capacities upon transfusion in two animal models. This study provides a concept in which a coordinated physico-chemical mechanism promotes platelet biogenesis and an innovative strategy for ex vivo platelet manufacturing.


Subject(s)
Blood Platelets/metabolism , Cell Culture Techniques/methods , Thrombopoiesis/physiology , Bioreactors , Cell Culture Techniques/instrumentation , Humans , Hydrodynamics , Induced Pluripotent Stem Cells/metabolism , Megakaryocytes/metabolism , Megakaryocytes/physiology
8.
Cell ; 175(1): 200-211.e13, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30146160

ABSTRACT

Much of our understanding of chromosome segregation is based on cell culture systems. Here, we examine the importance of the tissue environment for chromosome segregation by comparing chromosome segregation fidelity across several primary cell types in native and nonnative contexts. We discover that epithelial cells have increased chromosome missegregation outside of their native tissues. Using organoid culture systems, we show that tissue architecture, specifically integrin function, is required for accurate chromosome segregation. We find that tissue architecture enhances the correction of merotelic microtubule-kinetochore attachments, and this is especially important for maintaining chromosome stability in the polyploid liver. We propose that disruption of tissue architecture could underlie the widespread chromosome instability across epithelial cancers. Moreover, our findings highlight the extent to which extracellular context can influence intrinsic cellular processes and the limitations of cell culture systems for studying cells that naturally function within a tissue.


Subject(s)
Chromosomal Instability/physiology , Chromosome Segregation/physiology , Epithelium/physiology , Animals , Cell Aggregation/physiology , Cell Culture Techniques/methods , Chromosomes/physiology , Epithelial Cells/physiology , Female , Kinetochores/physiology , Male , Mice , Mice, Inbred C57BL , Microtubules/metabolism , Mitosis , Organoids/physiology , Spindle Apparatus/metabolism , Spindle Apparatus/physiology
9.
Nat Rev Mol Cell Biol ; 21(12): 715-728, 2020 12.
Article in English | MEDLINE | ID: mdl-32968234

ABSTRACT

In the 20 years since human embryonic stem cells, and subsequently induced pluripotent stem cells, were first described, it has become apparent that during long-term culture these cells (collectively referred to as 'pluripotent stem cells' (PSCs)) can acquire genetic changes, which commonly include gains or losses of particular chromosomal regions, or mutations in certain cancer-associated genes, especially TP53. Such changes raise concerns for the safety of PSC-derived cellular therapies for regenerative medicine. Although acquired genetic changes may not be present in a cell line at the start of a research programme, the low sensitivity of current detection methods means that mutations may be difficult to detect if they arise but are present in only a small proportion of the cells. In this Review, we discuss the types of mutations acquired by human PSCs and the mechanisms that lead to their accumulation. Recent work suggests that the underlying mutation rate in PSCs is low, although they also seem to be particularly susceptible to genomic damage. This apparent contradiction can be reconciled by the observations that, in contrast to somatic cells, PSCs are programmed to die in response to genomic damage, which may reflect the requirements of early embryogenesis. Thus, the common genetic variants that are observed are probably rare events that give the cells with a selective growth advantage.


Subject(s)
Clonal Evolution/genetics , Mutation Accumulation , Pluripotent Stem Cells/metabolism , Cell Culture Techniques/methods , Cell Culture Techniques/standards , Cell Differentiation/genetics , Cell- and Tissue-Based Therapy/methods , Cell- and Tissue-Based Therapy/trends , Cells, Cultured , Clonal Evolution/physiology , Human Embryonic Stem Cells/physiology , Humans , Mutation/physiology , Pluripotent Stem Cells/physiology
10.
Cell ; 169(2): 243-257.e25, 2017 04 06.
Article in English | MEDLINE | ID: mdl-28388409

ABSTRACT

Of all known cultured stem cell types, pluripotent stem cells (PSCs) sit atop the landscape of developmental potency and are characterized by their ability to generate all cell types of an adult organism. However, PSCs show limited contribution to the extraembryonic placental tissues in vivo. Here, we show that a chemical cocktail enables the derivation of stem cells with unique functional and molecular features from mice and humans, designated as extended pluripotent stem (EPS) cells, which are capable of chimerizing both embryonic and extraembryonic tissues. Notably, a single mouse EPS cell shows widespread chimeric contribution to both embryonic and extraembryonic lineages in vivo and permits generating single-EPS-cell-derived mice by tetraploid complementation. Furthermore, human EPS cells exhibit interspecies chimeric competency in mouse conceptuses. Our findings constitute a first step toward capturing pluripotent stem cells with extraembryonic developmental potentials in culture and open new avenues for basic and translational research. VIDEO ABSTRACT.


Subject(s)
Cell Culture Techniques/methods , Pluripotent Stem Cells/cytology , Animals , Blastocyst/cytology , Cell Line , Chimera/metabolism , Dimethindene/pharmacology , Humans , Indicators and Reagents/chemistry , Mice , Minocycline/chemistry , Minocycline/pharmacology , Pluripotent Stem Cells/drug effects , Poly (ADP-Ribose) Polymerase-1/metabolism
11.
Immunity ; 54(10): 2417-2432.e5, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34453879

ABSTRACT

Innate lymphoid cells (ILCs) are critical effectors of innate immunity and inflammation, whose development and activation pathways make for attractive therapeutic targets. However, human ILC generation has not been systematically explored, and previous in vitro investigations relied on the analysis of few markers or cytokines, which are suboptimal to assign lineage identity. Here, we developed a platform that reliably generated human ILC lineages from CD34+ hematopoietic progenitors derived from cord blood and bone marrow. We showed that one culture condition is insufficient to generate all ILC subsets, and instead, distinct combination of cytokines and Notch signaling are essential. The identity of natural killer (NK)/ILC1s, ILC2s, and ILC3s generated in vitro was validated by protein expression, functional assays, and both global and single-cell transcriptome analysis, recapitulating the signatures and functions of their ex vivo ILC counterparts. These data represent a resource to aid in clarifying ILC biology and differentiation.


Subject(s)
Cell Culture Techniques/methods , Cell Lineage/immunology , Hematopoietic Stem Cells/immunology , Immunity, Innate/immunology , Lymphocytes/immunology , Antigens, CD34/immunology , Cell Differentiation/immunology , Hematopoietic Stem Cells/cytology , Humans , Lymphocytes/cytology , Single-Cell Analysis/methods
13.
Nature ; 615(7950): 127-133, 2023 03.
Article in English | MEDLINE | ID: mdl-36813966

ABSTRACT

Haematopoietic stem cells (HSCs) are a rare cell type that reconstitute the entire blood and immune systems after transplantation and can be used as a curative cell therapy for a variety of haematological diseases1,2. However, the low number of HSCs in the body makes both biological analyses and clinical application difficult, and the limited extent to which human HSCs can be expanded ex vivo remains a substantial barrier to the wider and safer therapeutic use of HSC transplantation3. Although various reagents have been tested in attempts to stimulate the expansion of human HSCs, cytokines have long been thought to be essential for supporting HSCs ex vivo4. Here we report the establishment of a culture system that allows the long-term ex vivo expansion of human HSCs, achieved through the complete replacement of exogenous cytokines and albumin with chemical agonists and a caprolactam-based polymer. A phosphoinositide 3-kinase activator, in combination with a thrombopoietin-receptor agonist and the pyrimidoindole derivative UM171, were sufficient to stimulate the expansion of umbilical cord blood HSCs that are capable of serial engraftment in xenotransplantation assays. Ex vivo HSC expansion was further supported by split-clone transplantation assays and single-cell RNA-sequencing analysis. Our chemically defined expansion culture system will help to advance clinical HSC therapies.


Subject(s)
Cell Culture Techniques , Cell Proliferation , Cytokines , Hematopoietic Stem Cells , Humans , Cell Proliferation/drug effects , Clone Cells/cytology , Clone Cells/drug effects , Clone Cells/metabolism , Fetal Blood/cytology , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cell Culture Techniques/methods , Albumins , Caprolactam , Polymers , Receptors, Thrombopoietin , Transplantation, Heterologous , Single-Cell Gene Expression Analysis
14.
EMBO J ; 43(11): 2127-2165, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38580776

ABSTRACT

The in vitro oxygen microenvironment profoundly affects the capacity of cell cultures to model physiological and pathophysiological states. Cell culture is often considered to be hyperoxic, but pericellular oxygen levels, which are affected by oxygen diffusivity and consumption, are rarely reported. Here, we provide evidence that several cell types in culture actually experience local hypoxia, with important implications for cell metabolism and function. We focused initially on adipocytes, as adipose tissue hypoxia is frequently observed in obesity and precedes diminished adipocyte function. Under standard conditions, cultured adipocytes are highly glycolytic and exhibit a transcriptional profile indicative of physiological hypoxia. Increasing pericellular oxygen diverted glucose flux toward mitochondria, lowered HIF1α activity, and resulted in widespread transcriptional rewiring. Functionally, adipocytes increased adipokine secretion and sensitivity to insulin and lipolytic stimuli, recapitulating a healthier adipocyte model. The functional benefits of increasing pericellular oxygen were also observed in macrophages, hPSC-derived hepatocytes and cardiac organoids. Our findings demonstrate that oxygen is limiting in many terminally-differentiated cell types, and that considering pericellular oxygen improves the quality, reproducibility and translatability of culture models.


Subject(s)
Adipocytes , Cell Differentiation , Oxygen , Oxygen/metabolism , Adipocytes/metabolism , Adipocytes/cytology , Humans , Cell Culture Techniques/methods , Animals , Glycolysis , Hepatocytes/metabolism , Cell Hypoxia , Mitochondria/metabolism , Mice , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Cells, Cultured , Glucose/metabolism , Macrophages/metabolism
15.
Nat Methods ; 21(5): 868-881, 2024 May.
Article in English | MEDLINE | ID: mdl-38374263

ABSTRACT

The human bone marrow (BM) niche sustains hematopoiesis throughout life. We present a method for generating complex BM-like organoids (BMOs) from human induced pluripotent stem cells (iPSCs). BMOs consist of key cell types that self-organize into spatially defined three-dimensional structures mimicking cellular, structural and molecular characteristics of the hematopoietic microenvironment. Functional properties of BMOs include the presence of an in vivo-like vascular network, the presence of multipotent mesenchymal stem/progenitor cells, the support of neutrophil differentiation and responsiveness to inflammatory stimuli. Single-cell RNA sequencing revealed a heterocellular composition including the presence of a hematopoietic stem/progenitor (HSPC) cluster expressing genes of fetal HSCs. BMO-derived HSPCs also exhibited lymphoid potential and a subset demonstrated transient engraftment potential upon xenotransplantation in mice. We show that the BMOs could enable the modeling of hematopoietic developmental aspects and inborn errors of hematopoiesis, as shown for human VPS45 deficiency. Thus, iPSC-derived BMOs serve as a physiologically relevant in vitro model of the human BM microenvironment to study hematopoietic development and BM diseases.


Subject(s)
Cell Differentiation , Hematopoiesis , Induced Pluripotent Stem Cells , Organoids , Humans , Organoids/cytology , Organoids/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Animals , Mice , Hematopoietic Stem Cells/cytology , Bone Marrow/metabolism , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cell Culture Techniques/methods , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism
16.
Nature ; 591(7851): 620-626, 2021 03.
Article in English | MEDLINE | ID: mdl-33731924

ABSTRACT

Limited access to embryos has hampered the study of human embryogenesis and disorders that occur during early pregnancy. Human pluripotent stem cells provide an alternative means to study human development in a dish1-7. Recent advances in partial embryo models derived from human pluripotent stem cells have enabled human development to be examined at early post-implantation stages8-14. However, models of the pre-implantation human blastocyst are lacking. Starting from naive human pluripotent stem cells, here we developed an effective three-dimensional culture strategy with successive lineage differentiation and self-organization to generate blastocyst-like structures in vitro. These structures-which we term 'human blastoids'-resemble human blastocysts in terms of their morphology, size, cell number, and composition and allocation of different cell lineages. Single-cell RNA-sequencing analyses also reveal the transcriptomic similarity of blastoids to blastocysts. Human blastoids are amenable to embryonic and extra-embryonic stem cell derivation and can further develop into peri-implantation embryo-like structures in vitro. Using chemical perturbations, we show that specific isozymes of protein kinase C have a critical function in the formation of the blastoid cavity. Human blastoids provide a readily accessible, scalable, versatile and perturbable alternative to blastocysts for studying early human development, understanding early pregnancy loss and gaining insights into early developmental defects.


Subject(s)
Blastocyst/cytology , Blastocyst/metabolism , Cell Differentiation , Pluripotent Stem Cells/cytology , Blastocyst/enzymology , Cell Culture Techniques/methods , Cell Line , Cell Lineage , Gene Expression Regulation, Developmental , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/enzymology , Human Embryonic Stem Cells/metabolism , Humans , Isoenzymes/metabolism , Pluripotent Stem Cells/enzymology , Pluripotent Stem Cells/metabolism , Protein Kinase C/metabolism , Single-Cell Analysis , Transcriptome
17.
Proc Natl Acad Sci U S A ; 121(29): e2313851121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38976734

ABSTRACT

Mass spectrometry-based omics technologies are increasingly used in perturbation studies to map drug effects to biological pathways by identifying significant molecular events. Significance is influenced by fold change and variation of each molecular parameter, but also by multiple testing corrections. While the fold change is largely determined by the biological system, the variation is determined by experimental workflows. Here, it is shown that memory effects of prior subculture can influence the variation of perturbation profiles using the two colon carcinoma cell lines SW480 and HCT116. These memory effects are largely driven by differences in growth states that persist into the perturbation experiment. In SW480 cells, memory effects combined with moderate treatment effects amplify the variation in multiple omics levels, including eicosadomics, proteomics, and phosphoproteomics. With stronger treatment effects, the memory effect was less pronounced, as demonstrated in HCT116 cells. Subculture homogeneity was controlled by real-time monitoring of cell growth. Controlled homogeneous subculture resulted in a perturbation network of 321 causal conjectures based on combined proteomic and phosphoproteomic data, compared to only 58 causal conjectures without controlling subculture homogeneity in SW480 cells. Some cellular responses and regulatory events were identified that extend the mode of action of arsenic trioxide (ATO) only when accounting for these memory effects. Controlled prior subculture led to the finding of a synergistic combination treatment of ATO with the thioredoxin reductase 1 inhibitor auranofin, which may prove useful in the management of NRF2-mediated resistance mechanisms.


Subject(s)
Proteomics , Humans , Proteomics/methods , Cell Line, Tumor , HCT116 Cells , Cell Culture Techniques/methods , Colonic Neoplasms/metabolism , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Arsenic Trioxide/pharmacology , Auranofin/pharmacology , Cell Proliferation/drug effects , Mass Spectrometry/methods
18.
Proc Natl Acad Sci U S A ; 121(28): e2404210121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38954541

ABSTRACT

Mesenchymal stem cells (MSCs) are essential in regenerative medicine. However, conventional expansion and harvesting methods often fail to maintain the essential extracellular matrix (ECM) components, which are crucial for their functionality and efficacy in therapeutic applications. Here, we introduce a bone marrow-inspired macroporous hydrogel designed for the large-scale production of MSC-ECM spheroids. Through a soft-templating approach leveraging liquid-liquid phase separation, we engineer macroporous hydrogels with customizable features, including pore size, stiffness, bioactive ligand distribution, and enzyme-responsive degradability. These tailored environments are conducive to optimal MSC proliferation and ease of harvesting. We find that soft hydrogels enhance mechanotransduction in MSCs, establishing a standard for hydrogel-based 3D cell culture. Within these hydrogels, MSCs exist as both cohesive spheroids, preserving their innate vitality, and as migrating entities that actively secrete functional ECM proteins. Additionally, we also introduce a gentle, enzymatic harvesting method that breaks down the hydrogels, allowing MSCs and secreted ECM to naturally form MSC-ECM spheroids. These spheroids display heightened stemness and differentiation capacity, mirroring the benefits of a native ECM milieu. Our research underscores the significance of sophisticated materials design in nurturing distinct MSC subpopulations, facilitating the generation of MSC-ECM spheroids with enhanced therapeutic potential.


Subject(s)
Extracellular Matrix , Hydrogels , Mesenchymal Stem Cells , Spheroids, Cellular , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Hydrogels/chemistry , Extracellular Matrix/metabolism , Spheroids, Cellular/cytology , Spheroids, Cellular/metabolism , Humans , Cell Differentiation , Cell Culture Techniques/methods , Cell Proliferation , Porosity , Mechanotransduction, Cellular/physiology , Cells, Cultured
19.
Blood ; 144(7): 729-741, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38805639

ABSTRACT

ABSTRACT: Loss of long-term hematopoietic stem cell (LT-HSC) function ex vivo hampers the success of clinical protocols that rely on culture. However, the kinetics and mechanisms through which this occurs remain incompletely characterized. In this study, through time-resolved single-cell RNA sequencing, matched in vivo functional analysis, and the use of a reversible in vitro system of early G1 arrest, we defined the sequence of transcriptional and functional events that occur during the first ex vivo division of human LT-HSCs. We demonstrated that the sharpest loss in LT-HSC repopulation capacity happens early on, between 6 and 24 hours of culture, before LT-HSCs commit to cell cycle progression. During this time window, LT-HSCs adapt to the culture environment, limit the global variability in gene expression, and transiently upregulate gene networks involved in signaling and stress responses. From 24 hours, LT-HSC progression past early G1 contributes to the establishment of differentiation programs in culture. However, contrary to the current assumptions, we demonstrated that the loss of HSC function ex vivo is independent of cell cycle progression. Finally, we showed that targeting LT-HSC adaptation to culture by inhibiting the early activation of JAK/STAT signaling improves HSC long-term repopulating function ex vivo. Collectively, our study demonstrated that controlling early LT-HSC adaptation to ex vivo culture, for example, via JAK inhibition, is critically important to improve HSC gene therapy and expansion protocols.


Subject(s)
Cell Cycle , Hematopoietic Stem Cells , Humans , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Cells, Cultured , Signal Transduction , Cell Differentiation , Cell Culture Techniques/methods , Adaptation, Physiological
20.
Immunity ; 47(1): 183-198.e6, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28723550

ABSTRACT

Tissue macrophages arise during embryogenesis from yolk-sac (YS) progenitors that give rise to primitive YS macrophages. Until recently, it has been impossible to isolate or derive sufficient numbers of YS-derived macrophages for further study, but data now suggest that induced pluripotent stem cells (iPSCs) can be driven to undergo a process reminiscent of YS-hematopoiesis in vitro. We asked whether iPSC-derived primitive macrophages (iMacs) can terminally differentiate into specialized macrophages with the help of growth factors and organ-specific cues. Co-culturing human or murine iMacs with iPSC-derived neurons promoted differentiation into microglia-like cells in vitro. Furthermore, murine iMacs differentiated in vivo into microglia after injection into the brain and into functional alveolar macrophages after engraftment in the lung. Finally, iPSCs from a patient with familial Mediterranean fever differentiated into iMacs with pro-inflammatory characteristics, mimicking the disease phenotype. Altogether, iMacs constitute a source of tissue-resident macrophage precursors that can be used for biological, pathophysiological, and therapeutic studies.


Subject(s)
Cell Culture Techniques/methods , Hematopoiesis , Macrophages/physiology , Neurons/physiology , Pluripotent Stem Cells/physiology , Animals , Cell Differentiation , Cells, Cultured , Embryo, Mammalian , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurogenesis
SELECTION OF CITATIONS
SEARCH DETAIL