Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 214
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Gastroenterology ; 159(3): 1036-1050.e8, 2020 09.
Article in English | MEDLINE | ID: mdl-32445858

ABSTRACT

BACKGROUND & AIMS: Calcineurin is a ubiquitously expressed central Ca2+-responsive signaling molecule that mediates acute pancreatitis, but little is known about its effects. We compared the effects of calcineurin expression by hematopoietic cells vs pancreas in mouse models of pancreatitis and pancreatitis-associated lung inflammation. METHODS: We performed studies with mice with hematopoietic-specific or pancreas-specific deletion of protein phosphatase 3, regulatory subunit B, alpha isoform (PPP3R1, also called CNB1), in mice with deletion of CNB1 (Cnb1UBC△/△) and in the corresponding controls for each deletion of CNB1. Acute pancreatitis was induced in mice by administration of caerulein or high-pressure infusion of radiocontrast into biliopancreatic ducts; some mice were also given intraductal infusions of an adeno-associated virus vector that expressed nuclear factor of activated T -cells (NFAT)-luciferase into pancreas. Pancreas, bone marrow, liver, kidney, heart, and lung were collected and analyzed by histopathology, immunohistochemistry, and immunoblots; levels of cytokines were measured in serum. Mouse and human primary pancreatic acinar cells were transfected with a vector that expressed NFAT-luciferase and incubated with an agent that blocks interaction of NFAT with calcineurin; cells were analyzed by immunofluorescence. Calcineurin-mediated neutrophil chemotaxis and reactive oxygen species production were measured in neutrophils from mice. RESULTS: Mice with hematopoietic-specific deletion of CNB1 developed the same level of local pancreatic inflammation as control mice after administration of caerulein or infusion of radiocontrast into biliopancreatic ducts. Cnb1UBC△/△ mice or mice with pancreas-specific deletion of CNB1 developed less severe pancreatitis and reduced pancreatic inflammation after administration of caerulein or infusion of radiocontrast into biliopancreatic ducts compared with control mice. NFAT was activated in pancreas of Swiss Webster mice given caerulein or infusions of radiocontrast into biliopancreatic ducts. Blocking the interaction between calcineurin and NFAT did not reduce pancreatic acinar cell necrosis in response to caerulein or infusions of radiocontrast. Mice with hematopoietic-specific deletion of CNB1 (but not mice with pancreas-specific deletion of CNB1) had reduced infiltration of lung tissues by neutrophils. Neutrophil chemotaxis and production of reactive oxygen species were decreased after incubation with a calcineurin inhibitor. CONCLUSIONS: Hematopoietic and neutrophil expression of calcineurin promotes pancreatitis-associated lung inflammation, whereas pancreatic calcineurin promotes local pancreatic inflammation. The findings indicate that the protective effects of blocking or deleting calcineurin on pancreatitis are mediated by the source of its expression. This information should be used in the development of strategies to inhibit calcineurin for the prevention of pancreatitis and pancreatitis-associated lung inflammation.


Subject(s)
Acute Lung Injury/immunology , Calcineurin Inhibitors/therapeutic use , Calcineurin/metabolism , Calcium-Binding Proteins/metabolism , Muscle Proteins/metabolism , Pancreatitis/immunology , Acinar Cells/metabolism , Acute Lung Injury/blood , Acute Lung Injury/pathology , Acute Lung Injury/prevention & control , Animals , Bone Marrow Cells/immunology , Bone Marrow Cells/metabolism , Calcineurin/genetics , Calcineurin/immunology , Calcium-Binding Proteins/genetics , Cells, Cultured , Ceruletide/administration & dosage , Ceruletide/toxicity , Cytokines/blood , Cytokines/metabolism , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Transgenic , Muscle Proteins/genetics , NFATC Transcription Factors/antagonists & inhibitors , NFATC Transcription Factors/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Pancreas/cytology , Pancreas/immunology , Pancreas/metabolism , Pancreatitis/chemically induced , Pancreatitis/complications , Pancreatitis/drug therapy , Primary Cell Culture
2.
J Cell Biochem ; 120(1): 799-808, 2019 01.
Article in English | MEDLINE | ID: mdl-30206968

ABSTRACT

OBJECTIVES: Our study aimed to probe the effects of rosiglitazone treatment on a severe acute pancreatitis (SAP) model induced by caerulein and investigate the underlying mechanism. METHODS: Differentially expressed messenger RNAs (mRNAs) in the mice of a SAP group were screened out by microarray analysis. The inflammatory response pathway was obtained from the online website DAVID Bioinformatics Resources 6.8. The interactions of caerulein and its target proteins were shown by search tool for interactions of chemicals (STITCH). Functional interactions of the genes associated with pancreatitis and the target proteins of caerulein were obtained with search tool for interactions of chemicals (STRING). SAP mice were established by hourly intraperitoneal injection of caerulein. Rosiglitazone was used as treatment drug, and pancreatic inflammation was assessed. The expression of Socs3 was studied by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot analysis. The expression of interleukin (IL)-6, IL-1b, and Egr1 were studied by RT-PCR and Western blot analysis. RESULTS: The GSE77983 data were analyzed, and the results showed that Socs3 was overexpressed in SAP tissues. The inflammation response pathway in pancreas was selected by DAVID, STITCH, and STRING. After injection of rosiglitazone in mice, the serum levels of amylase and lipase were decreased. Furthermore, the mRNA and protein levels of Socs3 and inflammatory cytokines in pancreatic tissues were downregulated. CONCLUSIONS: Rosiglitazone could protect mice with SAP from injury by downregulating Socs3 and inhibiting the inflammatory response pathway.


Subject(s)
Pancreatitis/drug therapy , Protective Agents/therapeutic use , Rosiglitazone/therapeutic use , Animals , Ceruletide/administration & dosage , Ceruletide/pharmacology , Disease Models, Animal , Early Growth Response Protein 1/genetics , Early Growth Response Protein 1/metabolism , Female , Inflammation/drug therapy , Inflammation/metabolism , Injections, Intraperitoneal , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Mice , Mice, Inbred ICR , Pancreatitis/chemically induced , Protective Agents/pharmacology , RNA, Messenger/metabolism , Rosiglitazone/pharmacology , Severity of Illness Index , Signal Transduction/drug effects , Suppressor of Cytokine Signaling 3 Protein/genetics , Suppressor of Cytokine Signaling 3 Protein/metabolism
3.
Biochem Biophys Res Commun ; 509(2): 421-428, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30594397

ABSTRACT

Acute pancreatitis (AP) is a severe and frequently lethal disorder, but the precise mechanisms are not well understood and there is lack of effective drugs. Therefore, our study examined the in vivo intervention effects of genistein and elucidated its mechanism in acute experimental pancreatitis models. We used cerulein or taurocholate to induce acute pancreatitis (AP) in Sprague-Dawley rats with prior genistein treatment. Histological examination of the pancreas was performed and the expression of unfolded protein response (UPR) components and apoptotic mediators like caspase 12 and c-Jun N-terminal protein kinase (JNK) were measured. The amount of apoptosis in pancreatic acinar cells was also determined. Our studies found that the severity of cerulein- or taurocholate-induced AP was rescued by prior genistein treatment. Genistein stimulated the activation of multiple endoplasmic reticulum (ER) stress-related regulators like GRP78, PERK, eIF2α, and upregulated the expression of the apoptotic genes, caspase 12 and CHOP. Moreover, TUNEL assays showed that genistein treatment promoted acinar cell apoptosis. Taken together, we speculated that ER stress-associated apoptotic pathways in AP are induced by genistein, which showed cytoprotective capacity in the exocrine pancreas. These data suggest novel therapeutic strategies that employ genistein in the prevention of AP.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antioxidants/pharmacology , Apoptosis/drug effects , Endoplasmic Reticulum Stress/drug effects , Genistein/pharmacology , Pancreatitis, Acute Necrotizing/drug therapy , Acinar Cells/drug effects , Acinar Cells/metabolism , Acinar Cells/pathology , Animals , Apoptosis/genetics , Caspase 12/genetics , Caspase 12/metabolism , Ceruletide/administration & dosage , Endoplasmic Reticulum Stress/genetics , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism , Gene Expression Regulation , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , JNK Mitogen-Activated Protein Kinases/genetics , JNK Mitogen-Activated Protein Kinases/metabolism , Male , Pancreas/drug effects , Pancreas/metabolism , Pancreas/pathology , Pancreatitis, Acute Necrotizing/chemically induced , Pancreatitis, Acute Necrotizing/genetics , Pancreatitis, Acute Necrotizing/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction , Taurocholic Acid/administration & dosage , Transcription Factor CHOP/genetics , Transcription Factor CHOP/metabolism , Unfolded Protein Response/drug effects , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism
4.
Mol Ther ; 25(11): 2490-2501, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28784560

ABSTRACT

The objective of this study was to assess the capacity of adipose-derived mesenchymal stem cells (ASCs) to mitigate disease progression in an experimental chronic pancreatitis mouse model. Chronic pancreatitis (CP) was induced in C57BL/6 mice by repeated ethanol and cerulein injection, and mice were then infused with 4 × 105 or 1 × 106 GFP+ ASCs. Pancreas morphology, fibrosis, inflammation, and presence of GFP+ ASCs in pancreases were assessed 2 weeks after treatment. We found that ASC infusion attenuated pancreatic damage, preserved pancreas morphology, and reduced pancreatic fibrosis and cell death. GFP+ ASCs migrated to pancreas and differentiated into amylase+ cells. In further confirmation of the plasticity of ASCs, ASCs co-cultured with acinar cells in a Transwell system differentiated into amylase+ cells with increased expression of acinar cell-specific genes including amylase and chymoB1. Furthermore, culture of acinar or pancreatic stellate cell lines in ASC-conditioned medium attenuated ethanol and cerulein-induced pro-inflammatory cytokine production in vitro. Our data show that a single intravenous injection of ASCs ameliorated CP progression, likely by directly differentiating into acinar-like cells and by suppressing inflammation, fibrosis, and pancreatic tissue damage. These results suggest that ASC cell therapy has the potential to be a valuable treatment for patients with pancreatitis.


Subject(s)
Adipose Tissue/cytology , Cell- and Tissue-Based Therapy/methods , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Pancreatitis, Chronic/therapy , Acinar Cells/cytology , Acinar Cells/drug effects , Acinar Cells/metabolism , Adipose Tissue/metabolism , Amylases/genetics , Amylases/metabolism , Animals , Cell Differentiation , Cell Movement , Ceruletide/administration & dosage , Coculture Techniques , Culture Media, Conditioned/pharmacology , Ethanol/administration & dosage , Gene Expression , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Interleukin-6/antagonists & inhibitors , Interleukin-6/genetics , Interleukin-6/metabolism , Male , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Pancreas/metabolism , Pancreas/pathology , Pancreatitis, Chronic/chemically induced , Pancreatitis, Chronic/genetics , Pancreatitis, Chronic/pathology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
5.
Appl Microbiol Biotechnol ; 100(1): 337-46, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26411454

ABSTRACT

Hydrogen sulphide (H2S) is an endogenous inflammatory mediator produced by cystathionine-γ-lyase (CSE) in monocytes/macrophages. To determine the role of H2S and macrophages in inflammation, we used small interference RNA (siRNA) to target the CSE gene and investigated its effect in a mouse model of acute pancreatitis. Acute pancreatitis is characterised by increased levels of plasma amylase, myeloperoxidase (MPO) activity and pro-inflammatory cytokines and chemokines in the pancreas and lung. SiRNA treatment attenuated inflammation in the pancreas and lungs of mice following caerulein-induced acute pancreatitis. MPO activity increased in caerulein-induced acute pancreatitis (16.21 ± 3.571 SD fold increase over control) and treatment with siRNA significantly reduced this (mean 3.555 ± 2.522 SD fold increase over control) (p < 0.0001). Similarly, lung MPO activity increased following treatment with caerulein (3.56 ± 0.941 SD fold increase over control) while siRNA treatment significantly reduced MPO activity (0.8243 ± 0.4353 SD fold increase over control) (p < 0.0001). Caerulein treatment increased plasma amylase activity (7094 ± 207 U/l) and this significantly decreased following siRNA administration (5895 ± 115 U/l) (p < 0.0001). Cytokine and chemokine levels in caerulein-induced acute pancreatitis reduced following treatment with siRNA. For example, siRNA treatment significantly decreased pancreatic and lung monocyte chemoattractant protein (MCP)-1 (169.8 ± 59.75 SD; 90.01 ± 46.97 SD pg/ml, respectively) compared to caerulein-treated mice (324.7 ± 103.9 SD; 222.8 ± 85.37 SD pg/ml, pancreas and lun,g respectively) (p < 0.0001). These findings show a crucial pro-inflammatory role for H2S synthesised by CSE in macrophages in acute pancreatitis and suggest CSE gene silencing with siRNA as a potential therapeutic approach for this condition.


Subject(s)
Cystathionine gamma-Lyase/antagonists & inhibitors , Cystathionine gamma-Lyase/genetics , Hydrogen Sulfide/metabolism , Inflammation Mediators/metabolism , Monocytes/enzymology , Pancreatitis, Acute Necrotizing/prevention & control , RNA, Small Interfering/metabolism , Amylases/blood , Animals , Blood Chemical Analysis , Ceruletide/administration & dosage , Ceruletide/toxicity , Cytokines/blood , Disease Models, Animal , Gene Silencing , Lung/pathology , Mice , Monocytes/immunology , Pancreas/pathology , Pancreatitis, Acute Necrotizing/chemically induced , Pancreatitis, Acute Necrotizing/pathology , Peroxidase/analysis
6.
Cell Physiol Biochem ; 33(5): 1411-25, 2014.
Article in English | MEDLINE | ID: mdl-24853800

ABSTRACT

UNLABELLED: BACKGOUND/AIMS: The injection of cerulein, an analogue of the pancreatic secretagogue cholecystokinin (CCK), induces acute pancreatitis in mice that is accompanied by the synthesis of the transcription factor Egr-1. The signaling cascade that connects cerulein stimulation with enhanced Egr-1 biosynthesis was analyzed. METHODS: AR42J rat pancreatic acinar cells were used as a model system to measure cerulein-induced Egr-1 biosynthesis. For comparison, the signaling cascade induced by activation of Gαq-coupled designer receptors with the designer drug clozapine-N-oxide (CNO) was investigated. RESULTS: Stimulation of AR42J cells with cerulein induced a robust and transient biosynthesis of Egr-1. The signaling cascade connecting cerulein stimulation with Egr-1 gene expression required elevated levels of cytosolic Ca(2+) and the activation of the protein kinases PKC, Raf and ERK, while expression of MKP-1 prevented Egr-1 biosynthesis in cerulein-stimulated AR42J cells. In addition, ternary complex factors are required to connect cerulein stimulation with enhanced transcription of the Egr-1 gene. Egr-1 biosynthesis induced in CNO-stimulated AR42J pancreatic acinar cells expressing Gαq-coupled designer receptors required identical signaling molecules, although subtle differences were observed in comparison to cerulein/CCK receptor signaling. CONCLUSION: We propose that overstimulation of the canonical Gαq-induced signaling pathway may be crucial for inducing acute pancreatitis.


Subject(s)
Acinar Cells/drug effects , Acinar Cells/metabolism , Ceruletide/pharmacology , Cholecystokinin/metabolism , Early Growth Response Protein 1/biosynthesis , Pancreas/cytology , Pancreas/drug effects , Receptors, G-Protein-Coupled/metabolism , Animals , Cells, Cultured , Ceruletide/administration & dosage , Pancreas/metabolism , Rats , Signal Transduction/drug effects
7.
Dig Dis Sci ; 58(10): 2908-17, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23918150

ABSTRACT

BACKGROUND/AIM: We have previously reported that bee venom (BV) has a protective role against acute pancreatitis (AP). However, the effects of apamin, the major compound of BV, on AP have not been determined. The aim of this study was to evaluate the effects of apamin on cerulein-induced AP. METHODS: AP was induced via intraperitoneal injection of supramaximal concentrations of the stable cholecystokinin analogue cerulein (50 µg/kg) every hour for 6 times. In the apamin treatment group, apamin was administered subcutaneously (10, 50, or 100 µg/kg) at both 18 and 1 h before the first cerulein injection. The mice were sacrificed at 6 h after the final cerulein injection. Blood samples were obtained to determine serum amylase and lipase levels, as well as cytokine production. The pancreas and lung were rapidly removed for morphologic and histological examination, myeloperoxidase (MPO) assay, and real-time reverse transcription-polymerase chain reaction. Furthermore, we isolated the pancreatic acinar cells to specify the role of apamin in AP. RESULTS: Pre-treatment with apamin inhibited histological damage, pancreatic weight/body weight ratio, serum level of amylase and lipase, MPO activity, and cytokine production. In addition, apamin treatment significantly inhibited cerulein-induced pancreatic acinar cell death. Furthermore, apamin treatment inhibited the cerulein-induced activation of c-Jun NH2-terminal kinases (JNK). CONCLUSIONS: These results could suggest that apamin could protect against AP by inhibition of JNK activation.


Subject(s)
Apamin/pharmacology , Apamin/therapeutic use , Ceruletide/adverse effects , MAP Kinase Signaling System/drug effects , Pancreatitis/chemically induced , Pancreatitis/prevention & control , Acute Disease , Animals , Apamin/administration & dosage , Ceruletide/administration & dosage , Cholecystokinin/analogs & derivatives , Cytokines/metabolism , Disease Models, Animal , Injections, Intraperitoneal , Injections, Subcutaneous , MAP Kinase Signaling System/physiology , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase Kinases/metabolism , NF-kappa B/metabolism , Pancreas/drug effects , Pancreas/metabolism , Pancreas/pathology
8.
Am J Physiol Gastrointest Liver Physiol ; 303(6): G696-704, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22837343

ABSTRACT

Clinical studies indicate that cigarette smoking increases the risk for developing acute pancreatitis. The nicotine metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a major cigarette smoke toxin. We hypothesized that NNK could sensitize to pancreatitis and examined its effects in isolated rat pancreatic acini and in vivo. In acini, 100 nM NNK caused three- and fivefold activation of trypsinogen and chymotrypsinogen, respectively, above control. Furthermore, NNK pretreatment in acini enhanced zymogen activation in a cerulein pancreatitis model. The long-term effects of NNK were examined in vivo after intraperitoneal injection of NNK (100 mg/kg body wt) three times weekly for 2 wk. NNK alone caused zymogen activation (6-fold for trypsinogen and 2-fold for chymotrypsinogen vs. control), vacuolization, pyknotic nuclei, and edema. This NNK pretreatment followed by treatment with cerulein (40 µg/kg) for 1 h to induce early pancreatitis responses enhanced trypsinogen and chymotrypsinogen activation, as well as other parameters of pancreatitis, compared with cerulein alone. Potential targets of NNK include nicotinic acetylcholine receptors and ß-adrenergic receptors; mRNA for both receptor types was detected in acinar cell preparations. Studies with pharmacological inhibitors of these receptors indicate that NNK can mediate acinar cell responses through an nonneuronal α(7)-nicotinic acetylcholine receptor (α(7)-nAChR). These studies suggest that prolonged exposure to this tobacco toxin can cause pancreatitis and sensitize to disease. Therapies targeting NNK-mediated pathways may prove useful in treatment of smoking-related pancreatitis.


Subject(s)
Carcinogens/toxicity , Nitrosamines/toxicity , Pancreas/drug effects , Pancreatitis/chemically induced , Animals , Atropine/pharmacology , Carcinogens/administration & dosage , Cells, Cultured , Ceruletide/administration & dosage , Ceruletide/toxicity , Edema/chemically induced , Enzyme Precursors/genetics , Enzyme Precursors/metabolism , L-Lactate Dehydrogenase/metabolism , Male , Mecamylamine/pharmacology , Nitrosamines/administration & dosage , Rats , Rats, Sprague-Dawley , Receptors, Adrenergic, beta/genetics , Receptors, Adrenergic, beta/metabolism , Receptors, Nicotinic/metabolism , Sincalide/analogs & derivatives , Sincalide/pharmacology , Nicotiana/chemistry , alpha7 Nicotinic Acetylcholine Receptor
9.
J Immunol Res ; 2021: 5123823, 2021.
Article in English | MEDLINE | ID: mdl-34485535

ABSTRACT

Acute pancreatitis (AP) is one of the leading causes of hospital admission, 20% of which could progress to the severe type with extensive acinar cell necrosis. Clinical studies have reported that diabetes is an independent risk factor of the incidence of AP and is associated with higher severity than nondiabetic subjects. However, how diabetes participates in AP progression is not well defined. To investigate this question, wild-type (wt) and diabetic db/db mice at the age of 16 weeks were used in the study. AP was induced in wt recipients by 10 injections of 50 µg/kg caerulein with a 1 h interval. One hour after the last caerulein injection, bone marrow cells (BMC) isolated from wt and db/db mice were injected intraperitoneally into the recipients (1 × 107cells/recipient). The recipients with no BMC injection served as controls. Thirteen hours after BMC injection, serum lipase activity was 1.8- and 1.3-folds higher in mice that received db/db BMC, compared with those with no injection and wt BMC injection, respectively (p ≤ 0.02 for both). By H&E staining, the overall severity score was 14.7 for no cell injection and 16.6 for wt BMC injection and increased to 22.6 for db/db BMC injection (p ≤ 0.002 for both). In particular, mice with db/db BMC injection developed more acinar cell necrosis and vacuolization than the other groups (p ≤ 0.03 for both). When sections were stained with an antibody against myeloperoxidase (MPO), the density of MPO+ cells in pancreatitis was 1.9- and 1.6-folds higher than wt BMC and no BMC injection groups, separately (p ≤ 0.02 for both). Quantified by ELISA, db/db BMC produced more IL-6, GM-CSF, and IL-10 compared with wt BMC (p ≤ 0.04 for all). In conclusion, BMC of db/db mice produced more inflammatory cytokines. In response to acinar cell injury, diabetic BMC aggravated the inflammation cascade and acinar cell injury, leading to the progression of acute pancreatitis.


Subject(s)
Bone Marrow Cells/immunology , Diabetes Complications/immunology , Pancreatitis/immunology , Animals , Bone Marrow Cells/metabolism , Bone Marrow Transplantation , Ceruletide/administration & dosage , Ceruletide/toxicity , Cytokines/metabolism , Diabetes Complications/pathology , Disease Models, Animal , Disease Progression , Humans , Injections, Intraperitoneal , Male , Mice , Necrosis , Pancreas/drug effects , Pancreas/immunology , Pancreas/pathology , Pancreatitis/chemically induced , Pancreatitis/pathology
10.
J Surg Res ; 162(2): 193-202, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20006347

ABSTRACT

INTRODUCTION: Severe acute pancreatitis is a life threatening disease with a high rate of mortality, and its treatments are still controversial. The purpose of this study is to investigate the potential effects of proteasome inhibitor PS-341 on severe acute pancreatitis induced by cerulein and lipopolysaccharide in mice. MATERIALS AND METHODS: Severe acute pancreatitis was induced by seven intraperitoneal injections of 50 ug/kg cerulein at hourly intervals and one injection of 10mg/kg lipopolysaccharide in mice. Thirty min before the administration of lipopolysaccharide, mice were treated either with PS-341 or vehicle. The severity of acute pancreatitis was then evaluated by serum and pancreatic biochemical assays as well as histologic examination. Positron emission tomography (PET) was used for the first time to determine the therapeutic effects of interventions in situ. RESULTS: PS-341 significantly inhibited NF-kappaB activation, while the pancreatic cell apoptosis was significantly enhanced, resulting in the improved parameters such as serum amylase, C-reactive protein, lactate dehydrogenase, interleukin-1beta, interleukin-6, and pancreatic myeloperoxidase activity. Accordingly, pancreatic damage, including inflammatory cell infiltration, hemorrhage, and necrosis, was markedly reduced. (18)F-fluorodeoxyglucose-positron emission tomography demonstrated that PS-341 significantly reduced the uptake of (18)F-fluorodeoxyglucose within the pancreas. CONCLUSIONS: These observations demonstrate that PS-341 was able to significantly reduce the severity of acute pancreatitis induced by cerulein and lipopolysaccharide in mice. The potential effect is associated with the inhibition of NF-kappaB activation and increased pancreatic cell apoptosis within the pancreas. (18)F-fluorodeoxyglucose-positron emission tomography could be a sensitive and promising means in evaluating the therapeutic effect and adjusting medical interventions for pancreatitis.


Subject(s)
Boronic Acids/pharmacology , Pancreatitis/pathology , Pyrazines/pharmacology , Amylases/blood , Animals , Apoptosis , Bortezomib , C-Reactive Protein/metabolism , Ceruletide/administration & dosage , Female , Inflammation/diagnostic imaging , Inflammation/pathology , Interleukin-1beta/blood , L-Lactate Dehydrogenase/blood , Mice , Mice, Inbred ICR , Pancreatitis/chemically induced , Pancreatitis/diagnostic imaging , Pancreatitis/drug therapy , Positron-Emission Tomography , Protease Inhibitors/pharmacology , Radiography
11.
J S Afr Vet Assoc ; 81(1): 27-32, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20649151

ABSTRACT

The effect of cholecystokinin (CCK) upon the intestinal motility has not been entirely explored in ruminants. The aim of this study was to examine the precise effects of CCK amphibian analogue, cerulein, on small-intestinal myoelectric activity in rams in the course of chronic experiments. Five rams underwent implantation of bipolar platinum electrodes to the duodenal bulb, the distal duodenum and jejunum. During continuous myoelectrical and motor recordings, 0.15 M NaCl or the various doses of cerulein were administered intravenously. Short infusions of the smallest dose of cerulein exerted a slight and mostly insignificant effect on the duodenalbulb and the duodenal myoelectric activity index (MAI) values. In the duodenal bulb, the effects of cerulein on myoelectric activity were dose-dependent and closely related to the phase of the MMC. In the duodenum, the higher doses of the hormone evoked short stimulatory response followed by longer inhibitory biphasic effects on MAI. These effects were inversely related to the duration of hormone injection. Infusions of hormones at the higher doses caused a less pronounced biphasic effect. It is concluded that cerulein exerts an inhibitory effect upon the myoelectric activity of the duodenal bulb and a strong stimulatory and inhibitory (biphasic) effect on duodenal motility in sheep.


Subject(s)
Ceruletide/administration & dosage , Gastrointestinal Motility/drug effects , Intestine, Small/drug effects , Myoelectric Complex, Migrating/drug effects , Sheep/physiology , Animals , Dose-Response Relationship, Drug , Gastrointestinal Motility/physiology , Infusions, Intravenous/veterinary , Intestine, Small/physiology , Male , Myoelectric Complex, Migrating/physiology
12.
Theranostics ; 10(18): 8298-8314, 2020.
Article in English | MEDLINE | ID: mdl-32724472

ABSTRACT

Background: There is no curative therapy for severe acute pancreatitis (SAP) due to poor understanding of its molecular mechanisms. Endoplasmic reticulum (ER) stress is involved in SAP and increased expression of ATF6 has been detected in SAP patients. Here, we aimed to investigate the role of ATF6 in a preclinical SAP mouse model and characterize its regulatory mechanism. Methods: Pancreatic tissues of healthy and SAP patients were collected during surgery. Humanized PRSS1 transgenic mice were treated with caerulein to mimic the SAP development, which was crossed to an ATF6 knockout mouse line, and pancreatic tissues from the resulting pups were screened by proteomics. Adenovirus-mediated delivery to the pancreas of SAP mice was used for shRNA-based knockdown or overexpression. The potential functions and mechanisms of ATF6 were clarified by immunofluorescence, immunoelectron microscopy, Western blotting, qRT-PCR, ChIP-qPCR and luciferase reporter assay. Results: Increased expression of ATF6 was associated with elevated apoptosis, ER and mitochondrial disorder in pancreatic tissues from SAP patients and PRSS1 mice. Knockout of ATF6 in SAP mice attenuated acinar injury, apoptosis and ER disorder. AIFM2, known as a p53 target gene, was identified as a downstream regulatory partner of ATF6, whose expression was increased in SAP. Functionally, AIFM2 could reestablish the pathological disorder in SAP tissues in the absence of ATF6. p53 expression was also increased in SAP mice, which was downregulated by ATF6 knockout. p53 knockout significantly suppressed acinar apoptosis and injury in SAP model. Mechanistically, ATF6 promoted AIFM2 transcription by binding to p53 and AIFM2 promoters. Conclusion: These results reveal that ATF6/p53/AIFM2 pathway plays a critical role in acinar apoptosis during SAP progression, highlighting novel therapeutic target molecules for SAP.


Subject(s)
Activating Transcription Factor 6/metabolism , Apoptosis Regulatory Proteins/genetics , Mitochondrial Proteins/genetics , Pancreas/pathology , Pancreatitis/genetics , Tumor Suppressor Protein p53/genetics , Acinar Cells/pathology , Activating Transcription Factor 6/genetics , Adult , Animals , Apoptosis/genetics , Case-Control Studies , Ceruletide/administration & dosage , Ceruletide/toxicity , Disease Models, Animal , Endoplasmic Reticulum Stress , Female , Gene Knockdown Techniques , Humans , Male , Mice, Knockout , Middle Aged , Pancreas/cytology , Pancreatitis/chemically induced , Pancreatitis/pathology , Transcriptional Activation , Trypsin/genetics
13.
Biochim Biophys Acta Mol Basis Dis ; 1866(12): 165971, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32950676

ABSTRACT

Acute pancreatitis (AP) is associated with impaired acinar cell autophagic flux, intracellular zymogen activation, cell necrosis and inflammation. Activation of the cholinergic system of vagus nerve has been shown to attenuate AP, but the effect of organ-intrinsic cholinergic system on pancreatitis remains unknown. In this study, we aim to examine the effect of α7 nicotinic acetylcholine receptor (α7nAChR) stimulation within the pancreas during AP. In vivo, AP was induced by caerulein plus LPS or ethanol plus palmitoleic acid in mice. In vitro, pancreatic acini were isolated and subjected to cholecystokinin (CCK) stimulation. Mice or acini were pre-treated with PNU-282987 (selective α7nAChR agonist) or methyllycaconitine citrate salt (selective α7nAChR antagonist). Pancreatitis severity, acinar cell injury, autophagic flux, and transcription factor EB (TFEB) pathway were analyzed. Both caerulein plus LPS in vivo and CCK in vitro led to an up-regulation of α7nAChR, indicating activation of pancreas-intrinsic α7nAChR signaling during AP. PNU-282987 decreased acinar cell injury, trypsinogen activation and pancreatitis severity. Conversely, methyllycaconitine citrate salt increased acinar cell injury and aggravated AP. Moreover, activation of α7nAChR by PNU-282987 promoted autophagic flux as indicated by reduced p62, increased LysoTracker staining and decreased number of autolysosomes with undegraded contents. Furthermore, PNU-282987 treatment significantly increased TFEB activity in pancreatic acinar cells. α7nAChR activation also attenuated pancreatic inflammation and NF-κB activation. Our results showed that activation of α7nAChR protected against experimental pancreatitis through enhancing TFEB-mediated acinar cell autophagy, suggesting that activation of pancreas-intrinsic α7nAChR may serve as an endogenous protective mechanism during AP.


Subject(s)
Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Pancreatitis/metabolism , alpha7 Nicotinic Acetylcholine Receptor/agonists , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Aconitine/administration & dosage , Aconitine/analogs & derivatives , Aconitine/pharmacology , Animals , Autophagy/drug effects , Benzamides/administration & dosage , Benzamides/pharmacology , Bridged Bicyclo Compounds/administration & dosage , Bridged Bicyclo Compounds/pharmacology , Ceruletide/administration & dosage , Ethanol/administration & dosage , Fatty Acids, Monounsaturated/administration & dosage , Injections, Intraperitoneal , Lipopolysaccharides/administration & dosage , Male , Mice , Mice, Inbred BALB C , Pancreatitis/chemically induced , Pancreatitis/drug therapy , Signal Transduction/drug effects , alpha7 Nicotinic Acetylcholine Receptor/antagonists & inhibitors
14.
Clin Transl Gastroenterol ; 11(5): e00152, 2020 05.
Article in English | MEDLINE | ID: mdl-32358238

ABSTRACT

INTRODUCTION: Acute pancreatitis (AP) is a healthcare challenge with considerable mortality. Treatment is limited to supportive care, highlighting the need to investigate disease drivers and prognostic markers. Activin A is an established mediator of inflammatory responses, and its serum levels correlate with AP severity. We hypothesized that activin A is independent of body mass index (BMI) and is a targetable promoter of the AP inflammatory response. METHODS: We assessed whether BMI and serum activin A levels are independent markers to determine disease severity in a cohort of patients with AP. To evaluate activin A inhibition as a therapeutic, we used a cerulein-induced murine model of AP and treated mice with activin A-specific neutralizing antibody or immunoglobulin G control, both before and during the development of AP. We measured the production and release of activin A by pancreas and macrophage cell lines and observed the activation of macrophages after activin A treatment. RESULTS: BMI and activin A independently predicted severe AP in patients. Inhibiting activin A in AP mice reduced disease severity and local immune cell infiltration. Inflammatory stimulation led to activin A production and release by pancreas cells but not by macrophages. Macrophages were activated by activin A, suggesting activin A might promote inflammation in the pancreas in response to injury. DISCUSSION: Activin A provides a promising therapeutic target to interrupt the cycle of inflammation and tissue damage in AP progression. Moreover, assessing activin A and BMI in patients on hospital admission could provide important predictive measures for screening patients likely to develop severe disease.


Subject(s)
Activins/metabolism , Anti-Inflammatory Agents/pharmacology , Pancreas/pathology , Pancreatitis/diagnosis , Severity of Illness Index , Activins/antagonists & inhibitors , Activins/blood , Activins/immunology , Animals , Anti-Inflammatory Agents/therapeutic use , Biomarkers/blood , Biomarkers/metabolism , Body Mass Index , Cell Line , Ceruletide/administration & dosage , Ceruletide/toxicity , Cohort Studies , Disease Models, Animal , Drug Evaluation, Preclinical , Female , Humans , Macrophage Activation/immunology , Macrophages , Mice , Pancreas/drug effects , Pancreas/immunology , Pancreatitis/blood , Pancreatitis/drug therapy , Pancreatitis/immunology , Patient Admission , Predictive Value of Tests
15.
Biochem Pharmacol ; 177: 113992, 2020 07.
Article in English | MEDLINE | ID: mdl-32335141

ABSTRACT

IL-17A combined with TNF-α plays a vital role in inflammatory response and interference of the synergistic effect is an effective strategy for treating inflammatory diseases. Ellipticine, a natural alkaloid, has biological activities on anti-tumor and anti-HIV. However, it is still unknown whether ellipticine can inhibit IL-17A and TNF-α-mediated signaling and has treatment effect on PALI. Here, we reported that ellipticine significantly inhibited the production of pro-inflammatory cytokines and chemokines in pulmonary epithelial cell BEAS-2B treated with IL-17A and TNF-α, but not IL-17A or TNF-α alone. Meanwhile, ellipticine attenuated NF-κB and MAPKs activation in response to IL-17A and TNF-α treatment, inhibited Act1 and TRAF6-mediated NF-κB activation, and blocked the interaction of Act1 with TRAF6. Furthermore, we found that ellipticine significantly alleviated CAE and LPS-induced SAP/PALI. Ellipticine treatment dramatically reduced inflammatory cells infiltration, MPO activity, serum amylase and lipase activity and the protein concentration of BALF. Collectively, our findings indicate that ellipticine inhibits the synergistic effect of IL-17A and TNF-α by targeting on Act1 and TRAF6 interaction and is a potential therapeutic agent for the treatment of SAP/PALI.


Subject(s)
Acute Lung Injury/drug therapy , Anti-Inflammatory Agents/pharmacology , Ellipticines/pharmacology , Interleukin-17/antagonists & inhibitors , Pancreatitis/drug therapy , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Acute Lung Injury/chemically induced , Acute Lung Injury/complications , Acute Lung Injury/genetics , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Amylases/antagonists & inhibitors , Amylases/genetics , Amylases/metabolism , Animals , Cell Line, Transformed , Ceruletide/administration & dosage , Disease Models, Animal , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Gene Expression Regulation , HEK293 Cells , Humans , Interleukin-17/pharmacology , Lipase/antagonists & inhibitors , Lipase/genetics , Lipase/metabolism , Lipopolysaccharides/administration & dosage , Male , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/antagonists & inhibitors , NF-kappa B/genetics , NF-kappa B/metabolism , Pancreatitis/chemically induced , Pancreatitis/complications , Pancreatitis/genetics , Peroxidase/antagonists & inhibitors , Peroxidase/genetics , Peroxidase/metabolism , Signal Transduction , TNF Receptor-Associated Factor 6/antagonists & inhibitors , TNF Receptor-Associated Factor 6/genetics , TNF Receptor-Associated Factor 6/metabolism , Tumor Necrosis Factor-alpha/pharmacology
16.
Am J Physiol Gastrointest Liver Physiol ; 297(5): G981-9, 2009 Nov.
Article in English | MEDLINE | ID: mdl-20501446

ABSTRACT

The objective of this study was to investigate the role of MAPKAP kinase 2 (MK2) and heat shock protein (HSP) HSP60 in the pathogenesis of a new model of severe acute pancreatitis (AP). MK2 plays a significant role in the regulation of cytokines. It has been shown that induction and expression of several HSPs can protect against experimental pancreatitis. Interplay between both systems seems of high interest. Mice with a homozygous deletion of the MK2 gene were used. Severe AP was induced by combined intraperitoneal injections of cerulein with lipopolysaccharide (LPS). Severity of AP was assessed by biochemical markers and histology. The serum IL-6 and lung myeloperoxidase (MPO) levels were determined for assessing the extent of systemic inflammatory response. Expression of HSP25, HSP60, HSP70, and HSP90 was analyzed by Western blotting. Repeated injections of cerulein alone or cerulein plus LPS (Cer+LPS) resulted in local inflammatory responses in the pancreas and corresponding systemic inflammatory changes with pronounced severity in the Cer+LPS group. Compared with the C57Bl wild-type mice, the MK2-/- mice presented with significant milder pancreatitis and attenuated responses of serum amylase and trypsinogen activity. Furthermore, serum IL-6 was decreased as well as lung MPO activity. Injection of LPS alone displayed neither pancreatic inflammatory responses nor alterations of pancreatic enzyme activities but evidently elevated serum IL-6 levels and increased lung MPO activity. In contrast hereto, in the MK2-/- mice, these changes were much milder. Increased expression of HSP25 and HSP60 occurred after induction of AP. Especially, HSP60 was robustly elevated after Cer+LPS treatment, in both MK2-/- and wild-type mice. Thus the homozygous deletion of the MK2 gene ameliorates the severity of acute pancreatitis and accompanying systemic inflammatory reactions in a new model of severe acute pancreatitis. Our data support the hypothesis that MK2 participates in the multifactorial regulation of early inflammatory responses in AP, independently of the regulation of stress proteins like HSP25 and HSP60 and most likely due to its effect on cytokine regulation.


Subject(s)
Chaperonin 60/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Pancreatitis/chemically induced , Pancreatitis/metabolism , Protein Serine-Threonine Kinases/genetics , Animals , Ceruletide/administration & dosage , Ceruletide/pharmacology , Gene Deletion , Heat-Shock Proteins/metabolism , Interleukin-6/blood , Lipopolysaccharides/administration & dosage , Lipopolysaccharides/pharmacology , Lung/drug effects , Lung/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Chaperones , Neoplasm Proteins/metabolism , Pancreas/drug effects , Pancreas/metabolism , Pancreas/pathology , Pancreatic alpha-Amylases/metabolism , Pancreatitis/pathology , Peroxidase/metabolism , Trypsinogen/metabolism
17.
FEBS Open Bio ; 9(10): 1756-1768, 2019 10.
Article in English | MEDLINE | ID: mdl-31380604

ABSTRACT

Tamoxifen is very successfully used for the induction of CreERT -mediated genomic recombination in conditional mouse models. Recent studies, however, indicated that tamoxifen might also affect the fibrotic response in several disease models following administration, both in vitro and in vivo. In order to investigate a possible effect of tamoxifen on pancreatic fibrogenesis and to evaluate an optimal treatment scheme in an experimental pancreatitis mouse model, we administered tamoxifen by oral gavage to both male and female C57BL/6J mice and then waited for different periods of time before inducing chronic pancreatitis by cerulein. We observed a sex-specific and time-dependent effect of tamoxifen on the fibrotic response as measured by collagen deposition and the number of myofibroblasts and macrophages. The findings of in vitro studies, in which cerulein was administrated with or without 4-hydroxytamoxifen to stimulate primary murine female and male pancreatic stellate cells, supported our in vivo observations. Real-time PCR also indicated that this effect may be related to differences in ERα expression between female and male stellate cells. Our data demonstrate that tamoxifen administration has unignorable side effects, which affect the experimental outcome in a cerulein-based model of chronic pancreatitis in mice. We suggest a 2-week waiting period before cerulein administration to reduce side effects to a minimum for the described fibrosis model in female mice.


Subject(s)
Disease Models, Animal , Fibrosis/drug therapy , Pancreatitis, Chronic/drug therapy , Tamoxifen/pharmacology , Administration, Oral , Animals , Ceruletide/administration & dosage , Female , Fibrosis/chemically induced , Male , Mice , Mice, Inbred C57BL , Pancreatitis, Chronic/chemically induced , Tamoxifen/administration & dosage
18.
Int Immunopharmacol ; 69: 225-234, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30738992

ABSTRACT

Heme oxygenase-1 (HO-1) has an anti-inflammatory action in acute pancreatitis (AP). However, its mechanism of action and natural compounds/drugs to induce HO-1 in pancreas are not well understood. In this study, we investigated the regulatory mechanisms of HO-1 during AP using desoxo-narchinol-A (DN), the natural compound inducing HO-1 in the pancreas. Female C57/BL6 Mice were intraperitoneally injected with supramaximal concentrations of cerulein (50 µg/kg) hourly for 6 h to induce AP. DMSO or DN was administered intraperitoneally, then mice were sacrificed 6 h after the final cerulein injection. Administration of DN increased pancreatic HO-1 expression through activation of activating protein-1, mediated by mitogen-activated protein kinases. Furthermore, DN treatment reduced the pancreatic weight-to-body weight ratio as well as production of digestive enzymes and pro-inflammatory cytokines. Inhibition of HO-1 by tin protoporphyrin IX abolished the protective effects of DN on pancreatic damage. Additionally, DN treatment inhibited neutrophil infiltration into the pancreas via regulation of chemokine (C-X-C motif) ligand 2 (CXCL2) by HO-1. Our results suggest that DN is an effective inducer of HO-1 in the pancreas, and that HO-1 regulates neutrophil infiltration in AP via CXCL2 inhibition.


Subject(s)
Chemokine CXCL2/metabolism , Heme Oxygenase-1/metabolism , Neutrophils/physiology , Pancreas/metabolism , Pancreatitis/metabolism , Acute Disease , Amylases/blood , Animals , Ceruletide/administration & dosage , Cytokines/metabolism , Disease Models, Animal , Female , Humans , Inflammation Mediators/metabolism , Mice , Mice, Inbred C57BL , Naphthols/metabolism , Neutrophil Infiltration , Pancreas/pathology , Pancreatitis/pathology
19.
Int Immunopharmacol ; 69: 169-177, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30716587

ABSTRACT

Inflammasomes promote the production of pro-inflammatory cytokines, such as interleukin (IL)-1ß and IL-18, which are the representative mediators of inflammation. Abnormal activation of inflammasomes leads to the development of inflammatory diseases such as acute pancreatitis (AP). In this study, we demonstrate the inhibitory effects of a new natural compound fraxinellone on inflammasome formation and examine the role of inflammasomes in a mouse model of AP. AP was induced with hourly intraperitoneal injections of supramaximal concentrations of the stable cholecystokinin analogue cerulein (50 µg/kg) for 6 h. Mice were sacrificed 6 h after the final cerulein injection. Blood and pancreas samples were obtained for further experiments. Intraperitoneal injection of fraxinellone significantly inhibited the pancreatic activation of multiple inflammasome molecules such as NACHT, LRR and PYD domains-containing protein 3 (NLRP3), PY-CARD, caspase-1, IL-18, and IL-1ß during AP. In addition, fraxinellone treatment inhibited pancreatic injury, elevation in serum amylase and lipase activities, and infiltration of inflammatory cells such as neutrophils and macrophages but had no effect on pancreatic edema. To investigate whether inflammasome activation leads to the infiltration of inflammatory cells, we used parthenolide, a well-known natural inhibitor, and IL-1 receptor antagonist mice. The inhibition of inflammasome activation by pharmacological/or genetic modification restricted the infiltration of inflammatory cells, but not edema, consistent with the results observed with fraxinellone. Taken together, our study highlights fraxinellone as a natural inhibitor of inflammasomes and that inflammasome inhibition may lead to the suppression of inflammatory cells during AP.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Benzofurans/therapeutic use , Inflammasomes/metabolism , Inflammation/drug therapy , Macrophages/immunology , Neutrophils/immunology , Pancreatitis/drug therapy , Acute Disease , Animals , Cell Movement/drug effects , Ceruletide/administration & dosage , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Inbred C57BL
20.
Biochem Biophys Res Commun ; 367(1): 176-82, 2008 Feb 29.
Article in English | MEDLINE | ID: mdl-18166146

ABSTRACT

C/EBP homologous protein (CHOP) is one of the main mediating factors in the ER stress pathway. To elucidate the role of the ER stress-CHOP pathway in experimental pancreatitis, wild-type (Chop(+/+)) and Chop deficient (Chop(-/-)) mice were administered cerulein, a cholecystokinin analogue, or both cerulein and lipopolysaccharide (LPS). In cerulein-induced acute pancreatitis, ER stress, serum amylase elevation and histological interstitial edema were induced. However, there was no remarkable activation downstream of the CHOP pathway regardless of the presence or absence of CHOP. Whereas, in the cerulein and LPS model, inflammation-associated caspases (caspase-11, caspase-1) and IL-1beta, but not apoptosis-associated caspases, were activated. In Chop(-/-) mice, the expression levels of these mediators returned to basal levels resulting in a milder pancreatitis and decreased serum amylase level. These results indicated that the ER stress-CHOP pathway has a pivotal role in the acceleration of pancreatitis through the induction of inflammation-associated caspases and IL-1beta.


Subject(s)
Pancreatitis/metabolism , Pancreatitis/pathology , Transcription Factor CHOP/metabolism , Amylases/metabolism , Animals , Apoptosis/physiology , Base Sequence , Blotting, Western , Ceruletide/administration & dosage , Disease Models, Animal , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/pathology , Interleukin-1beta/metabolism , Lipopolysaccharides/administration & dosage , Mice , Mice, Inbred C57BL , Pancreatitis/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL