Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters

Publication year range
1.
Br J Cancer ; 130(8): 1402-1413, 2024 May.
Article in English | MEDLINE | ID: mdl-38467828

ABSTRACT

BACKGROUND: Primary resistance to anti-EGFR therapies affects 40% of metastatic colorectal cancer patients harbouring wild-type RAS/RAF. YAP1 activation is associated with this resistance, prompting an investigation into AURKA's role in mediating YAP1 phosphorylation at Ser397, as observed in breast cancer. METHODS: We used transcriptomic analysis along with in vitro and in vivo models of RAS/RAF wild-type CRC to study YAP1 Ser397 phosphorylation as a potential biomarker for cetuximab resistance. We assessed cetuximab efficacy using CCK8 proliferation assays and cell cycle analysis. Additionally, we examined the effects of AURKA inhibition with alisertib and created a dominant-negative YAP1 Ser397 mutant to assess its impact on cancer stem cell features. RESULTS: The RAS/RAF wild-type CRC models exhibiting primary resistance to cetuximab prominently displayed elevated YAP1 phosphorylation at Ser397 primarily mediated by AURKA. AURKA-induced YAP1 phosphorylation was identified as a key trigger for cancer stem cell reprogramming. Consequently, we found that AURKA inhibition had the capacity to effectively restore cetuximab sensitivity and concurrently suppress the cancer stem cell phenotype. CONCLUSIONS: AURKA inhibition holds promise as a therapeutic approach to overcome cetuximab resistance in RAS/RAF wild-type colorectal cancer, offering a potential means to counter the development of cancer stem cell phenotypes associated with cetuximab resistance.


Subject(s)
Aurora Kinase A , Colorectal Neoplasms , Humans , Cetuximab/pharmacology , Cetuximab/metabolism , Aurora Kinase A/genetics , Antibodies, Monoclonal, Humanized/therapeutic use , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Mutation , Proto-Oncogene Proteins p21(ras)/genetics
2.
Exp Eye Res ; 238: 109715, 2024 01.
Article in English | MEDLINE | ID: mdl-37951338

ABSTRACT

This study aimed to examine the intraocular tolerability of the epidermal growth factor receptor antibody cetuximab, when applied intravitreally, and its effect on axial elongation. Guinea pigs aged 2-3 weeks were subjected to bilateral plano glasses and bilateral lens-induced myopization (LIM) as a single procedure for group I (n = 8) and group II (n = 8), respectively. In the animals of group III (n = 8), group IV (n = 8), and group V (n = 8), the right eyes of the animals, in addition to LIM, received four weekly intravitreal injections of cetuximab (Erbitux®) in doses of 6.25 µg, 12.5 µg, and 25 µg, respectively. As controls, the left eyes, in addition to LIM, received corresponding intraocular injections of phosphate-buffered saline. The animals underwent regular ophthalmoscopic examinations and biometry for axial length measurements. With increasing doses of cetuximab, the inter-eye difference in axial elongation (at study end, left eyes minus right eyes) were significantly the smallest in group I (0.00 ± 0.02 mm) and group II (-0.01 ± 0.02 mm), they were larger in group III (0.04 ± 0.04 mm) and group IV (0.10 ± 0.03 mm), and they were the largest in group V (0.11 ± 0.01 mm). The inter-eye difference in axial elongation enlarged (P < 0.001) with the number of injections applied. Retinal thickness at the posterior pole (right eyes) was significantly thicker in group V than in group II (P < 0.01). The density of apoptotic cells (visualized by TUNEL-staining) did not vary significantly between any of the groups (all P > 0.05). The results suggest that intravitreal injections of cetuximab in young guinea pigs with LIM resulted in a reduction in axial elongation in a dose-dependent and number of treatment-dependent manner. Intraocular toxic effects, such as intraocular inflammation, retinal thinning, or an increased density of apoptotic cells in the retina, were not observed in association with the intravitreally applied cetuximab.


Subject(s)
Lens, Crystalline , Myopia , Guinea Pigs , Animals , Myopia/metabolism , Cetuximab/toxicity , Cetuximab/metabolism , Retina/metabolism , Lens, Crystalline/metabolism , Injections, Intraocular , Disease Models, Animal
3.
Mol Ther ; 30(1): 468-484, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34111559

ABSTRACT

Radiation therapy, a mainstay of treatment for head and neck cancer, is not always curative due to the development of treatment resistance; additionally, multi-institutional trials have questioned the efficacy of concurrent radiation with cetuximab, the epidermal growth factor receptor (EGFR) inhibitor. We unraveled a mechanism for radiation resistance; that is, radiation induces EGFR, which phosphorylates TRIP13 (thyroid hormone receptor interactor 13) on tyrosine 56. Phosphorylated (phospho-)TRIP13 promotes non-homologous end joining (NHEJ) repair to induce radiation resistance. NHEJ is the main repair pathway for radiation-induced DNA damage. Tumors expressing high TRIP13 do not respond to radiation but are sensitive to cetuximab or cetuximab combined with radiation. Suppression of phosphorylation of TRIP13 at Y56 abrogates these effects. These findings show that EGFR-mediated phosphorylation of TRIP13 at Y56 is a vital mechanism of radiation resistance. Notably, TRIP13-pY56 could be used to predict the response to radiation or cetuximab and could be explored as an actionable target.


Subject(s)
Head and Neck Neoplasms , ATPases Associated with Diverse Cellular Activities/metabolism , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cetuximab/metabolism , Cetuximab/pharmacology , DNA End-Joining Repair , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/radiotherapy , Humans , Phosphorylation
4.
Mol Cancer ; 21(1): 74, 2022 03 12.
Article in English | MEDLINE | ID: mdl-35279145

ABSTRACT

BACKGROUND: Epithelial-to-mesenchymal transition (EMT) is a process linked to metastasis and drug resistance with non-coding RNAs (ncRNAs) playing pivotal roles. We previously showed that miR-100 and miR-125b, embedded within the third intron of the ncRNA host gene MIR100HG, confer resistance to cetuximab, an anti-epidermal growth factor receptor (EGFR) monoclonal antibody, in colorectal cancer (CRC). However, whether the MIR100HG transcript itself has a role in cetuximab resistance or EMT is unknown. METHODS: The correlation between MIR100HG and EMT was analyzed by curating public CRC data repositories. The biological roles of MIR100HG in EMT, metastasis and cetuximab resistance in CRC were determined both in vitro and in vivo. The expression patterns of MIR100HG, hnRNPA2B1 and TCF7L2 in CRC specimens from patients who progressed on cetuximab and patients with metastatic disease were analyzed by RNAscope and immunohistochemical staining. RESULTS: The expression of MIR100HG was strongly correlated with EMT markers and acted as a positive regulator of EMT. MIR100HG sustained cetuximab resistance and facilitated invasion and metastasis in CRC cells both in vitro and in vivo. hnRNPA2B1 was identified as a binding partner of MIR100HG. Mechanistically, MIR100HG maintained mRNA stability of TCF7L2, a major transcriptional coactivator of the Wnt/ß-catenin signaling, by interacting with hnRNPA2B1. hnRNPA2B1 recognized the N6-methyladenosine (m6A) site of TCF7L2 mRNA in the presence of MIR100HG. TCF7L2, in turn, activated MIR100HG transcription, forming a feed forward regulatory loop. The MIR100HG/hnRNPA2B1/TCF7L2 axis was augmented in specimens from CRC patients who either developed local or distant metastasis or had disease progression that was associated with cetuximab resistance. CONCLUSIONS: MIR100HG and hnRNPA2B1 interact to control the transcriptional activity of Wnt signaling in CRC via regulation of TCF7L2 mRNA stability. Our findings identified MIR100HG as a potent EMT inducer in CRC that may contribute to cetuximab resistance and metastasis by activation of a MIR100HG/hnRNPA2B1/TCF7L2 feedback loop.


Subject(s)
Colorectal Neoplasms , Heterogeneous-Nuclear Ribonucleoprotein Group A-B , MicroRNAs , RNA, Long Noncoding , Cell Line, Tumor , Cell Movement/genetics , Cetuximab/genetics , Cetuximab/metabolism , Colorectal Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , Transcription Factor 7-Like 2 Protein/genetics , Transcription Factor 7-Like 2 Protein/metabolism , Wnt Signaling Pathway/genetics
5.
Mol Imaging ; 2022: 3748315, 2022.
Article in English | MEDLINE | ID: mdl-35903247

ABSTRACT

Purpose: This study is aimed at investigating the feasibility of cetuximab (Cet) F(ab')2 fragment- (Cet-F(ab')2-) based single photon emission tomography/computed tomography (SPECT/CT) for assessing the epidermal growth factor receptor (EGFR) expression in digestive tumor mouse models. Methods: Cet-F(ab')2 was synthesized using immunoglobulin G-degrading enzyme of Streptococcus pyogenes (IdeS) protease and purified with protein A beads. The product and its in vitro stability in normal saline and 1% bovine serum albumin were analyzed with sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The EGFR expression in the human colon tumor cell line HT29 and the human stomach tumor cell line MGC803 were verified using western blotting and immunocytochemistry. Cet-F(ab')2 was conjugated with 5(6)-carboxytetramethylrhodamine succinimidyl ester to demonstrate its binding ability to the MGC803 and HT29 cells. Cet-F(ab')2 was conjugated with NHS-MAG3 for 99mTc radiolabeling. The best imaging time was determined using a biodistribution assay at 1, 4, 16, and 24 h after injection of the 99mTc-MAG3-Cet-F(ab')2 tracer. Furthermore, 99mTc-MAG3-Cet-F(ab')2 SPECT/CT was performed on MGC803 and HT29 tumor-bearing nude mice. Results: HT29 cells had low EGFR expression while MGC803 cell exhibited the high EGFR expression. Cet-F(ab')2 and intact cetuximab showed similar high binding ability to MGC803 cells but not to HT29 cells. Cet-F(ab')2 and 99mTc-MAG3-Cet-F(ab')2 showed excellent in vitro stability. The biodistribution assay showed that the target to nontarget ratio was the highest at 16 h (17.29 ± 5.72, n = 4) after tracer injection. The 99mTc-MAG3-Cet-F(ab')2-based SPECT/CT imaging revealed rapid and sustained tracer uptake in MGC803 tumors rather than in HT29 tumors with high image contrast, which was consistent with the results in vitro. Conclusion: SPECT/CT imaging using 99mTc-MAG3-Cet-F(ab')2 enables the evaluation of the EGFR expression in murine EGFR-positive tumors, indicating the potential utility for noninvasive evaluation of the EGFR expression in tumors.


Subject(s)
Tomography, Emission-Computed, Single-Photon , Tomography, X-Ray Computed , Animals , Cell Line, Tumor , Cetuximab/metabolism , ErbB Receptors/metabolism , Humans , Mice , Mice, Nude , Tissue Distribution , Tomography, Emission-Computed, Single-Photon/methods , Tomography, X-Ray Computed/methods
6.
Toxicol Appl Pharmacol ; 450: 116171, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35878797

ABSTRACT

Resistance to antitumor treatments is one of the most important problems faced by clinicians in the management of colorectal cancer (CRC) patients. Cancer-Associated Fibroblasts (CAFs) are the main producers and remodelers of the extracellular matrix (ECM), which is directly involved in drug resistance mechanisms. Primary Normal Fibroblasts (NFs) and CAFs and cell lines (fibroblasts and tumor cells), were used to generate ECM and to identify its role in the oxaliplatin and cetuximab chemoresistance processes of CRC cells mediated by SNAI1-expressing fibroblasts. Matrices generated by Snai1 KO MEFs (Knockout Mouse Embryonic Fibroblasts) confer less resistance on oxaliplatin and cetuximab than wild-type MEF-derived matrices. Similarly, matrices derived from CAFs cause greater survival of colorectal cancer cells than NF-derived matrices, in a similar way to Snai1 expression levels. In addition, Snail1 expression in fibroblasts regulates drug resistance and metabolism gene expression in tumor cells mediated by ECM. Finally, a series of 531 patients (TCGA) with CRC was used to assess the role of SNAI1 expression in patients' prognosis indicating an association between tumor SNAI1 expression and overall survival in colon cancer patients but not in rectal cancer patients. SNAI1 expression in CRC cancer patients, together with in vitro experimentation, suggests the possible use of SNAI1 expression in tumor-associated fibroblasts as a predictive biomarker of response to oxaliplatin and cetuximab treatments in patients with CRC.


Subject(s)
Colorectal Neoplasms , Fibroblasts , Animals , Cell Line, Tumor , Cetuximab/metabolism , Cetuximab/pharmacology , Cetuximab/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Drug Resistance , Extracellular Matrix/metabolism , Fibroblasts/metabolism , Mice , Mice, Knockout , Oxaliplatin/metabolism , Oxaliplatin/pharmacology , Oxaliplatin/therapeutic use
7.
PLoS Comput Biol ; 16(3): e1007147, 2020 03.
Article in English | MEDLINE | ID: mdl-32119655

ABSTRACT

Targeted cancer therapies are powerful alternatives to chemotherapies or can be used complementary to these. Yet, the response to targeted treatments depends on a variety of factors, including mutations and expression levels, and therefore their outcome is difficult to predict. Here, we develop a mechanistic model of gastric cancer to study response and resistance factors for cetuximab treatment. The model captures the EGFR, ERK and AKT signaling pathways in two gastric cancer cell lines with different mutation patterns. We train the model using a comprehensive selection of time and dose response measurements, and provide an assessment of parameter and prediction uncertainties. We demonstrate that the proposed model facilitates the identification of causal differences between the cell lines. Furthermore, our study shows that the model provides predictions for the responses to different perturbations, such as knockdown and knockout experiments. Among other results, the model predicted the effect of MET mutations on cetuximab sensitivity. These predictive capabilities render the model a basis for the assessment of gastric cancer signaling and possibly for the development and discovery of predictive biomarkers.


Subject(s)
Cetuximab/pharmacology , Stomach Neoplasms/genetics , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal, Humanized , Antineoplastic Agents/pharmacology , Biomarkers, Tumor/metabolism , Cell Line, Tumor/drug effects , Cell Proliferation/drug effects , Cetuximab/genetics , Cetuximab/metabolism , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/metabolism , Humans , Models, Biological , Models, Statistical , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins/metabolism , R Factors , Signal Transduction/physiology , Stomach Neoplasms/drug therapy , ras Proteins/metabolism
8.
Proc Natl Acad Sci U S A ; 115(47): 12023-12027, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30397147

ABSTRACT

The N-glycans attached to the Fab and Fc domains play distinct roles in modulating the functions of antibodies. However, posttranslational site-selective modifications of glycans in antibodies and other multiply glycosylated proteins remain a challenging task. Here, we report a chemoenzymatic method that permits independent manipulation of the Fab and Fc N-glycans, using cetuximab as a model therapeutic monoclonal antibody. Taking advantage of the substrate specificity of three endoglycosidases (Endo-S, Endo-S2, and Endo-F3) and their glycosynthase mutants, together with an unexpected substrate site-selectivity of a bacterial α1,6-fucosidase from Lactobacillus casei (AlfC), we were able to synthesize an optimal homogeneous glycoform of cetuximab in which the heterogeneous and immunogenic Fab N-glycans were replaced with a single sialylated N-glycan, and the core-fucosylated Fc N-glycans were remodeled with a nonfucosylated and fully galactosylated N-glycan. The glycoengineered cetuximab demonstrated increased affinity for the FcγIIIa receptor and significantly enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) activity.


Subject(s)
Immunoglobulin Fab Fragments/metabolism , Immunoglobulin Fc Fragments/metabolism , Protein Engineering/methods , Antibodies, Monoclonal/chemistry , Antibody-Dependent Cell Cytotoxicity/genetics , Antibody-Dependent Cell Cytotoxicity/physiology , Cetuximab/metabolism , Glycoside Hydrolases/metabolism , Glycosylation , Humans , Polysaccharides/metabolism , Substrate Specificity
9.
Breast Cancer Res ; 22(1): 37, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32295603

ABSTRACT

BACKGROUND: At least 50% of triple negative breast cancer (TNBC) overexpress the epidermal growth factor receptor, EGFR, which paved the way for clinical trials investigating its blockade. Outcomes remained dismal stemming from mechanisms of resistance particularly the nuclear cycling of EGFR, which is enhanced by Src activation. Attenuation of Src reversed nuclear translocation, restoring EGFR to the cell surface. Herein, we hypothesize that changes in cellular distribution of EGFR upon Src inhibition with dasatinib can be annotated through the EGFR immunopositron emission tomography (immunoPET) radiotracer, [89Zr]Zr-cetuximab. METHODS: Nuclear and non-nuclear EGFR levels of dasatinib-treated vs. untreated MDA-MB-231 and MDA-MB-468 cells were analyzed via immunoblots. Both treated and untreated cells were exposed to [89Zr]Zr-cetuximab to assess binding at 4 °C and 37 °C. EGFR-positive MDA-MB-231, MDA-MB-468, and a patient-derived xenograft were treated with dasatinib or vehicle followed by cetuximab PET imaging to compare EGFR levels. After imaging, the treated mice were separated into two groups: one cohort continued with dasatinib with the addition of cetuximab while the other cohort received dasatinib alone. Correlations between the radiotracer uptake vs. changes in tumor growth and EGFR expression from immunoblots were analyzed. RESULTS: Treated cells displayed higher binding of [89Zr]Zr-cetuximab to the cell membrane at 4 °C and with greater internalized activity at 37 °C vs. untreated cells. In all tumor models, higher accumulation of the radiotracer in dasatinib-treated groups was observed compared to untreated tumors. Treated tumors displayed significantly decreased pSrc (Y416) with retained total Src levels compared to control. In MDA-MB-468 and PDX tumors, the analysis of cetuximab PET vs. changes in tumor volume showed an inverse relationship where high tracer uptake in the tumor demonstrated minimal tumor volume progression. Furthermore, combined cetuximab and dasatinib treatment showed better tumor regression compared to control and dasatinib-only-treated groups. No benefit was achieved in MDA-MB-231 xenografts with the addition of cetuximab, likely due to its KRAS-mutated status. CONCLUSIONS: Cetuximab PET can monitor effects of dasatinib on EGFR cellular distribution and potentially inform treatment response in wild-type KRAS TNBC.


Subject(s)
Cell Proliferation , Cetuximab/metabolism , Dasatinib/pharmacology , Positron-Emission Tomography/methods , Radioisotopes/metabolism , Triple Negative Breast Neoplasms/pathology , Zirconium/metabolism , Animals , Antineoplastic Agents, Immunological/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/metabolism , Female , Humans , Mice , Mice, Nude , Protein Kinase Inhibitors/pharmacology , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Xenograft Model Antitumor Assays
10.
Eur J Nucl Med Mol Imaging ; 47(4): 849-859, 2020 04.
Article in English | MEDLINE | ID: mdl-31705176

ABSTRACT

PURPOSE: One-third of patients with RAS wild-type mCRC do not benefit from anti-EGFR monoclonal antibodies. This might be a result of variable pharmacokinetics and insufficient tumor targeting. We evaluated cetuximab tumor accumulation on [89Zr]Zr-cetuximab PET/CT as a potential predictive biomarker and determinant for an escalating dosing strategy. PATIENTS AND METHODS: PET/CT imaging of [89Zr]Zr-cetuximab (37 MBq/10 mg) after a therapeutic pre-dose (500 mg/m2 ≤ 2 h) cetuximab was performed at the start of treatment. Patients without visual tumor uptake underwent dose escalation and a subsequent [89Zr]Zr-cetuximab PET/CT. Treatment benefit was defined as stable disease or response on CT scan evaluation after 8 weeks. RESULTS: Visual tumor uptake on [89Zr]Zr-cetuximab PET/CT was observed in 66% of 35 patients. There was no relationship between PET positivity and treatment benefit (52% versus 80% for PET-negative, P = 0.16), progression-free survival (3.6 versus 5.7 months, P = 0.15), or overall survival (7.1 versus 9.4 months, P = 0.29). However, in 67% of PET-negative patients, cetuximab dose escalation (750-1250 mg/m2) was applied, potentially influencing outcome in this group. None of the second [89Zr]Zr-cetuximab PET/CT was positive. Eighty percent of patients without visual tumor uptake had treatment benefit, making [89Zr]Zr-cetuximab PET/CT unsuitable as a predictive biomarker. Tumor SUVpeak did not correlate to changes in tumor size on CT (P = 0.23), treatment benefit, nor progression-free survival. Cetuximab pharmacokinetics were not related to treatment benefit. BRAF mutations, right-sidedness, and low sEGFR were correlated with intrinsic resistance to cetuximab. CONCLUSION: Tumor uptake on [89Zr]Zr-cetuximab PET/CT failed to predict treatment benefit in patients with RAS wild-type mCRC receiving cetuximab monotherapy. BRAF mutations, right-sidedness, and low sEGFR correlated with intrinsic resistance to cetuximab.


Subject(s)
Colorectal Neoplasms , Positron Emission Tomography Computed Tomography , Biomarkers , Cetuximab/metabolism , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Humans , Mutation , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics
11.
Bioconjug Chem ; 30(1): 63-69, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30543409

ABSTRACT

We demonstrate selective labeling of cell surface proteins using fluorogen-activating proteins (FAPs) conjugated to standard immunoglobulins (IgGs). Conjugation was achieved with a polypeptide reagent comprised of an N-terminal photoactivatable Fc-binding domain and a C-terminal FAP domain. The resulting FAP-antibody conjugates were effective agents for protein detection and cell ablation in cultured mammalian cells and for visualizing cell-cell contacts using a tethered fluorogen assay. Because our approach allows FAP-antibody conjugates to be generated for most currently available IgGs, it should have broad utility for experimental and therapeutic applications.


Subject(s)
Cetuximab/metabolism , Fluorescent Dyes/chemistry , Membrane Proteins/metabolism , Trastuzumab/metabolism , Cell Adhesion , Cell Line , ErbB Receptors/metabolism , Humans , Photosensitizing Agents/chemistry , Receptor, ErbB-2/metabolism , Recombinant Fusion Proteins/metabolism
12.
BMC Cancer ; 19(1): 1000, 2019 Oct 24.
Article in English | MEDLINE | ID: mdl-31651282

ABSTRACT

BACKGROUNDS: Overexpression of epidermal growth factor receptor (EGFR) has been established as a valid therapeutic target of non-small cell lung cancer (NSCLC). However, the clinical benefit of cetuximab as an EGFR-targeting drug is still controversial, partially due to the lack of effective means to identify suitable patients. This study aimed to investigate the potential of radiolabeled cetuximab as a non-invasive tool to predict cetuximab accumulation in NSCLC tumor xenografts with varying EGFR expression levels. METHODS: The NSCLC tumors in model mice were subjected to in vivo biodistribution study and positron emission tomography (PET) imaging 48 h after injection of either 111In- or 64Cu-labeled cetuximab. The EGFR expression levels of NSCLC tumors were determined by ex vivo immunoblotting. RESULTS: We found that tumors with high EGFR expression had significantly higher [111In]In-DOTA-cetuximab accumulation than tumors with moderate to low EGFR expression (P < 0.05). Strong correlations were found between [111In]In-DOTA-cetuximab tumor uptake and EGFR expression level (r = 0.893), and between [64Cu]Cu-DOTA-cetuximab tumor uptake with EGFR expression level (r = 0.915). PET imaging with [64Cu]Cu-DOTA-cetuximab allowed clear visualization of tumors. CONCLUSION: Our findings suggest that this immuno-PET imaging can be clinically translated as a tool to predict cetuximab accumulation in NSCLC cancer patients prior to cetuximab therapy.


Subject(s)
Antineoplastic Agents, Immunological/metabolism , Antineoplastic Agents, Immunological/therapeutic use , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/drug therapy , Cetuximab/metabolism , Cetuximab/therapeutic use , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/drug therapy , Positron-Emission Tomography/methods , Animals , Antineoplastic Agents, Immunological/chemistry , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cetuximab/chemistry , Copper Radioisotopes/chemistry , Copper Radioisotopes/metabolism , ErbB Receptors/metabolism , Female , Heterocyclic Compounds, 1-Ring/chemistry , Heterocyclic Compounds, 1-Ring/metabolism , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/metabolism , Tissue Distribution , Xenograft Model Antitumor Assays
13.
Mol Biol Rep ; 46(2): 1675-1682, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30680596

ABSTRACT

To assess the preclinical potential of technetium-99m labelled conjugated para-isothiocyanato-benzyl diethylene triamine penta-acetic acid cetuximab (99mTc-p-SCN-Bzl-DTPA cetuximab) for imaging EGFR in HNSCC mice and rabbits xenografts. Cetuximab, a chimeric monoclonal antibody targeting EGFR, was conjugated with p-SCN-Bzl-DTPA followed by labelling with 99mTc. The labelled conjugate was evaluated for in vitro stability in L-cysteine at 37 °C. The 99mTc-p-SCN-Bzl-DTPA cetuximab was also investigated for immunoreactivity, internationalization kinetics, dose escalation (up to 300 µg) and biodistribution in HNSCC mice xenograft. The suitability of labelled moiety as a specific EGFR radio-tracer was assessed in HNSCC rabbit xenograft. 99mTc-p-SCN-Bzl-DTPA cetuximab exhibited more than 98% radiochemical purity at room temperature. In excess L-cysteine, it showed a stable behaviour at 37 °C up to 4 h p.l. The labelled conjugate was internalized in vitro in FaDu tumor cells up to 19.55%. Significantly higher uptake in tumor (at 10 µg; 34.75 ± 0.38% ID/g: pi) was seen in HNSCC mice xenograft with dose escalation assay from 1 to 300 µg/mouse. Blocking of EGFR with excess cetuximab consequently decreased the uptake of tumor up to 6.80 ± 1.25%. SPECT images of rabbit xenograft confirmed increase in tumor to background ratio after 4 h pi and validated its potential in preclinical trial as a specific FaDu tumor tracer. Our in vitro and in vivo preclinical findings indicate that the 99mTc-p-SCN-Bzl-DTPA cetuximab prepared at optimal dose of cetuximab could become a useful tool for EGFR imaging in HNSCC using SPECT.


Subject(s)
Cetuximab/pharmacology , Genes, erbB-1/drug effects , Squamous Cell Carcinoma of Head and Neck/immunology , Animals , Antibodies, Monoclonal , Antibodies, Monoclonal, Humanized/pharmacology , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cetuximab/metabolism , Cetuximab/pharmacokinetics , Dose-Response Relationship, Drug , ErbB Receptors/drug effects , ErbB Receptors/genetics , Genes, erbB-1/genetics , Head and Neck Neoplasms/genetics , Heterografts , Humans , Mice , Mice, Inbred BALB C , Rabbits , Radiopharmaceuticals/pharmacology , Squamous Cell Carcinoma of Head and Neck/therapy , Technetium Tc 99m Pentetate , Tissue Distribution/genetics , Tissue Distribution/physiology , Tomography, Emission-Computed, Single-Photon/methods
14.
Br J Cancer ; 119(2): 170-175, 2018 07.
Article in English | MEDLINE | ID: mdl-29961759

ABSTRACT

BACKGROUND: To assess the predictive value of early metabolic response (ΔSUV) after short-term treatment with first-line cetuximab in patients (pts) with RAS-wt metastatic colorectal cancer (mCRC). METHODS: In this prospective phase II study, RAS-wt mCRC pts received a single-agent cetuximab run-in therapy of 2 weeks. ΔSUV was assessed with FDG-PET/CT on days 0 and 14. Early clinical response (ECR) was evaluated with CT on day 56 after treatment with FOLFIRI-cetuximab. Primary endpoint was the predictive significance of ΔSUV for ECR. Secondary endpoints were PFS (progression free survival), OS and the influence of ΔSUV on survival. RESULTS: Forty pts were enroled and 33 pts were evaluable for the primary endpoint. The CT response rate was 57.6%. For responders, ΔSUV was significantly higher (p = 0.0092). A significant association of ΔSUV with ECR was found (p = 0.02). Median PFS was 11.7 months and median OS was 33.5 months with a 1-year survival rate of 87.9%. ΔSUV was found to significantly impact the hazard for OS (p = 0.045). CONCLUSIONS: We demonstrate that cetuximab induces metabolic responses in mCRC pts. The study endpoint was met with the ΔSUV discriminating between responders and non-responders. However, these data should be validated in larger patient cohorts.


Subject(s)
Cetuximab/administration & dosage , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/drug therapy , Adult , Aged , Camptothecin/administration & dosage , Cetuximab/adverse effects , Cetuximab/metabolism , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Female , Fluorodeoxyglucose F18/administration & dosage , Fluorouracil/administration & dosage , Humans , Leucovorin/administration & dosage , Male , Middle Aged , Positron Emission Tomography Computed Tomography/methods , Progression-Free Survival , Prospective Studies
15.
Anal Chem ; 90(24): 14527-14534, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30451489

ABSTRACT

Previously, we reported a new online capillary isoelectric focusing/mass spectrometric (CIEF/MS) method for intact monoclonal antibody (mAb) charge variant analysis that uses an electrokinetically pumped sheath-flow nanospray ion source on a time-of-flight (TOF) MS with a pressure-assisted chemical mobilization. The direct online CIEF/MS method exhibited excellent resolution of charge variants conforming to those of imaged capillary isoelectric focusing with ultraviolet detection (iCIEF/UV). However, for complex mAbs, CIEF/MS spectra of the intact charge variant peaks may be too convoluted to be effectively interpreted. In the present study, we implemented a middle-up approach to enhance the capability of the CIEF/MS method for characterizing complex mAb charge variants by reducing sample complexity. To demonstrate such a strategy, we fragmented cetuximab through IdeS enzymatic cleavage and dithiothreitol (DTT) reduction. For the first time, online CIEF/MS resolved the complex charge variants of cetuximab at subunit level, corroborating the profiles obtained by iCIEF/UV. Furthermore, high-resolution TOF mass spectra with high mass accuracy were obtained for the eight charge variants separated by CIEF/MS after IdeS cleavage and for the 11 charge variants after IdeS digestion with subsequent DTT reduction. In-depth analyses revealed the identities of all charge variants and pinpointed the causes of charge heterogeneity, which are in accord with those reported in the literature. The main sources of charge heterogeneity of cetuximab were identified as terminal lysine on the Fc domain (up to one on each single-chain Fc), glycolylneuraminic acid residues on the Fd' domain (up to two on each Fd'), and likely several deamidation species on the Fd' domain. No charge heterogeneity contribution was found from light chain. The in-depth characterization of complex charge variants for cetuximab demonstrates the remarkable capability of this middle-up CIEF/MS approach. This novel workflow holds great potential for detecting and elucidating charge variants to help understand proteins with complex charge heterogeneity.


Subject(s)
Cetuximab/analysis , Electrophoresis, Capillary , Isoelectric Focusing , Spectrometry, Mass, Electrospray Ionization/methods , Bacterial Proteins/metabolism , Cetuximab/chemistry , Cetuximab/metabolism , Dithiothreitol/chemistry , Immunoglobulin Fab Fragments/chemistry
16.
Biochem Biophys Res Commun ; 503(3): 1267-1272, 2018 09 10.
Article in English | MEDLINE | ID: mdl-30017201

ABSTRACT

Genetic amplification, overexpression, and increased signaling from the epidermal growth factor receptor (EGFR) are often found in oral squamous cell carcinoma (OSCC) and thus EGFR is frequently targeted molecularly by the therapeutic antibody cetuximab. We assessed effects of cetuximab in control of EGF-driven malignant traits of OSCC cells. EGF stimulation promoted progression level of mesenchymal traits in OSCC cells, which were attenuated by cetuximab but incompletely. We pursued a potential mechanism underlying such incomplete attenuation of OSCC malignant traits. Cetuximab promoted secretion of EGFR-EVs by OSCC cells and failed to inhibit EGF-driven secretion of EGFR-EVs. Cetuximab was also found to be robustly secreted with the EGFR-EVs by the OSCC cells. Thus, EGF promotes the level of mesenchymal traits of OSCC cells and secretion of EGFR-EVs, which involve cetuximab resistance.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Carcinoma, Squamous Cell/metabolism , Cetuximab/pharmacology , Epidermal Growth Factor/antagonists & inhibitors , Mouth Neoplasms/metabolism , Antibodies, Monoclonal, Humanized/metabolism , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cetuximab/metabolism , Drug Resistance, Neoplasm/drug effects , Epidermal Growth Factor/metabolism , Epithelial-Mesenchymal Transition/drug effects , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Extracellular Vesicles/drug effects , Extracellular Vesicles/metabolism , Humans , Mouth Neoplasms/pathology
17.
Int J Cancer ; 139(10): 2277-89, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27428782

ABSTRACT

The high rate of recurrence in patients with pancreatic ductal adenocarcinoma (PDAC) could be reduced by supporting the surgeons in discriminating healthy from diseased tissues with intraoperative fluorescence-guidance. Here, we studied the suitability of Cetuximab, a therapeutic monoclonal antibody targeting the human epidermal growth factor receptor (EGFR), near-infrared (NIR) fluorescently labeled as a new tool for fluorescence-guided surgery. Distribution and binding of systemically injected Cetuximab Alexa Fluor 647 conjugate (Cetux-Alexa-647) and the co-injected control human IgG Alexa Fluor 750 conjugate (hIgG-Alexa-750) was studied over 48 h by NIR fluorescence imaging in mice bearing human orthotopic AsPC-1 and MIA PaCa-2 PDAC tumors. Cetux-Alexa-647, but not the control hIgG-Alexa-750 fluorescence, was specifically detected in vivo in both primary pancreatic tumors with maximum fluorescence intensities at 24 h, and in metastases of AsPC-1 tumors as small as 1 mm. Lifetime analysis and NIR fluorescence microscopy of tumor sections confirmed the binding specificity of Cetux-Alexa-647 to PDAC cells. Comparable results were obtained with Cetuximab conjugated to Alexa Fluor 750 dye (Cetux-Alexa-750). Fluorescence-guided dissection, performed 24 h after injection of Cetuximab conjugated to IRDye 800CW (Cetux-800CW), enabled a real-time delineation of AsPC-1 tumor margins, and small metastases. Odyssey scans revealed that only the vital part of the tumor, but not the necrotic part was stained with Cetux-800CW. NIR fluorescently labeled Cetuximab may be a promising tool that can be applied for fluorescence-guided surgery to visualize tumor margins and metastatic sites in order to allow a precise surgical resection.


Subject(s)
Breast Neoplasms/diagnostic imaging , Carcinoma, Pancreatic Ductal/diagnostic imaging , Cetuximab/analysis , Microscopy, Fluorescence/methods , Pancreatic Neoplasms/diagnostic imaging , Spectroscopy, Near-Infrared/methods , Animals , Carbocyanines/analysis , Carcinoma, Pancreatic Ductal/enzymology , Cetuximab/metabolism , ErbB Receptors/biosynthesis , ErbB Receptors/metabolism , Female , Fluorescent Dyes/analysis , Heterografts , Humans , MCF-7 Cells , Male , Mice , Mice, Nude , Pancreatic Neoplasms/enzymology , Succinimides/analysis
18.
Bioconjug Chem ; 27(5): 1390-1399, 2016 05 18.
Article in English | MEDLINE | ID: mdl-27064381

ABSTRACT

New protecting group chemistry is used to greatly simplify imaging probe production. Temperature and organic solvent-sensitive biomolecules are covalently attached to a biotin-bearing dioxaborolane, which facilitates antibody immobilization on a streptavidin-agarose solid-phase support. Treatment with aqueous fluoride triggers fluoride-labeled antibody release from the solid phase, separated from unlabeled antibody, and creates [(18)F]-trifluoroborate-antibody for positron emission tomography and near-infrared fluorescent (PET/NIRF) multimodality imaging. This dioxaborolane-fluoride reaction is bioorthogonal, does not inhibit antigen binding, and increases [(18)F]-specific activity relative to solution-based radiosyntheses. Two applications are investigated: an anti-epithelial cell adhesion molecule (EpCAM) monoclonal antibody (mAb) that labels prostate tumors and Cetuximab, an anti-epidermal growth factor receptor (EGFR) mAb (FDA approved) that labels lung adenocarcinoma tumors. Colocalized, tumor-specific NIRF and PET imaging confirm utility of the new technology. The described chemistry should allow labeling of many commercial systems, diabodies, nanoparticles, and small molecules for dual modality imaging of many diseases.


Subject(s)
Boron Compounds/chemistry , Fluorescent Dyes/chemistry , Fluorine Radioisotopes , Positron-Emission Tomography/methods , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic , Cetuximab/metabolism , Humans , Mice , Optical Imaging , Radiochemistry , Streptavidin/metabolism
19.
Pharm Res ; 33(6): 1351-8, 2016 06.
Article in English | MEDLINE | ID: mdl-27033349

ABSTRACT

PROPOSE: Tin complexes demonstrate antiproliferative activities in some case higher than cisplatin, with IC50 at the low micromolar range. We have previously showed that the cyclic trinuclear complex of Sn(IV) bearing an aromatic oximehydroxamic acid group [nBu2Sn(L)]3 (L=N,2-dihydroxy-5-[N-hydroxyethanimidoyl]benzamide) (MG85) shows high anti-proliferative activity, induces apoptosis and oxidative stress, and causes destabilization of tubulin microtubules, particularly in colorectal carcinoma cells. Despite the great efficacy towards cancer cells, this complex still shows some cytotoxicity to healthy cells. Targeted delivery of this complex specifically towards cancer cells might foster cancer treatment. METHODS: MG85 complex was encapsulated into liposomal formulation with and without an active targeting moiety and cancer and healthy cells cytotoxicity was evaluated. RESULTS: Encapsulation of MG85 complex in targeting PEGylated liposomes enhanced colorectal carcinoma (HCT116) cancer cell death when compared to free complex, whilst decreasing cytotoxicity in non-tumor cells. Labeling of liposomes with Rhodamine allowed assessing internalization in cells, which showed significant cell uptake after 6 h of incubation. Cetuximab was used as targeting moiety in the PEGylated liposomes that displayed higher internalization rate in HCT116 cells when compared with non-targeted liposomes, which seems to internalize via active binding of Cetuximab to cells. CONCLUSIONS: The proposed formulation open new avenues in the design of innovative transition metal-based vectorization systems that may be further extended to other novel metal complexes towards the improvement of their anti-cancer efficacy, which is usually hampered by solubility issues and/or toxicity to healthy tissues.


Subject(s)
Antineoplastic Agents/administration & dosage , Colorectal Neoplasms/drug therapy , Drug Delivery Systems/methods , Lipids/chemistry , Liver Neoplasms/drug therapy , Organotin Compounds/administration & dosage , Polyethylene Glycols/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/toxicity , Biological Transport , Cell Proliferation/drug effects , Cell Survival/drug effects , Cetuximab/administration & dosage , Cetuximab/chemistry , Cetuximab/metabolism , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Dose-Response Relationship, Drug , Drug Compounding , HCT116 Cells , Hep G2 Cells , Humans , Inhibitory Concentration 50 , Kinetics , Liposomes , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Organotin Compounds/chemistry , Organotin Compounds/metabolism , Organotin Compounds/toxicity
20.
Appl Microbiol Biotechnol ; 100(24): 10521-10529, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27470143

ABSTRACT

Fragment engineering of monoclonal antibodies (mAbs) has emerged as an excellent paradigm to develop highly efficient therapeutic and/or diagnostic agents. Engineered mAb fragments can be economically produced in bacterial systems using recombinant DNA technologies. In this work, we established recombinant production in Escherichia coli for monovalent antigen-binding fragment (Fab) adopted from a clinically used anticancer mAB drug cetuximab targeting epidermal growth factor receptor (EGFR). Recombinant DNA constructs were designed to express both polypeptide chains comprising Fab in a single vector and to secrete them to bacterial periplasmic space for efficient folding. Particularly, a C-terminal engineering to confer an interchain disulfide bond appeared to be able to enhance its heterodimeric integrity and EGFR-binding activity. Conformational relevance of the purified final product was validated by mass spectrometry and crystal structure at 1.9 Å resolution. Finally, our recombinant cetuximab-Fab was found to have strong binding affinity to EGFR overexpressed in human squamous carcinoma model (A431) cells. Its binding ability was comparable to that of cetuximab. Its EGFR-binding affinity was estimated at approximately 0.7 nM of Kd in vitro, which was quite stronger than the binding affinity of natural ligand EGF. Hence, the results validate that our construction could serve as an efficient platform to produce a recombinant cetuximab-Fab with a retained antigen-binding functionality.


Subject(s)
Antineoplastic Agents/metabolism , Cetuximab/metabolism , ErbB Receptors/antagonists & inhibitors , Escherichia coli/metabolism , Immunoglobulin Fab Fragments/metabolism , Recombinant Proteins/metabolism , Structure-Activity Relationship , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cetuximab/chemistry , Cetuximab/genetics , Crystallography, X-Ray , Escherichia coli/genetics , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/genetics , Mass Spectrometry , Protein Binding , Protein Conformation , Protein Engineering , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL