ABSTRACT
Chitin, a ubiquitous biopolymer, holds paramount scientific and economic significance. Historically, it has been primarily isolated from marine crustaceans. However, the surge in demand for chitin and the burgeoning interest in biopolymers have necessitated the exploration of alternative sources. Among these methods, the mulberry silkworm (Bombyx mori) has emerged as a particularly intriguing prospect. To isolate chitin from Bombyx mori, a chemical extraction methodology was employed. This process involved a series of meticulously orchestrated steps, including Folch extraction, demineralization, deproteinization, and decolorization. The resultant chitin was subjected to comprehensive analysis utilizing techniques such as attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), 13C nuclear magnetic resonance (NMR) spectroscopy, and wide-angle X-ray scattering (WAXS). The obtained results allow us to conclude that the Bombyx mori represents an attractive alternative source of α-chitin.
Subject(s)
Bombyx , Chitin , Bombyx/chemistry , Animals , Chitin/chemistry , Chitin/isolation & purification , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction , Magnetic Resonance Spectroscopy , Morus/chemistryABSTRACT
Chitin is mostly produced from crustaceans, but it is difficult to supply raw materials due to marine pollution, and the commonly used chemical chitin extraction method is not environmentally friendly. Therefore, this study aims to establish a chitin extraction process using enzymes and to develop edible insect-derived chitin as an eco-friendly new material. The response surface methodology (RSM) was used to determine the optimal conditions for enzymatic hydrolysis. The optimal conditions for enzymatic hydrolysis by RSM were determined to be the substrate concentration (7.5%), enzyme concentration (80 µL/g), and reaction time (24 h). The solubility and DDA of the mealworm chitosan were 45% and 37%, respectively, and those of the commercial chitosan were 61% and 57%, respectively. In regard to the thermodynamic properties, the exothermic peak of mealworm chitin was similar to that of commercial chitin. In the FT-IR spectrum, a band was observed in mealworm chitin corresponding to the C=O of the NHCOCH3 group at 1645 cm-1, but this band showed low-intensity C=O in the mealworm chitosan due to deacetylation. Collectively, mealworm chitosan shows almost similar physical and chemical properties to commercial chitosan. Therefore, it is shown that an eco-friendly process can be introduced into chitosan production by using enzyme-extracted mealworms for chitin/chitosan production.
Subject(s)
Chitin , Chitosan , Subtilisins , Tenebrio , Animals , Acetylation , Calorimetry, Differential Scanning , Chitin/chemistry , Chitin/isolation & purification , Chitin/metabolism , Chitosan/chemistry , Chitosan/isolation & purification , Chitosan/metabolism , Crustacea/chemistry , Edible Insects/chemistry , Edible Insects/metabolism , Hydrolysis , Proteolysis , Solubility , Spectroscopy, Fourier Transform Infrared , Subtilisins/metabolism , Tenebrio/chemistry , Tenebrio/metabolism , ThermodynamicsABSTRACT
ß-chitin was isolated from marine waste, giant Humboldt squid Dosidicus gigas, and further converted to nanofibers by use of a collider machine under acidic conditions (pH 3). The FTIR, TGA, and NMR analysis confirmed the efficient extraction of ß-chitin. The SEM, TEM, and XRD characterization results verified that ß-chitin crystalline structure were maintained after mechanical treatment. The mean particle size of ß-chitin nanofibers was in the range between 10 and 15 nm, according to the TEM analysis. In addition, the ß-chitin nanofibers were converted into films by the simple solvent-casting and drying process at 60 °C. The obtained films had high lightness, which was evidenced by the CIELAB color test. Moreover, the films showed the medium swelling degree (250-290%) in aqueous solutions of different pH and good mechanical resistance in the range between 4 and 17 MPa, depending on film thickness. The results obtained in this work show that marine waste can be efficiently converted to biomaterial by use of mild extractive conditions and simple mechanical treatment, offering great potential for the future development of sustainable multifunctional materials for various industrial applications such as food packaging, agriculture, and/or wound dressing.
Subject(s)
Biocompatible Materials , Chitin/isolation & purification , Decapodiformes/metabolism , Nanofibers , Waste Products , Animals , Carbohydrate Conformation , Chitin/chemistry , Particle Size , Surface Properties , ViscosityABSTRACT
Chitin, the second most abundant biopolymer on earth, is utilised in a wide range of applications including wastewater treatment, drug delivery, wound healing, tissue engineering, and stem cell technology among others. This review compares the most prevalent strategies for the extraction of chitin from crustacean sources including chemical methods that involve the use of harsh solvents and emerging methods using deep eutectic solvents (DES). In recent years, a significant amount of research has been carried out to identify and develop environmentally friendly processes which might facilitate the replacement of problematic chemicals utilised in conventional chemical extraction strategies with DES. This article provides an overview of different experimental parameters used in the DES-mediated extraction of chitin while also comparing the purity and yields of associated extracts with conventional methods. As part of this review, we compare the relative proportions of chitin and extraneous materials in different marine crustaceans. We show the importance of the species of crustacean shell in relation to chitin purity and discuss the significance of varying process parameters associated with different extraction strategies. The review also describes some recent applications associated with chitin. Following on from this review, we suggest recommendations for further investigation into chitin extraction, especially for experimental research pertaining to the enhancement of the "environmentally friendly" nature of the process. It is hoped that this article will provide researchers with a platform to better understand the benefits and limitations of DES-mediated extractions thereby further promoting knowledge in this area.
Subject(s)
Animal Shells/chemistry , Chitin , Crustacea/chemistry , Deep Eutectic Solvents/chemistry , Animals , Chitin/chemistry , Chitin/isolation & purificationABSTRACT
Over the past decade, reckless usage of synthetic pesticides and fertilizers in agriculture has made the environment and human health progressively vulnerable. This setting leads to the pursuit of other environmentally friendly interventions. Amongst the suggested solutions, the use of chitin and chitosan came about, whether alone or in combination with endophytic bacterial strains. In the framework of this research, we reported an assortment of studies on the physico-chemical properties and potential applications in the agricultural field of two biopolymers extracted from shrimp shells (chitin and chitosan), in addition to their uses as biofertilizers and biostimulators in combination with bacterial strains of the genus Bacillus sp. (having biochemical and enzymatic properties).
Subject(s)
Bacillus/metabolism , Chitin/metabolism , Chitosan/metabolism , Crops, Agricultural/metabolism , Animal Shells/chemistry , Animals , Carbohydrate Conformation , Chitin/chemistry , Chitin/isolation & purification , Chitosan/chemistry , Chitosan/isolation & purification , CrustaceaABSTRACT
Greener alternatives to synthetic polymers are constantly being investigated and sought after. Chitin is a natural polysaccharide that gives structural support to crustacean shells, insect exoskeletons, and fungal cell walls. Like cellulose, chitin resides in nanosized structural elements that can be isolated as nanofibers and nanocrystals by various top-down approaches, targeted at disintegrating the native construct. Chitin has, however, been largely overshadowed by cellulose when discussing the materials aspects of the nanosized components. This Perspective presents a thorough overview of chitin-related materials research with an analytical focus on nanocomposites and nanopapers. The red line running through the text emphasizes the use of fungal chitin that represents several advantages over the more popular crustacean sources, particularly in terms of nanofiber isolation from the native matrix. In addition, many ß-glucans are preserved in chitin upon its isolation from the fungal matrix, enabling new horizons for various engineering solutions.
Subject(s)
Chitin/chemistry , Fungi/chemistry , Nanostructures/chemistry , Animal Shells/chemistry , Animals , Bandages , Cellulose/chemistry , Chitin/isolation & purification , Crustacea/chemistry , Food Packaging , Fungi/cytology , Humans , Polymers/chemistryABSTRACT
The development of novel and effective methods for the isolation of chitin, which remains one of the fundamental aminopolysaccharides within skeletal structures of diverse marine invertebrates, is still relevant. In contrast to numerous studies on chitin extraction from crustaceans, mollusks and sponges, there are only a few reports concerning its isolation from corals, and especially black corals (Antipatharia). In this work, we report the stepwise isolation and identification of chitin from Cirrhipathes sp. (Antipatharia, Antipathidae) for the first time. The proposed method, aiming at the extraction of the chitinous scaffold from the skeleton of black coral species, combined a well-known chemical treatment with in situ electrolysis, using a concentrated Na2SO4 aqueous solution as the electrolyte. This novel method allows the isolation of α-chitin in the form of a microporous membrane-like material. Moreover, the extracted chitinous scaffold, with a well-preserved, unique pore distribution, has been extracted in an astoundingly short time (12 h) compared to the earlier reported attempts at chitin isolation from Antipatharia corals.
Subject(s)
Anthozoa/anatomy & histology , Anthozoa/chemistry , Chitin/isolation & purification , Animals , Chitin/chemistry , ElectrochemistryABSTRACT
: Chitin is one of the most abundant biomolecules on earth, occurring in crustacean shells and cell walls of fungi. While the polysaccharide is threatening to pollute coastal ecosystems in the form of accumulating shell-waste, it has the potential to be converted into highly profitable derivatives with applications in medicine, biotechnology, and wastewater treatment, among others. Traditionally this is still mostly done by the employment of aggressive chemicals, yielding low quality while producing toxic by-products. In the last decades, the enzymatic conversion of chitin has been on the rise, albeit still not on the same level of cost-effectiveness compared to the traditional methods due to its multi-step character. Another severe drawback of the biotechnological approach is the highly ordered structure of chitin, which renders it nigh impossible for most glycosidic hydrolases to act upon. So far, only the Auxiliary Activity 10 family (AA10), including lytic polysaccharide monooxygenases (LPMOs), is known to hydrolyse native recalcitrant chitin, which spares the expensive first step of chemical or mechanical pre-treatment to enlarge the substrate surface. The main advantages of enzymatic conversion of chitin over conventional chemical methods are the biocompability and, more strikingly, the higher product specificity, product quality, and yield of the process. Products with a higher Mw due to no unspecific depolymerisation besides an exactly defined degree and pattern of acetylation can be yielded. This provides a new toolset of thousands of new chitin and chitosan derivatives, as the physio-chemical properties can be modified according to the desired application. This review aims to provide an overview of the biotechnological tools currently at hand, as well as challenges and crucial steps to achieve the long-term goal of enzymatic conversion of native chitin into specialty chemical products.
Subject(s)
Biotechnology , Chitin/chemistry , Chitosan/chemistry , Animals , Chitin/isolation & purification , Chitin/metabolism , Chitosan/metabolism , Crustacea/metabolism , Ecosystem , Fungi/metabolismABSTRACT
Chitin, being the second most abundant biopolymer after cellulose, has been gaining popularity since its initial discovery by Braconot in 1811. However, fundamental knowledge and literature on chitin and its derivatives from insects are difficult to obtain. The most common and sought-after sources of chitin are shellfish (especially crustaceans) and other aquatic invertebrates. The amount of shellfish available is obviously restricted by the amount of food waste that is allowed; hence, it is a limited resource. Therefore, insects are the best choices since, out of 1.3 million species in the world, 900,000 are insects, making them the most abundant species in the world. In this review, a total of 82 samples from shellfish-crustaceans and mollusks (n = 46), insects (n = 23), and others (n = 13)-have been collected and studied for their chemical extraction of chitin and its derivatives. The aim of this paper is to review the extraction method of chitin and chitosan for a comparison of the optimal demineralization and deproteinization processes, with a consideration of insects as alternative sources of chitin. The methods employed in this review are based on comprehensive bibliographic research. Based on previous data, the chitin and chitosan contents of insects in past studies favorably compare and compete with those of commercial chitin and chitosan-for example, 45% in Bombyx eri, 36.6% in Periostracum cicadae (cicada sloughs), and 26.2% in Chyrysomya megacephala. Therefore, according to the data reported by previous researchers, demonstrating comparable yield values to those of crustacean chitin and the great interest in insects as alternative sources, efforts towards comprehensive knowledge in this field are relevant.
Subject(s)
Chemical Fractionation/methods , Chitin/isolation & purification , Chitosan/isolation & purification , Insecta/chemistry , Animals , Chitin/chemistry , Chitosan/chemistry , Crustacea/chemistry , Mollusca/chemistry , Refuse Disposal/methodsABSTRACT
Fifteen years ago, at least one multimated female yellow-legged Asian hornet (Vespa velutina Lepeletier 1836) arrived in France, which gave rise to a pan-European invasion. In this study, the isolation and characterization of chitin (CHI) that was obtained from Vespa velutina (CHIVV) is described. In addition, an easy procedure is carried out to capture the raw insect, selectively and with high rates of success. The chitin contents of dry VV was observed to be 11.7%. Fourier transform infrared spectroscopy (FTIR), solid-state NMR (ssNMR), elemental analysis (EA), scanning electron microscopy (SEM), and thermogravimetric analysis (TG) characterized the physicochemical properties of CHIVV. The obtained CHIVV is close to pure (43.47% C, 6.94% H, and 6.85% N), and full acetylated with a value of 95.44%. Additionally, lifetime and kinetic parameters such as activation E and the frequency factor A using model-free and model-fitting methods, were determined. For CHIVV the solid state mechanism that follows the thermodegradation is of type F2 (random nucleation around two nuclei). The invasive Asian hornet is a promising alternative source of CHI, based on certain factors, such as the current and probable continued abundance of the quantity and quality of the product obtained.
Subject(s)
Chitin/chemistry , Chitin/isolation & purification , Wasps/chemistry , Acetylation , Animals , Female , Finite Element Analysis , Introduced Species , Magnetic Resonance Spectroscopy , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , ThermogravimetryABSTRACT
The bioactive bromotyrosine-derived alkaloids and unique morphologically-defined fibrous skeleton of chitin origin have been found recently in marine demosponges of the order Verongiida. The sophisticated three-dimensional (3D) structure of skeletal chitinous scaffolds supported their use in biomedicine, tissue engineering as well as in diverse modern technologies. The goal of this study was the screening of new species of the order Verongiida to find another renewable source of naturally prefabricated 3D chitinous scaffolds. Special attention was paid to demosponge species, which could be farmed on large scale using marine aquaculture methods. In this study, the demosponge Pseudoceratina arabica collected in the coastal waters of the Egyptian Red Sea was examined as a potential source of chitin for the first time. Various bioanalytical tools including scanning electron microscopy (SEM), fluorescence microscopy, FTIR analysis, Calcofluor white staining, electrospray ionization mass spectrometry (ESI-MS), as well as a chitinase digestion assay were successfully used to confirm the discovery of α-chitin within the skeleton of P. arabica. The current finding should make an important contribution to the field of application of this verongiid sponge as a novel renewable source of biologically-active metabolites and chitin, which are important for development of the blue biotechnology especially in marine oriented biomedicine.
Subject(s)
Chitin/chemistry , Porifera/chemistry , Animals , Chitin/isolation & purification , Chitin/ultrastructure , Indian Ocean , Microscopy, Electron, Scanning/methods , Porifera/ultrastructure , Spectrometry, Mass, Electrospray Ionization , Spectroscopy, Fourier Transform InfraredABSTRACT
Sponges are a valuable source of natural compounds and biomaterials for many biotechnological applications. Marine sponges belonging to the order Verongiida are known to contain both chitin and biologically active bromotyrosines. Aplysina archeri (Aplysineidae: Verongiida) is well known to contain bromotyrosines with relevant bioactivity against human and animal diseases. The aim of this study was to develop an express method for the production of naturally prefabricated 3D chitin and bromotyrosine-containing extracts simultaneously. This new method is based on microwave irradiation (MWI) together with stepwise treatment using 1% sodium hydroxide, 20% acetic acid, and 30% hydrogen peroxide. This approach, which takes up to 1 h, made it possible to isolate chitin from the tube-like skeleton of A. archeri and to demonstrate the presence of this biopolymer in this sponge for the first time. Additionally, this procedure does not deacetylate chitin to chitosan and enables the recovery of ready-to-use 3D chitin scaffolds without destruction of the unique tube-like fibrous interconnected structure of the isolated biomaterial. Furthermore, these mechanically stressed fibers still have the capacity for saturation with water, methylene blue dye, crude oil, and blood, which is necessary for the application of such renewable 3D chitinous centimeter-sized scaffolds in diverse technological and biomedical fields.
Subject(s)
Chitin/isolation & purification , Porifera/chemistry , Animals , Biocompatible Materials/analysis , Biocompatible Materials/chemistry , Biocompatible Materials/isolation & purification , Chitin/analysis , Chitin/chemistry , Spectroscopy, Fourier Transform Infrared , Tyrosine/analogs & derivatives , Tyrosine/analysis , Tyrosine/chemistry , Tyrosine/isolation & purificationABSTRACT
Naturally occurring three-dimensional (3D) biopolymer-based matrices that can be used in different biomedical applications are sustainable alternatives to various artificial 3D materials. For this purpose, chitin-based structures from marine sponges are very promising substitutes. Marine sponges from the order Verongiida (class Demospongiae) are typical examples of demosponges with well-developed chitinous skeletons. In particular, species belonging to the family Ianthellidae possess chitinous, flat, fan-like fibrous skeletons with a unique, microporous 3D architecture that makes them particularly interesting for applications. In this work, we focus our attention on the demosponge Ianthella flabelliformis (Linnaeus, 1759) for simultaneous extraction of both naturally occurring ("ready-to-use") chitin scaffolds, and biologically active bromotyrosines which are recognized as potential antibiotic, antitumor, and marine antifouling substances. We show that selected bromotyrosines are located within pigmental cells which, however, are localized within chitinous skeletal fibers of I. flabelliformis. A two-step reaction provides two products: treatment with methanol extracts the bromotyrosine compounds bastadin 25 and araplysillin-I N20 sulfamate, and a subsequent treatment with acetic acid and sodium hydroxide exposes the 3D chitinous scaffold. This scaffold is a mesh-like structure, which retains its capillary network, and its use as a potential drug delivery biomaterial was examined for the first time. The results demonstrate that sponge-derived chitin scaffolds, impregnated with decamethoxine, effectively inhibit growth of the human pathogen Staphylococcus aureus in an agar diffusion assay.
Subject(s)
Aquatic Organisms/chemistry , Chitin/chemistry , Drug Carriers/chemistry , Porifera/chemistry , Tyrosine/analogs & derivatives , Animals , Anti-Bacterial Agents/administration & dosage , Chitin/isolation & purification , Cytoskeleton/chemistry , Decamethonium Compounds/administration & dosage , Drug Carriers/isolation & purification , Hydrocarbons, Brominated/chemistry , Hydrocarbons, Brominated/isolation & purification , Isoxazoles/chemistry , Isoxazoles/isolation & purification , Microbial Sensitivity Tests , Peptides, Cyclic/chemistry , Peptides, Cyclic/isolation & purification , Porifera/cytology , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects , Tyrosine/chemistry , Tyrosine/isolation & purificationABSTRACT
Chitin, as a fundamental polysaccharide in invertebrate skeletons, continues to be actively investigated, especially with respect to new sources and the development of effective methods for its extraction. Recent attention has been focused on marine crustaceans and sponges; however, the potential of spiders (order Araneae) as an alternative source of tubular chitin has been overlooked. In this work, we focused our attention on chitin from up to 12 cm-large Theraphosidae spiders, popularly known as tarantulas or bird-eating spiders. These organisms "lose" large quantities of cuticles during their molting cycle. Here, we present for the first time a highly effective method for the isolation of chitin from Caribena versicolor spider molt cuticle, as well as its identification and characterization using modern analytical methods. We suggest that the tube-like molt cuticle of this spider can serve as a naturally prefabricated and renewable source of tubular chitin with high potential for application in technology and biomedicine.
Subject(s)
Chitin/chemistry , Chitin/isolation & purification , Spiders/chemistry , Animals , Chemical Fractionation , Microwaves , Molting , Spectrum AnalysisABSTRACT
Nanocrystalline particles of chitin in the form of hydrosol in a concentration of 0.63 mg/ml have no effect on aggregation of human platelets and clotting time of platelet-poor plasma in coagulation tests. ADP-induced aggregation of human platelets was inhibited by these nanoparticles in concentrations of 0.63 and 1.00 mg/ml in comparison with the control. Intravenous administration of nanoparticles in a dose of 1 mg/kg to guinea pigs produced no anticoagulant effect. The nanocrystalline particles of chitin can be of interest as potential drug delivery systems.
Subject(s)
Blood Coagulation/drug effects , Chitin/pharmacology , Drug Delivery Systems/methods , Nanoparticles/chemistry , Adenosine Diphosphate/pharmacology , Animal Shells/chemistry , Animals , Blood Coagulation Tests , Blood Platelets/drug effects , Brachyura , Chitin/chemistry , Chitin/isolation & purification , Crystallization , Female , Guinea Pigs , Humans , Injections, Intravenous , Nanoparticles/ultrastructure , Platelet Aggregation/drug effectsABSTRACT
Polysaccharides are major components of extracellular matrices and are often extensively modified post-synthetically to suit local requirements and developmental programmes. However, our current understanding of the spatiotemporal dynamics and functional significance of these modifications is limited by a lack of suitable molecular tools. Here, we report the development of a novel non-immunological approach for producing highly selective reciprocal oligosaccharide-based probes for chitosan (the product of chitin deacetylation) and for demethylesterified homogalacturonan. Specific reciprocal binding is mediated by the unique stereochemical arrangement of oppositely charged amino and carboxy groups. Conjugation of oligosaccharides to fluorophores or gold nanoparticles enables direct and rapid imaging of homogalacturonan and chitosan with unprecedented precision in diverse plant, fungal and animal systems. We demonstrated their potential for providing new biological insights by using them to study homogalacturonan processing during Arabidopsis thaliana root cap development and by analyzing sites of chitosan deposition in fungal cell walls and arthropod exoskeletons.
Subject(s)
Chitin/metabolism , Extracellular Matrix/metabolism , Molecular Probes , Oligosaccharides , Pectins/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Cell Wall/ultrastructure , Chitin/isolation & purification , Desmidiales/ultrastructure , Metal Nanoparticles , Microarray Analysis , Microscopy, Electron, Transmission , Molecular Probes/metabolism , Molecular Structure , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Optical Imaging/methods , Pectins/isolation & purification , Plant Root Cap/growth & development , Plant Root Cap/metabolismSubject(s)
Animal Shells/chemistry , Chemical Fractionation/methods , Food Industry , Industrial Waste , Recycling/methods , Shellfish , Animal Feed , Animals , Calcium Carbonate/analysis , Calcium Carbonate/economics , Calcium Carbonate/isolation & purification , Chitin/analysis , Chitin/economics , Chitin/isolation & purification , Food Industry/economics , Industrial Waste/analysis , Industrial Waste/economics , Nitrogen/analysis , Nitrogen/economics , Proteins/analysis , Proteins/economics , Proteins/isolation & purification , Recycling/economics , Shellfish/economicsABSTRACT
Honey bees are critical pollinators in both agricultural and ecological settings. The Nosema species, ceranae and apis, are microsporidian parasites that are pathogenic to honey bees. While current methods for detecting Nosema infection have key merits, additional techniques with novel properties for studying the cell biology of Nosema infection are highly desirable. We demonstrate that whole-mount staining of honey bee midgut tissue with chitin-binding agent Fluorescent Brightener 28 and DNA dye Propidium Iodide allows for observation of Nosema infection in structurally intact tissue, providing a new tool for increasing our understanding of Nosema infection at the cellular and tissue level.
Subject(s)
Bees/microbiology , Coloring Agents , Fluorescent Dyes , Nosema/isolation & purification , Animals , Benzenesulfonates , Chitin/isolation & purification , Microscopy, Confocal , Propidium , Spores, Fungal/isolation & purificationABSTRACT
Oligosaccharide elicitors from pathogens have been shown to play major roles in host plant defense responses involving plant-pathogen chemoperception and interaction. In the present study, chitosan and oligochitosan were prepared from pathogen Fusarium sambucinum, and their effects on infection of Zanthoxylum bungeanum stems were investigated. Results showed that oligochitosan inhibited the infection of the pathogen, and that the oligochitosan fraction with a degree of polymerization (DP) between 5 and 6 showed the optimal effect. Oligochitosan DP5 was purified from fraction DP5-6 and was structurally characterized using electrospray ionization mass spectrometry, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. Oligochitosan DP5 showed significant inhibition against the infection of the pathogenic fungi on host plant stems. An investigation of the mechanism underlying this effect showed that oligochitosan DP5 increased the activities of defensive enzymes and accumulation of phenolics in host Z. bungeanum. These results suggest that oligochitosan from pathogenic fungi can mediate the infection of host plants with a pathogen by acting as an elicitor that triggers the defense system of a plant. This information will be valuable for further exploration of the interactions between the pathogen F. sambucinum and host plant Z. bungeanum.
Subject(s)
Chitin/analogs & derivatives , Fusarium/chemistry , Zanthoxylum/immunology , Zanthoxylum/microbiology , Carbon-13 Magnetic Resonance Spectroscopy , Chitin/chemistry , Chitin/isolation & purification , Chitin/pharmacology , Chitosan/isolation & purification , Chitosan/pharmacology , Oligosaccharides , Phenols/metabolism , Plant Diseases/microbiology , Plant Stems/drug effects , Plant Stems/microbiology , Proton Magnetic Resonance Spectroscopy , Spectrometry, Mass, Electrospray Ionization , Zanthoxylum/drug effects , Zanthoxylum/enzymologyABSTRACT
INTRODUCTION: Chitosan, the linear polymer, is produced by alkali deacetylation of chitin (CHI). Recently chitin and chitosan were attracted marked interest due to their biocompatibility, biodegradability and non-toxicity. MATERIALS AND METHODS: In this study, chitin was extracted from shrimp shell (Parapenaeus longirostris) and chitosan was deacetylated by classical and ultrasound-assisted method. The identification of functional groups and the determination of degree of deacetylation of chitin (CHI), classical deacetylated chitosan (CDC) and ultrasound-assisted deacetylated chitosan (UDC) were carried through Fourier Transform-Infrared Spectroscopy. Their antimicrobial and antioxidant activity were also investigated. RESULTS: The degree of deacetylation of CHI, CDC and UDC is 33.64%, 73.68% and 83.55%, respectively. Results showed that CHI, CDC and UDC exhibited a good antimicrobial activity against (S. aureus, E. coli, P. aeruginosa, K. pneumonia) and (C. albicans and C. parapsilosis). The scavenging ability of CHI, CDC and UDC on 1,1-diphenyl-2-picrylhydrazyl radicals is ranging from 4.71% to 21.25%, 11.45% to 32.78% and 18.27% to 44.17%, respectively, at the concentrations of 0.25 to 1mg/mL. The inhibition of lipid peroxidation with thiobarbituric acid-reacting substances is ranging from 11.7% to 51.63%, 17.24% to 63.52% and 29.31% to 77.39%, respectively, at varying concentrations of 0.25 to 1mg/mL. CONCLUSION: The effectiveness of CHI, CDC and UDC is correlated with their degree of deacetylation. The results indicate the possibility of exploiting chitin and chitosan as antimicrobial agent.