Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Proc Natl Acad Sci U S A ; 121(26): e2317945121, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38889154

ABSTRACT

Chaperone-mediated autophagy (CMA) is part of the mammalian cellular proteostasis network that ensures protein quality control, maintenance of proteome homeostasis, and proteome changes required for the adaptation to stress. Loss of proteostasis is one of the hallmarks of aging. CMA decreases with age in multiple rodent tissues and human cell types. A decrease in lysosomal levels of the lysosome-associated membrane protein type 2A (LAMP2A), the CMA receptor, has been identified as a main reason for declined CMA in aging. Here, we report constitutive activation of CMA with calorie restriction (CR), an intervention that extends healthspan, in old rodent livers and in an in vitro model of CR with cultured fibroblasts. We found that CR-mediated upregulation of CMA is due to improved stability of LAMP2A at the lysosome membrane. We also explore the translational value of our observations using calorie-restriction mimetics (CRMs), pharmacologically active substances that reproduce the biochemical and functional effects of CR. We show that acute treatment of old mice with CRMs also robustly activates CMA in several tissues and that this activation is required for the higher resistance to lipid dietary challenges conferred by treatment with CRMs. We conclude that part of the beneficial effects associated with CR/CRMs could be a consequence of the constitutive activation of CMA mediated by these interventions.


Subject(s)
Caloric Restriction , Chaperone-Mediated Autophagy , Lysosomal-Associated Membrane Protein 2 , Lysosomes , Animals , Mice , Lysosomal-Associated Membrane Protein 2/metabolism , Lysosomal-Associated Membrane Protein 2/genetics , Lysosomes/metabolism , Humans , Aging/metabolism , Fibroblasts/metabolism , Proteostasis , Liver/metabolism , Mice, Inbred C57BL , Male , Autophagy
2.
PLoS Pathog ; 20(4): e1012123, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38607975

ABSTRACT

RAB GTPases (RABs) control intracellular membrane trafficking with high precision. In the present study, we carried out a short hairpin RNA (shRNA) screen focused on a library of 62 RABs during infection with porcine reproductive and respiratory syndrome virus 2 (PRRSV-2), a member of the family Arteriviridae. We found that 13 RABs negatively affect the yield of PRRSV-2 progeny virus, whereas 29 RABs have a positive impact on the yield of PRRSV-2 progeny virus. Further analysis revealed that PRRSV-2 infection transcriptionally regulated RAB18 through RIG-I/MAVS-mediated canonical NF-κB activation. Disrupting RAB18 expression led to the accumulation of lipid droplets (LDs), impaired LDs catabolism, and flawed viral replication and assembly. We also discovered that PRRSV-2 co-opts chaperone-mediated autophagy (CMA) for lipolysis via RAB18, as indicated by the enhanced associations between RAB18 and perlipin 2 (PLIN2), CMA-specific lysosomal associated membrane protein 2A (LAMP2A), and heat shock protein family A (Hsp70) member 8 (HSPA8/HSC70) during PRRSV-2 infection. Knockdown of HSPA8 and LAMP2A impacted on the yield of PRRSV-2 progeny virus, implying that the virus utilizes RAB18 to promote CMA-mediated lipolysis. Importantly, we determined that the C-terminal domain (CTD) of HSPA8 could bind to the switch II domain of RAB18, and the CTD of PLIN2 was capable of associating with HSPA8, suggesting that HSPA8 facilitates the interaction between RAB18 and PLIN2 in the CMA process. In summary, our findings elucidate how PRRSV-2 hijacks CMA-mediated lipid metabolism through innate immune activation to enhance the yield of progeny virus, offering novel insights for the development of anti-PRRSV-2 treatments.


Subject(s)
Chaperone-Mediated Autophagy , Porcine respiratory and reproductive syndrome virus , Swine , Animals , Lipolysis , Up-Regulation , rab GTP-Binding Proteins/genetics , Lysosomal Membrane Proteins , RNA, Small Interfering
3.
FASEB J ; 38(10): e23646, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38795328

ABSTRACT

Multiple regulatory mechanisms are in place to ensure the normal processes of bone metabolism, encompassing both bone formation and absorption. This study has identified chaperone-mediated autophagy (CMA) as a critical regulator that safeguards bone formation from the detrimental effects of excessive inflammation. By silencing LAMP2A or HSCA8, we observed a hindrance in the osteoblast differentiation of human bone marrow mesenchymal stem cells (hBMSCs) in vitro. To further elucidate the role of LAMP2A, we generated LAMP2A gene knockdown and overexpression of mouse BMSCs (mBMSCs) using adenovirus. Our results showed that LAMP2A knockdown led to a decrease in osteogenic-specific proteins, while LAMP2A overexpression favored the osteogenesis of mBMSCs. Notably, active-ß-catenin levels were upregulated by LAMP2A overexpression. Furthermore, we found that LAMP2A overexpression effectively protected the osteogenesis of mBMSCs from TNF-α, through the PI3K/AKT/GSK3ß/ß-catenin pathway. Additionally, LAMP2A overexpression significantly inhibited osteoclast hyperactivity induced by TNF-α. Finally, in a murine bone defect model, we demonstrated that controlled release of LAMP2A overexpression adenovirus by alginate sodium capsule efficiently protected bone healing from inflammation, as confirmed by imaging and histological analyses. Collectively, our findings suggest that enhancing CMA has the potential to safeguard bone formation while mitigating hyperactivity in bone absorption.


Subject(s)
Chaperone-Mediated Autophagy , Glycogen Synthase Kinase 3 beta , Inflammation , Lysosomal-Associated Membrane Protein 2 , Mesenchymal Stem Cells , Osteogenesis , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , beta Catenin , Animals , Osteogenesis/physiology , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Proto-Oncogene Proteins c-akt/metabolism , Mice , Phosphatidylinositol 3-Kinases/metabolism , beta Catenin/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Inflammation/metabolism , Lysosomal-Associated Membrane Protein 2/metabolism , Lysosomal-Associated Membrane Protein 2/genetics , Signal Transduction , Male , Mice, Inbred C57BL , Osteoblasts/metabolism , Cell Differentiation , Osteoclasts/metabolism
4.
Drug Resist Updat ; 73: 101037, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38171078

ABSTRACT

Chaperone-mediated autophagy (CMA), a proteolytic system contributing to the degradation of intracellular proteins in lysosomes, is upregulated in tumors for pro-tumorigenic and pro-survival purposes. In this study, bioinformatics analysis revealed the co-occurrence of upregulated CMA and PD-L1 accumulation in metastatic melanoma with adaptive immune resistance (AIR) to anti-PD1 treatment, suggesting the potential therapeutic effects of rewiring CMA for PD-L1 degradation. Furthermore, this co-occurrence is attributed to IFN-γ-mediated compensatory up-regulation of PD-L1 and CMA, accompanied by enhanced macropinocytosis. Drawing inspiration from the cellular uptake of prions via macropinocytosis, a prion-like chemical inducer of proximity called SAP was engineered using self-assembly of the designed chiral peptide PHA. By exploiting sensitized macropinocytosis, SAP clandestinely infiltrates tumor cells and subsequently disintegrates into PHA, which reprograms CMA by inducing PD-L1 close to HSPA8. SAP degrades PD-L1 in a CMA-dependent manner and effectively restores the anti-tumor immune response in both allografting and Hu-PDX melanoma mouse models with AIR while upholding a high safety profile. Collectively, the reported SAP not only presents an immune reactivation strategy with clinical translational potential for overcoming AIR in cutaneous melanomas but serves as a reproducible example of precision-medicine-guided drug development that fully leverages specific cellular indications in pathological states.


Subject(s)
Chaperone-Mediated Autophagy , Melanoma , Prions , Mice , Animals , B7-H1 Antigen/metabolism , Melanoma/metabolism , Prions/metabolism , Lysosomes/metabolism
5.
Basic Res Cardiol ; 119(1): 113-131, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38168863

ABSTRACT

Calcium overload is the key trigger in cardiac microvascular ischemia-reperfusion (I/R) injury, and calreticulin (CRT) is a calcium buffering protein located in the endoplasmic reticulum (ER). Additionally, the role of pinacidil, an antihypertensive drug, in protecting cardiac microcirculation against I/R injury has not been investigated. Hence, this study aimed to explore the benefits of pinacidil on cardiac microvascular I/R injury with a focus on endothelial calcium homeostasis and CRT signaling. Cardiac vascular perfusion and no-reflow area were assessed using FITC-lectin perfusion assay and Thioflavin-S staining. Endothelial calcium homeostasis, CRT-IP3Rs-MCU signaling expression, and apoptosis were assessed by real-time calcium signal reporter GCaMP8, western blotting, and fluorescence staining. Drug affinity-responsive target stability (DARTS) assay was adopted to detect proteins that directly bind to pinacidil. The present study found pinacidil treatment improved capillary density and perfusion, reduced no-reflow and infraction areas, and improved cardiac function and hemodynamics after I/R injury. These benefits were attributed to the ability of pinacidil to alleviate calcium overload and mitochondria-dependent apoptosis in cardiac microvascular endothelial cells (CMECs). Moreover, the DARTS assay showed that pinacidil directly binds to HSP90, through which it inhibits chaperone-mediated autophagy (CMA) degradation of CRT. CRT overexpression inhibited IP3Rs and MCU expression, reduced mitochondrial calcium inflow and mitochondrial injury, and suppressed endothelial apoptosis. Importantly, endothelial-specific overexpression of CRT shared similar benefits with pinacidil on cardiovascular protection against I/R injury. In conclusion, our data indicate that pinacidil attenuated microvascular I/R injury potentially through improving CRT degradation and endothelial calcium overload.


Subject(s)
Chaperone-Mediated Autophagy , Reperfusion Injury , Humans , Pinacidil/metabolism , Endothelial Cells/metabolism , Calreticulin/metabolism , Calcium/metabolism , Reperfusion Injury/metabolism , Apoptosis
6.
Lipids Health Dis ; 23(1): 91, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38539242

ABSTRACT

BACKGROUND: ß-Propeller protein-associated neurodegeneration (BPAN) is a genetic neurodegenerative disease caused by mutations in WDR45. The impairment of autophagy caused by WDR45 deficiency contributes to the pathogenesis of BPAN; however, the pathomechanism of this disease is largely unknown. Lipid dyshomeostasis is involved in neurogenerative diseases, but whether lipid metabolism is affected by Wdr45 deficiency and whether lipid dyshomeostasis contributes to the progression of BPAN are unclear. METHODS: We generated Wdr45 knockout SN4741 cell lines using CRISPR‒Cas9-mediated genome editing, then lipid droplets (LDs) were stained using BODIPY 493/503. Chaperone-mediated autophagy was determined by RT-qPCR and western blotting. The expression of fatty acid synthase (Fasn) was detected by western blot in the presence or absence of the lysosomal inhibitor NH4Cl and the CMA activator AR7. The interaction between Fasn and HSC70 was analyzed using coimmunoprecipitation (Co-IP) assay. Cell viability was measured by a CCK-8 kit after treatment with the Fasn inhibitor C75 or the CMA activator AR7. RESULTS: Deletion of Wdr45 impaired chaperone-mediated autophagy (CMA), thus leading to lipid droplet (LD) accumulation. Moreover, Fasn can be degraded via CMA, and that defective CMA leads to elevated Fasn, which promotes LD formation. LD accumulation is toxic to cells; however, cell viability was not rescued by Fasn inhibition or CMA activation. Inhibition of Fasn with a low concentration of C75 did not affect cell viability but decreases LD density. CONCLUSIONS: These results suggested that Fasn is essential for cell survival but that excessive Fasn leads to LD accumulation in Wdr45 knockout cells.


Subject(s)
Chaperone-Mediated Autophagy , Neurodegenerative Diseases , Humans , Carrier Proteins/genetics , Carrier Proteins/metabolism , Lipid Droplets/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Autophagy/genetics , Fatty Acid Synthases/metabolism , Lipids
7.
Pharmacology ; 109(4): 216-230, 2024.
Article in English | MEDLINE | ID: mdl-38569476

ABSTRACT

INTRODUCTION: Acute myeloid leukemia (AML) is a cancer of the hematopoietic system characterized by hyperproliferation of undifferentiated cells of the myeloid lineage. While most of AML therapies are focused toward tumor debulking, all-trans retinoic acid (ATRA) induces neutrophil differentiation in the AML subtype acute promyelocytic leukemia (APL). Macroautophagy has been extensively investigated in the context of various cancers and is often dysregulated in AML where it can have context-dependent pro- or anti-leukemogenic effects. On the contrary, the implications of chaperone-mediated autophagy (CMA) on the pathophysiology of diseases are still being explored and its role in AML remains elusive. METHODS: We took advantage of human AML primary samples and databases to analyze CMA gene expression and activity. Furthermore, we used ATRA-sensitive (NB4) and -resistant (NB4-R1) APL cells to further dissect a potential function for CMA in ATRA-mediated neutrophil differentiation. NB4-R1 cells are unique in that they do respond to retinoic acid transcriptionally but do not mature in response to retinoid signaling alone unless maturation is triggered by adding cyclic adenosine monophosphate. RESULTS: Here, we report that CMA-related mRNA transcripts are significantly higher expressed in immature hematopoietic cells as compared to neutrophils, contrasting the macroautophagy gene expression patterns. Accordingly, lysosomal degradation of an mCherry-KFERQ CMA reporter decreases during ATRA-induced differentiation of APL cells. On the other hand, using NB4-R1 cells we found that macroautophagy flux primed ATRA-resistant NB4-R1 cells to differentiate upon ATRA treatment but reduced the association of lysosome-associated membrane protein type 2A (LAMP-2A) and heat shock protein family A (Hsp70) member 8 (HSPA8), necessary for complete neutrophil maturation. Accordingly, depletion of HSPA8 attenuated CMA activity and facilitated APL cell differentiation. In contrast, maintaining high CMA activity by ectopic expression of LAMP-2A impeded APL differentiation. CONCLUSION: Overall, our findings suggest that APL neutrophil differentiation requires CMA inactivation and that this pathway predominantly depends on HSPA8 and is possibly assisted by other co-chaperones.


Subject(s)
Cell Differentiation , Chaperone-Mediated Autophagy , HSC70 Heat-Shock Proteins , Leukemia, Promyelocytic, Acute , Tretinoin , Humans , Leukemia, Promyelocytic, Acute/metabolism , Leukemia, Promyelocytic, Acute/pathology , Leukemia, Promyelocytic, Acute/drug therapy , Cell Differentiation/drug effects , Tretinoin/pharmacology , Chaperone-Mediated Autophagy/drug effects , Cell Line, Tumor , HSC70 Heat-Shock Proteins/metabolism , HSC70 Heat-Shock Proteins/genetics , Neutrophils/drug effects , Neutrophils/metabolism , Antineoplastic Agents/pharmacology
8.
Angew Chem Int Ed Engl ; 63(18): e202319232, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38472118

ABSTRACT

Cell-surface proteins are important drug targets but historically have posed big challenges for the complete elimination of their functions. Herein, we report antibody-peptide conjugates (Ab-CMAs) in which a peptide targeting chaperone-mediated autophagy (CMA) was conjugated with commercially available monoclonal antibodies for specific cell-surface protein degradation by taking advantage of lysosomal degradation pathways. Unique features of Ab-CMAs, including cell-surface receptor- and E3 ligase-independent degradation, feasibility towards different cell-surface proteins (e.g., epidermal growth factor receptor (EGFR), programmed cell death ligand 1 (PD-L1), human epidermal growth factor receptor 2 (HER2)) by a simple change of the antibody, and successful tumor inhibition in vivo, make them attractive protein degraders for biomedical research and therapeutic applications. As the first example employing CMA to degrade proteins from the outside in, our findings may also shed new light on CMA, a degradation pathway typically targeting cytosolic proteins.


Subject(s)
Chaperone-Mediated Autophagy , Neoplasms , Humans , Autophagy/physiology , Membrane Proteins/metabolism , Neoplasms/metabolism , Peptides/metabolism , Lysosomes/metabolism
9.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(4): 385-393, 2024 Apr 15.
Article in Zh | MEDLINE | ID: mdl-38660903

ABSTRACT

OBJECTIVES: To investigate the effect of chaperone-mediated autophagy (CMA) on the damage of mouse microglial BV2 cells induce by unconjugated bilirubin (UCB). METHODS: The BV2 cell experiments were divided into two parts. (1) For the CMA activation experiment: control group (treated with an equal volume of dimethyl sulfoxide), QX77 group (treated with 20 µmol/L QX77 for 24 hours), UCB group (treated with 40 µmol/L UCB for 24 hours), and UCB+QX77 group (treated with both 20 µmol/L QX77 and 40 µmol/L UCB for 24 hours). (2) For the cell transfection experiment: LAMP2A silencing control group (treated with an equal volume of dimethyl sulfoxide), LAMP2A silencing control+UCB group (treated with 40 µmol/L UCB for 24 hours), LAMP2A silencing group (treated with an equal volume of dimethyl sulfoxide), and LAMP2A silencing+UCB group (treated with 40 µmol/L UCB for 24 hours). The cell viability was assessed using the modified MTT method. The expression levels of p65, nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), and cysteinyl aspartate specific proteinase-1 (caspase-1) were detected by Western blot. The relative mRNA expression levels of the inflammatory cytokines interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α (TNF-α) were determined by real-time quantitative polymerase chain reaction. Levels of IL-6 and TNF-α in the cell culture supernatant were measured using ELISA. The co-localization of heat shock cognate protein 70 with p65 and NLRP3 was detected by immunofluorescence. RESULTS: Compared to the UCB group, the cell viability in the UCB+QX77 group increased, and the expression levels of inflammation-related proteins p65, NLRP3, and caspase-1, as well as the mRNA relative expression levels of IL-1ß, IL-6, and TNF-α and levels of IL-6 and TNF-α decreased (P<0.05). Compared to the control group, there was co-localization of heat shock cognate protein 70 with p65 and NLRP3 in both the UCB and UCB+QX77 groups. After silencing the LAMP2A gene, compared to the LAMP2A silencing control+UCB group, the LAMP2A silencing+UCB group showed increased expression levels of inflammation-related proteins p65, NLRP3, and caspase-1, as well as increased mRNA relative expression levels of IL-1ß, IL-6, and TNF-α and levels of IL-6 and TNF-α (P<0.05). CONCLUSIONS: CMA is inhibited in UCB-induced BV2 cell damage, and activating CMA may reduce p65 and NLRP3 protein levels, suppress inflammatory responses, and counteract bilirubin neurotoxicity.


Subject(s)
Bilirubin , Chaperone-Mediated Autophagy , Microglia , Animals , Mice , Microglia/metabolism , Chaperone-Mediated Autophagy/physiology , Chaperone-Mediated Autophagy/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/physiology , Lysosomal-Associated Membrane Protein 2/genetics , Lysosomal-Associated Membrane Protein 2/metabolism , Caspase 1/genetics , Caspase 1/metabolism , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Interleukin-6/metabolism , Interleukin-6/genetics , Cells, Cultured , Cell Survival
10.
Curr Protoc ; 4(1): e950, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38197533

ABSTRACT

Chaperone-mediated autophagy (CMA) is the most selective form of lysosomal proteolysis, in which proteins are individually selected for lysosomal degradation. CMA degradation targets bear a pentapeptide consensus motif that is recognized by the cytosolic chaperone HSPA8 (Hsc70), which participates in the trafficking of the target to the lysosomal surface. From there, it is translocated into the lysosomal lumen, independent of vesicle fusion, in a process dependent upon the lysosomal transmembrane protein LAMP2A. There are limited tools for studying CMA in whole cells and tissues, and many of the best techniques for studying CMA rely on the preparation of lysosome enriched fractions. Such experiments include (1) the in vitro evaluation of CMA substrate uptake activity, (2) the characterization of changes to lysosomal resident and CMA regulatory proteins, and (3) lysosomal targetomics, i.e., the use of quantitative proteomics to characterize lysosomal degradation targets. Previous studies using discontinuous metrizamide gradients have shown that a subpopulation of liver lysosomes is responsible for the majority of CMA activity ("CMA+ "). These CMA+ lysosomes are low density and have higher levels of MTORC2 relative to the "CMA- " lysosomes, which are high density and have higher levels of MTORC1. Because of safety concerns surrounding metrizamide, however, this compound is difficult to obtain, and it is impractically expensive. Here, we have provided protocols for isolation of lysosomal subpopulations for CMA-related analyses from mouse liver using Histodenz, a safe and affordable alternative to metrizamide. Supplementary protocols show how to perform CMA activity assays with appropriate statistical analysis, and how to analyze for lysosomal breakage/membrane integrity. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Isolation of lysosomal subpopulations from mouse liver using discontinuous Histodenz gradients Alternate Protocol: Isolation of lysosomes from cultured cells using discontinuous Histodenz gradients Support Protocol 1: Verifying enrichment of lysosomal markers in lysosome-enriched fractions Support Protocol 2: Measuring in vitro uptake of CMA substrates Support Protocol 3: Measuring lysosomal membrane integrity by hexosaminidase assay.


Subject(s)
Chaperone-Mediated Autophagy , Animals , Mice , Metrizamide , Lysosomes , beta-N-Acetylhexosaminidases , Biological Assay
11.
Food Chem Toxicol ; 184: 114378, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38097005

ABSTRACT

Evidence suggests that ferroptosis participates in kidney injury. However, the role of ferroptosis in antimony (Sb) induced nephrotoxicity and the mechanism are unknown. Here, we demonstrated that Sb induced injury in renal tubular epithelial cells (RTECs) and ferroptosis. Inhibition of ferroptosis reduced RTECs injury. Besides, elimination of reactive oxygen species (ROS) alleviated ferroptosis and RTECs injury. Moreover, exposure to Sb not only increased the co-localization of glutathione peroxidase 4 (GPX4) and LAMP1, but also decreased the levels of MEF2D and LRRK2, while increased the levels of HSC70, HSP90, and LAMP2a. These findings suggest that Sb activates chaperone-mediated autophagy (CMA), enhances lysosomal transport and subsequent degradation of GPX4, ultimately leads to ferroptosis. Additionally, up-regulation of lysosomal cationic channel, TRPML1, mitigated RTECs injury and ferroptosis. Mechanistically, up-regulation of TRPML1 mitigated the changes in CMA-associated proteins induced by Sb, diminished the binding of HSC70, HSP90, and TRPML1 with LAMP2a. Furthermore, NAC restored the decreased TRPML1 level caused by Sb. In summary, deficiency of TRPML1, secondary to increased ROS induced by Sb, facilitates the CMA-dependent degradation of GPX4, thereby leading to ferroptosis and RTECs injury. These findings provide insights into the mechanism underlying Sb-induced nephrotoxicity and propose TRPML1 as a promising therapeutic target.


Subject(s)
Chaperone-Mediated Autophagy , Ferroptosis , Reactive Oxygen Species/metabolism , Antimony/toxicity , Lysosomal-Associated Membrane Protein 2/metabolism , HSP90 Heat-Shock Proteins , Autophagy
12.
Aging (Albany NY) ; 16(10): 9072-9105, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38787367

ABSTRACT

Alzheimer's disease (AD) is a progressive brain disorder marked by abnormal protein accumulation and resulting proteotoxicity. This study examines Chaperone-Mediated Autophagy (CMA), particularly substrate translocation into lysosomes, in AD. The study observes: (1) Increased substrate translocation activity into lysosomes, vital for CMA, aligns with AD progression, highlighted by gene upregulation and more efficient substrate delivery. (2) This CMA phase strongly correlates with AD's clinical symptoms; more proteotoxicity links to worse dementia, underscoring the need for active degradation. (3) Proteins like GFAP and LAMP2A, when upregulated, almost certainly indicate AD risk, marking this process as a significant AD biomarker. Based on these observations, this study proposes the following hypothesis: As AD progresses, the aggregation of pathogenic proteins increases, the process of substrate entry into lysosomes via CMA becomes active. The genes associated with this process exhibit heightened sensitivity to AD. This conclusion stems from an analysis of over 10,000 genes and 363 patients using two AI methodologies. These methodologies were instrumental in identifying genes highly sensitive to AD and in mapping the molecular networks that respond to the disease, thereby highlighting the significance of this critical phase of CMA.


Subject(s)
Alzheimer Disease , Chaperone-Mediated Autophagy , Disease Progression , Lysosomal-Associated Membrane Protein 2 , Lysosomes , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Humans , Chaperone-Mediated Autophagy/genetics , Lysosomes/metabolism , Lysosomal-Associated Membrane Protein 2/metabolism , Lysosomal-Associated Membrane Protein 2/genetics , Aged , Female , Male , Protein Transport , Glial Fibrillary Acidic Protein
13.
mBio ; 15(8): e0053224, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-38940560

ABSTRACT

Autophagy is an important biological process in host defense against viral infection. However, many viruses have evolved various strategies to disrupt the host antiviral system. Porcine reproductive and respiratory syndrome virus (PRRSV) is a typical immunosuppressive virus with a large economic impact on the swine industry. At present, studies on the escape mechanism of PRRSV in the autophagy process, especially through chaperone-mediated autophagy (CMA), are limited. This study confirmed that PRRSV glycoprotein 5 (GP5) could disrupt the formation of the GFAP-LAMP2A complex by inhibiting the MTORC2/PHLPP1/GFAP pathway, promoting the dissociation of the pGFAP-EF1α complex, and blocking the K63-linked polyubiquitination of LAMP2A to inhibit the activity of CMA. Further research demonstrated that CMA plays an anti-PRRSV role by antagonizing nonstructural protein 11 (NSP11)-mediated inhibition of type I interferon (IFN-I) signaling. Taken together, these results indicate that PRRSV GP5 inhibits the antiviral effect of CMA by targeting LAMP2A. This research provides new insight into the escape mechanism of immunosuppressive viruses in CMA. IMPORTANCE: Viruses have evolved sophisticated mechanisms to manipulate autophagy to evade degradation and immune responses. Porcine reproductive and respiratory syndrome virus (PRRSV) is a typical immunosuppressive virus that causes enormous economic losses in the swine industry. However, the mechanism by which PRRSV manipulates autophagy to defend against host antiviral effects remains unclear. In this study, we found that PRRSV GP5 interacts with LAMP2A and disrupts the formation of the GFAP-LAMP2A complex, thus inhibiting the activity of CMA and subsequently enhancing the inhibitory effect of the NSP11-mediated IFN-I signaling pathway, ultimately facilitating PRRSV replication. Our study revealed a novel mechanism by which PRRSV escapes host antiviral effects through CMA, providing a potential host target, LAMP2A, for developing antiviral drugs and contributing to understanding the escape mechanism of immunosuppressive viruses.


Subject(s)
Chaperone-Mediated Autophagy , Lysosomal-Associated Membrane Protein 2 , Porcine respiratory and reproductive syndrome virus , Porcine respiratory and reproductive syndrome virus/physiology , Animals , Swine , Lysosomal-Associated Membrane Protein 2/metabolism , Lysosomal-Associated Membrane Protein 2/genetics , Chaperone-Mediated Autophagy/genetics , Cell Line , Humans , Autophagy , Host-Pathogen Interactions , Signal Transduction , Immune Evasion , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/metabolism
14.
ACS Nano ; 18(2): 1599-1610, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38157218

ABSTRACT

Chaperone-mediated autophagy (CMA) is a lysosomal-dependent proteolysis pathway for the degradation of cytosolic proteins. However, exploiting CMA-mediated proteolysis to degrade proteins of interest in cancer therapy has not been widely applied. In this study, we develop a CMA-targeting chimera (CMATAC) to efficiently and specifically degrade signal transduction and activator of transcription 3 (STAT3) in tumor cells. CMATAC consists of STAT3 and heat shock cognate 70 kDa protein (HSC70) targeting peptides connected by a linker. To efficiently deliver CMATACs into tumor cells, lipid nanoparticles (LNPs) are used to encapsulate CMATACs (nCMATACs) and decorated with an insulin-like growth factor 2 receptor (IGF2R) targeting peptide (InCMATACs) to achieve tumor targeting and precise delivery. The CMA pathway is activated in tumor cells by a fasting-mimicking diet (FMD). Furthermore, FMD treatment strongly enhances the cellular uptake and tumor accumulation of InCMATACs by upregulating the IGF2R expression. As a result, InCMATACs efficiently degrade STAT3 protein in both A549 and HCC827 tumor cells and inhibit tumor growths in vivo. This study demonstrates that InCMATACs can be used for selective proteolysis in cancer therapy.


Subject(s)
Chaperone-Mediated Autophagy , Neoplasms , Humans , Autophagy , Neoplasms/metabolism , Proteolysis , HSC70 Heat-Shock Proteins/metabolism , Peptides/metabolism , Signal Transduction , Lysosomes/metabolism
15.
Sci Total Environ ; 927: 172069, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38582117

ABSTRACT

Ferroptosis is a newly recognized type of programmed cell death that is implicated in the pathophysiological process of neurological disorders. Our previous studies have revealed that exposure to high concentrations of fluoride for long periods of time induces hippocampal neural injury and cognitive deficits. However, whether ferroptosis is involved in fluoride-induced neuronal death and the underlying mechanism remain unknown. In this study, the results indicated that exposure to high fluoride triggered ferroptosis in SH-SY5Y cells and in the hippocampus of mice. Fluoride exposure accelerated the lysosomal degradation of GPX4 and led to neuronal ferroptosis, while GPX4 overexpression protected SH-SY5Y cells against fluoride-induced neurotoxicity. Intriguingly, the enhanced chaperone-mediated autophagy (CMA) induced by fluoride stimulation was responsible for GPX4 degradation because the inhibition of CMA activity by LAMP2A knockdown effectively prevented fluoride-induced GPX4 loss. Furthermore, mitochondrial ROS (mtROS) accumulation caused by fluoride contributed to CMA activation-mediated GPX4 degradation and subsequent neuronal ferroptosis. Notably, the ferroptosis-specific inhibitor ferrostatin-1 (Fer-1) or the ROS scavenger N-acetyl-L-cysteine (NAC) alleviated fluoride-evoked hippocampal neuronal death and synaptic injury as well as cognitive deficits in mice. The present studies indicates that ferroptosis is a novel mechanism of fluoride-induced neurotoxicity and that chronic fluoride exposure facilitates GPX4 degradation via mtROS chaperone-mediated autophagy, leading to neuronal ferroptosis and cognitive impairment.


Subject(s)
Chaperone-Mediated Autophagy , Cognitive Dysfunction , Ferroptosis , Fluorides , Neurons , Phospholipid Hydroperoxide Glutathione Peroxidase , Reactive Oxygen Species , Animals , Humans , Mice , Autophagy/drug effects , Chaperone-Mediated Autophagy/physiology , Chaperone-Mediated Autophagy/drug effects , Cognitive Dysfunction/chemically induced , Ferroptosis/drug effects , Ferroptosis/physiology , Fluorides/toxicity , Hippocampus/drug effects , Hippocampus/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Neurons/drug effects , Phospholipid Hydroperoxide Glutathione Peroxidase/drug effects , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Reactive Oxygen Species/metabolism
16.
Neuroreport ; 35(12): 771-779, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38935077

ABSTRACT

Recent studies have shown that autophagy is activated in response to nerve damage and occurs simultaneously with the initial stages of Schwann cell-mediated demyelination. Although several studies have reported that macroautophagy is involved in the peripheral nerve, the role of chaperone-mediated autophagy (CMA) has not yet been investigated in peripheral nerve injury. The present study investigates the role of CMA in the sciatic nerve. Using a mouse model of sciatic nerve injury, the authors employed immunofluorescence analysis to observe the expression of LAMP2A, a critical marker for CMA. RNA sequencing was performed to observe the transcriptional profile of Lamp2a in Schwann cells. Bioinformatics analysis was carried out to observe the hub genes associated with Lamp2a . Expression of Lamp2a , a key gene in CMA, increased following sciatic nerve injury, based on an immunofluorescence assay. To identify differentially expressed genes using Lamp2a , RNA sequence analysis was conducted using rat Schwann cells overexpressing Lamp2a . The nine hub genes ( Snrpf, Polr1d, Snip1, Aqr, Polr2h, Ssbp1, Mterf3, Adcy6 , and Sbds ) were identified using the CytoHubba plugin of Cytoscape. Functional analysis revealed that Lamp2a overexpression affected the transcription levels of genes associated with mitotic spindle organization and mRNA splicing via the spliceosome. In addition, Polr1d and Snrpf1 were downregulated throughout postnatal development but elevated following sciatic nerve injury, according to a bioinformatics study. CMA may be an integral pathway in sciatic nerve injury via mRNA splicing.


Subject(s)
Computational Biology , Lysosomal-Associated Membrane Protein 2 , Schwann Cells , Sciatic Nerve , Animals , Lysosomal-Associated Membrane Protein 2/metabolism , Lysosomal-Associated Membrane Protein 2/genetics , Mice , Schwann Cells/metabolism , Sciatic Nerve/injuries , Sciatic Nerve/metabolism , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/metabolism , Rats , Male , Chaperone-Mediated Autophagy/genetics , Mice, Inbred C57BL , Sciatic Neuropathy/genetics , Sciatic Neuropathy/metabolism
17.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(6): 481-487, 2024 Jun.
Article in Zh | MEDLINE | ID: mdl-38952086

ABSTRACT

Objective To elucidate the role of chaperone-mediated autophagy (CMA) in alleviating emotional dysfunction in mice with sepsis-associated encephalopathy (SAE). Methods The SAE mouse model was established by cecal ligation and perforation (CLP). The severity of sepsis was assessed using the sepsis severity score (MSS). Emotional function in SAE mice was assessed by the open-field test and elevated plus-maze. The expression levels of cognitive heat shock cognate protein 70 (HSC70), lysosomal-associated membrane protein 2A (LAMP2A) and high mobility group box 1 protein B1 (HMGB1) were detected using Western blotting. Co-localization of LAMP2A in the hippocampal neurons was observed by immunofluorescence. The release of inflammatory factors interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) was measured using ELISA. Following 12 hours post-CLP, mice were orally administered resveratrol at a dose of 30 mg/kg once daily until day 14. Results The mortality rate of CLP mice was 45.83% 24 days post CLP, and all surviving mice exhibited emotional disturbances. 24 hours after CLP, a significant decrease in HSC70 and LAMP2A expression in hippocampal neurons was observed, indicating impaired CMA activity. Meanwhile, HMGB1 and inflammatory cytokines (IL-6 and TNF-α) levels increased. After resveratrol treatment, an increase of HSC70 and LAMP2A expression, and a decrease of HMGB1 expression and inflammatory cytokine release were observed, suggesting enhanced CMA activity and reduced neuroinflammation. Behavioral tests showed that emotional dysfunction was improved in SAE mice after resveratrol treatment. Conclusion CMA activity of hippocampal neurons in SAE mice is significantly reduced, leading to emotional dysfunction. Resveratrol can alleviate neuroinflammation and emotional dysfunction in SAE mice by promoting CMA and inhibiting the expression of HMGB1 and the release of inflammatory factors.


Subject(s)
Chaperone-Mediated Autophagy , HMGB1 Protein , Resveratrol , Sepsis-Associated Encephalopathy , Animals , Mice , Sepsis-Associated Encephalopathy/drug therapy , Sepsis-Associated Encephalopathy/physiopathology , Sepsis-Associated Encephalopathy/metabolism , Male , Resveratrol/pharmacology , HMGB1 Protein/metabolism , Chaperone-Mediated Autophagy/drug effects , Tumor Necrosis Factor-alpha/metabolism , Lysosomal-Associated Membrane Protein 2/metabolism , Lysosomal-Associated Membrane Protein 2/genetics , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/metabolism , Hippocampus/metabolism , Hippocampus/drug effects , Interleukin-6/metabolism , Stilbenes/pharmacology , HSC70 Heat-Shock Proteins/metabolism , Sepsis/complications , Sepsis/drug therapy , Sepsis/metabolism , Sepsis/physiopathology , Mice, Inbred C57BL , Disease Models, Animal
18.
Autophagy ; 20(8): 1854-1867, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38566314

ABSTRACT

The inhibition of the unfolded protein response (UPR), which usually protects cancer cells from stress, may be exploited to potentiate the cytotoxic effect of drugs inducing ER stress. However, in this study, we found that ER stress and UPR activation by thapsigargin or tunicamycin promoted the lysosomal degradation of mutant (MUT) TP53 and that the inhibition of the UPR sensor ATF6, but not of ERN1/IRE1 or EIF2AK3/PERK, counteracted such an effect. ATF6 activation was indeed required to sustain the function of lysosomes, enabling the execution of chaperone-mediated autophagy (CMA) as well as of macroautophagy, processes involved in the degradation of MUT TP53 in stressed cancer cells. At the molecular level, by pharmacological and genetic approaches, we demonstrated that the inhibition of ATF6 correlated with the activation of MTOR and with TFEB and LAMP1 downregulation in thapsigargin-treated MUT TP53 carrying cells. We hypothesize that the rescue of MUT TP53 expression by ATF6 inhibition, could further activate MTOR and maintain lysosomal dysfunction, further inhibiting MUT TP53 degradation, in a vicious circle. The findings of this study suggest that the presence of MUT TP53, which often exerts oncogenic properties, should be considered before approaching treatments combining ER stressors with ATF6 inhibitors against cancer cells, while it could represent a promising strategy against cancer cells that harbor WT TP53.


Subject(s)
Activating Transcription Factor 6 , Endoplasmic Reticulum Stress , Lysosomes , TOR Serine-Threonine Kinases , Thapsigargin , Tumor Suppressor Protein p53 , Unfolded Protein Response , Activating Transcription Factor 6/metabolism , Activating Transcription Factor 6/genetics , Lysosomes/metabolism , Lysosomes/drug effects , Humans , Tumor Suppressor Protein p53/metabolism , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/genetics , Thapsigargin/pharmacology , Unfolded Protein Response/drug effects , Unfolded Protein Response/genetics , TOR Serine-Threonine Kinases/metabolism , Chaperone-Mediated Autophagy/drug effects , Chaperone-Mediated Autophagy/genetics , Mutation/genetics , Cell Line, Tumor , Autophagy/drug effects , Autophagy/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Tunicamycin/pharmacology , Lysosomal-Associated Membrane Protein 1
SELECTION OF CITATIONS
SEARCH DETAIL