ABSTRACT
Colorectal cancer exhibits dynamic cellular and genetic heterogeneity during progression from precursor lesions toward malignancy. Analysis of spatial multi-omic data from 31 human colorectal specimens enabled phylogeographic mapping of tumor evolution that revealed individualized progression trajectories and accompanying microenvironmental and clonal alterations. Phylogeographic mapping ordered genetic events, classified tumors by their evolutionary dynamics, and placed clonal regions along global pseudotemporal progression trajectories encompassing the chromosomal instability (CIN+) and hypermutated (HM) pathways. Integrated single-cell and spatial transcriptomic data revealed recurring epithelial programs and infiltrating immune states along progression pseudotime. We discovered an immune exclusion signature (IEX), consisting of extracellular matrix regulators DDR1, TGFBI, PAK4, and DPEP1, that charts with CIN+ tumor progression, is associated with reduced cytotoxic cell infiltration, and shows prognostic value in independent cohorts. This spatial multi-omic atlas provides insights into colorectal tumor-microenvironment co-evolution, serving as a resource for stratification and targeted treatments.
Subject(s)
Colorectal Neoplasms , Microsatellite Instability , Tumor Microenvironment , Humans , Chromosomal Instability/genetics , Colorectal Neoplasms/pathology , Gene Expression Profiling , p21-Activated Kinases/genetics , Phylogeny , Mutation , Disease Progression , PrognosisABSTRACT
DNA damage provokes mutations and cancer and results from external carcinogens or endogenous cellular processes. However, the intrinsic instigators of endogenous DNA damage are poorly understood. Here, we identify proteins that promote endogenous DNA damage when overproduced: the DNA "damage-up" proteins (DDPs). We discover a large network of DDPs in Escherichia coli and deconvolute them into six function clusters, demonstrating DDP mechanisms in three: reactive oxygen increase by transmembrane transporters, chromosome loss by replisome binding, and replication stalling by transcription factors. Their 284 human homologs are over-represented among known cancer drivers, and their RNAs in tumors predict heavy mutagenesis and a poor prognosis. Half of the tested human homologs promote DNA damage and mutation when overproduced in human cells, with DNA damage-elevating mechanisms like those in E. coli. Our work identifies networks of DDPs that provoke endogenous DNA damage and may reveal DNA damage-associated functions of many human known and newly implicated cancer-promoting proteins.
Subject(s)
DNA Damage/genetics , DNA Damage/physiology , DNA Repair/physiology , Bacterial Proteins/metabolism , Chromosomal Instability/physiology , DNA Replication/physiology , DNA-Binding Proteins/metabolism , Escherichia coli/metabolism , Genomic Instability , Humans , Membrane Transport Proteins/physiology , Mutagenesis , Mutation , Transcription Factors/metabolismABSTRACT
Replication origins, fragile sites, and rDNA have been implicated as sources of chromosomal instability. However, the defining genomic features of replication origins and fragile sites are among the least understood elements of eukaryote genomes. Here, we map sites of replication initiation and breakage in primary cells at high resolution. We find that replication initiates between transcribed genes within nucleosome-depleted structures established by long asymmetrical poly(dA:dT) tracts flanking the initiation site. Paradoxically, long (>20 bp) (dA:dT) tracts are also preferential sites of polar replication fork stalling and collapse within early-replicating fragile sites (ERFSs) and late-replicating common fragile sites (CFSs) and at the rDNA replication fork barrier. Poly(dA:dT) sequences are fragile because long single-strand poly(dA) stretches at the replication fork are unprotected by the replication protein A (RPA). We propose that the evolutionary expansion of poly(dA:dT) tracts in eukaryotic genomes promotes replication initiation, but at the cost of chromosome fragility.
Subject(s)
DNA Replication , DNA, Ribosomal/chemistry , Nucleosomes/metabolism , Poly dA-dT/chemistry , Replication Origin , Amino Acid Motifs , Animals , Cell Line , Chromatin Immunoprecipitation , Chromosomal Instability , Chromosome Fragile Sites , Chromosome Fragility , Female , Male , Mice , Mice, Inbred C57BL , Saccharomyces cerevisiae , Schizosaccharomyces , Transcription Initiation Site , Transcription, GeneticABSTRACT
Much of our understanding of chromosome segregation is based on cell culture systems. Here, we examine the importance of the tissue environment for chromosome segregation by comparing chromosome segregation fidelity across several primary cell types in native and nonnative contexts. We discover that epithelial cells have increased chromosome missegregation outside of their native tissues. Using organoid culture systems, we show that tissue architecture, specifically integrin function, is required for accurate chromosome segregation. We find that tissue architecture enhances the correction of merotelic microtubule-kinetochore attachments, and this is especially important for maintaining chromosome stability in the polyploid liver. We propose that disruption of tissue architecture could underlie the widespread chromosome instability across epithelial cancers. Moreover, our findings highlight the extent to which extracellular context can influence intrinsic cellular processes and the limitations of cell culture systems for studying cells that naturally function within a tissue.
Subject(s)
Chromosomal Instability/physiology , Chromosome Segregation/physiology , Epithelium/physiology , Animals , Cell Aggregation/physiology , Cell Culture Techniques/methods , Chromosomes/physiology , Epithelial Cells/physiology , Female , Kinetochores/physiology , Male , Mice , Mice, Inbred C57BL , Microtubules/metabolism , Mitosis , Organoids/physiology , Spindle Apparatus/metabolism , Spindle Apparatus/physiologyABSTRACT
Chromosomal instability (CIN) is a hallmark of human cancer, and it is associated with poor prognosis, metastasis, and therapeutic resistance. CIN results from errors in chromosome segregation during mitosis, leading to structural and numerical chromosomal abnormalities. In addition to generating genomic heterogeneity that acts as a substrate for natural selection, CIN promotes inflammatory signaling by introducing double-stranded DNA into the cytosol, engaging the cGAS-STING anti-viral pathway. These multipronged effects distinguish CIN as a central driver of tumor evolution and as a genomic source for the crosstalk between the tumor and its microenvironment, in the course of immune editing and evasion.
Subject(s)
Chromosomal Instability , Aneuploidy , Humans , Immunity, Innate , Interferon Type I/metabolism , Membrane Proteins/metabolism , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , Nucleotidyltransferases/metabolism , Signal Transduction , Tumor MicroenvironmentABSTRACT
To provide a detailed analysis of the molecular components and underlying mechanisms associated with ovarian cancer, we performed a comprehensive mass-spectrometry-based proteomic characterization of 174 ovarian tumors previously analyzed by The Cancer Genome Atlas (TCGA), of which 169 were high-grade serous carcinomas (HGSCs). Integrating our proteomic measurements with the genomic data yielded a number of insights into disease, such as how different copy-number alternations influence the proteome, the proteins associated with chromosomal instability, the sets of signaling pathways that diverse genome rearrangements converge on, and the ones most associated with short overall survival. Specific protein acetylations associated with homologous recombination deficiency suggest a potential means for stratifying patients for therapy. In addition to providing a valuable resource, these findings provide a view of how the somatic genome drives the cancer proteome and associations between protein and post-translational modification levels and clinical outcomes in HGSC. VIDEO ABSTRACT.
Subject(s)
Neoplasm Proteins/genetics , Neoplasms, Cystic, Mucinous, and Serous/genetics , Ovarian Neoplasms/genetics , Proteome , Acetylation , Chromosomal Instability , DNA Repair , DNA, Neoplasm , Female , Gene Dosage , Humans , Mass Spectrometry , Phosphoproteins/genetics , Protein Processing, Post-Translational , Survival AnalysisABSTRACT
Long noncoding RNAs (lncRNAs) have emerged as regulators of diverse biological processes. Here, we describe the initial functional analysis of a poorly characterized human lncRNA (LINC00657) that is induced after DNA damage, which we termed "noncoding RNA activated by DNA damage", or NORAD. NORAD is highly conserved and abundant, with expression levels of approximately 500-1,000 copies per cell. Remarkably, inactivation of NORAD triggers dramatic aneuploidy in previously karyotypically stable cell lines. NORAD maintains genomic stability by sequestering PUMILIO proteins, which repress the stability and translation of mRNAs to which they bind. In the absence of NORAD, PUMILIO proteins drive chromosomal instability by hyperactively repressing mitotic, DNA repair, and DNA replication factors. These findings introduce a mechanism that regulates the activity of a deeply conserved and highly dosage-sensitive family of RNA binding proteins and reveal unanticipated roles for a lncRNA and PUMILIO proteins in the maintenance of genomic stability.
Subject(s)
Genomic Instability , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/metabolism , Animals , Base Sequence , Chromosomal Instability , HCT116 Cells , Humans , Mice , Ploidies , RNA, Long Noncoding/chemistry , RNA, Long Noncoding/geneticsABSTRACT
Both the presence of an abnormal complement of chromosomes (aneuploidy) and an increased frequency of chromosome missegregation (chromosomal instability) are hallmarks of cancer. Analyses of cancer genome data have identified certain aneuploidy patterns in tumors; however, the bases behind their selection are largely unexplored. By establishing time-resolved long-term adaptation protocols, we found that human cells adapt to persistent spindle assembly checkpoint (SAC) inhibition by acquiring specific chromosome arm gains and losses. Independently adapted populations converge on complex karyotypes, which over time are refined to contain ever smaller chromosomal changes. Of note, the frequencies of chromosome arm gains in adapted cells correlate with those detected in cancers, suggesting that our cellular adaptation approach recapitulates selective traits that dictate the selection of aneuploidies frequently observed across many cancer types. We further engineered specific aneuploidies to determine the genetic basis behind the observed karyotype patterns. These experiments demonstrated that the adapted and engineered aneuploid cell lines limit CIN by extending mitotic duration. Heterozygous deletions of key SAC and APC/C genes recapitulated the rescue phenotypes of the monosomic chromosomes. We conclude that aneuploidy-induced gene dosage imbalances of individual mitotic regulators are sufficient for altering mitotic timing to reduce CIN.
Subject(s)
M Phase Cell Cycle Checkpoints , Neoplasms , Humans , M Phase Cell Cycle Checkpoints/genetics , Aneuploidy , Neoplasms/genetics , Chromosomal Instability/genetics , Karyotype , Spindle Apparatus/genetics , MitosisABSTRACT
Telomere crisis occurs during tumorigenesis when depletion of the telomere reserve leads to frequent telomere fusions. The resulting dicentric chromosomes have been proposed to drive genome instability. Here, we examine the fate of dicentric human chromosomes in telomere crisis. We observed that dicentric chromosomes invariably persisted through mitosis and developed into 50-200 µm chromatin bridges connecting the daughter cells. Before their resolution at 3-20 hr after anaphase, the chromatin bridges induced nuclear envelope rupture in interphase, accumulated the cytoplasmic 3' nuclease TREX1, and developed RPA-coated single stranded (ss) DNA. CRISPR knockouts showed that TREX1 contributed to the generation of the ssDNA and the resolution of the chromatin bridges. Post-crisis clones showed chromothripsis and kataegis, presumably resulting from DNA repair and APOBEC editing of the fragmented chromatin bridge DNA. We propose that chromothripsis in human cancer may arise through TREX1-mediated fragmentation of dicentric chromosomes formed in telomere crisis.
Subject(s)
Chromosomal Instability , Chromosomes, Human , Genomic Instability , Neoplasms/genetics , Telomere , Chromosome Aberrations , Cytokinesis , DNA, Single-Stranded/metabolism , Exodeoxyribonucleases/metabolism , Humans , Mitosis , Nuclear Envelope/metabolism , Phosphoproteins/metabolismABSTRACT
Chromothripsis is a catastrophic cellular event recently described in cancer in which chromosomes undergo massive deletion and rearrangement. Here, we report a case in which chromothripsis spontaneously cured a patient with WHIM syndrome, an autosomal dominant combined immunodeficiency disease caused by gain-of-function mutation of the chemokine receptor CXCR4. In this patient, deletion of the disease allele, CXCR4(R334X), as well as 163 other genes from one copy of chromosome 2 occurred in a hematopoietic stem cell (HSC) that repopulated the myeloid but not the lymphoid lineage. In competitive mouse bone marrow (BM) transplantation experiments, Cxcr4 haploinsufficiency was sufficient to confer a strong long-term engraftment advantage of donor BM over BM from either wild-type or WHIM syndrome model mice, suggesting a potential mechanism for the patient's cure. Our findings suggest that partial inactivation of CXCR4 may have general utility as a strategy to promote HSC engraftment in transplantation.
Subject(s)
Chromosomal Instability , Immunologic Deficiency Syndromes/genetics , Warts/genetics , Animals , Chromosomes, Human , Disease Models, Animal , Haploinsufficiency , Hematopoietic Stem Cells/metabolism , Humans , Lymphocytes/metabolism , Male , Mice , Middle Aged , Mosaicism , Mutation , Myeloid Cells/metabolism , Primary Immunodeficiency Diseases , Receptors, CXCR4/genetics , Remission, SpontaneousABSTRACT
Colorectal carcinoma (CRC) is a common cause of mortality1, but a comprehensive description of its genomic landscape is lacking2-9. Here we perform whole-genome sequencing of 2,023 CRC samples from participants in the UK 100,000 Genomes Project, thereby providing a highly detailed somatic mutational landscape of this cancer. Integrated analyses identify more than 250 putative CRC driver genes, many not previously implicated in CRC or other cancers, including several recurrent changes outside the coding genome. We extend the molecular pathways involved in CRC development, define four new common subgroups of microsatellite-stable CRC based on genomic features and show that these groups have independent prognostic associations. We also characterize several rare molecular CRC subgroups, some with potential clinical relevance, including cancers with both microsatellite and chromosomal instability. We demonstrate a spectrum of mutational profiles across the colorectum, which reflect aetiological differences. These include the role of Escherichia colipks+ colibactin in rectal cancers10 and the importance of the SBS93 signature11-13, which suggests that diet or smoking is a risk factor. Immune-escape driver mutations14 are near-ubiquitous in hypermutant tumours and occur in about half of microsatellite-stable CRCs, often in the form of HLA copy number changes. Many driver mutations are actionable, including those associated with rare subgroups (for example, BRCA1 and IDH1), highlighting the role of whole-genome sequencing in optimizing patient care.
Subject(s)
Colorectal Neoplasms , Genetic Predisposition to Disease , Genome, Human , Genomics , Mutation , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Young Adult , Chromosomal Instability/genetics , Colorectal Neoplasms/classification , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , Diet/adverse effects , DNA Copy Number Variations/genetics , Genetic Predisposition to Disease/genetics , Genome, Human/genetics , HLA Antigens/genetics , Microsatellite Instability , Prognosis , Smoking/adverse effects , United Kingdom/epidemiology , Whole Genome SequencingABSTRACT
Chromosomal instability (CIN) and epigenetic alterations are characteristics of advanced and metastatic cancers1-4, but whether they are mechanistically linked is unknown. Here we show that missegregation of mitotic chromosomes, their sequestration in micronuclei5,6 and subsequent rupture of the micronuclear envelope7 profoundly disrupt normal histone post-translational modifications (PTMs), a phenomenon conserved across humans and mice, as well as in cancer and non-transformed cells. Some of the changes in histone PTMs occur because of the rupture of the micronuclear envelope, whereas others are inherited from mitotic abnormalities before the micronucleus is formed. Using orthogonal approaches, we demonstrate that micronuclei exhibit extensive differences in chromatin accessibility, with a strong positional bias between promoters and distal or intergenic regions, in line with observed redistributions of histone PTMs. Inducing CIN causes widespread epigenetic dysregulation, and chromosomes that transit in micronuclei experience heritable abnormalities in their accessibility long after they have been reincorporated into the primary nucleus. Thus, as well as altering genomic copy number, CIN promotes epigenetic reprogramming and heterogeneity in cancer.
Subject(s)
Chromosomal Instability , Chromosome Segregation , Chromosomes , Epigenesis, Genetic , Micronuclei, Chromosome-Defective , Neoplasms , Animals , Humans , Mice , Chromatin/genetics , Chromosomal Instability/genetics , Chromosomes/genetics , Chromosomes/metabolism , Histones/chemistry , Histones/metabolism , Neoplasms/genetics , Neoplasms/pathology , Mitosis , DNA Copy Number Variations , Protein Processing, Post-TranslationalABSTRACT
Transcriptional heterogeneity due to plasticity of the epigenetic state of chromatin contributes to tumour evolution, metastasis and drug resistance1-3. However, the mechanisms that cause this epigenetic variation are incompletely understood. Here we identify micronuclei and chromosome bridges, aberrations in the nucleus common in cancer4,5, as sources of heritable transcriptional suppression. Using a combination of approaches, including long-term live-cell imaging and same-cell single-cell RNA sequencing (Look-Seq2), we identified reductions in gene expression in chromosomes from micronuclei. With heterogeneous penetrance, these changes in gene expression can be heritable even after the chromosome from the micronucleus has been re-incorporated into a normal daughter cell nucleus. Concomitantly, micronuclear chromosomes acquire aberrant epigenetic chromatin marks. These defects may persist as variably reduced chromatin accessibility and reduced gene expression after clonal expansion from single cells. Persistent transcriptional repression is strongly associated with, and may be explained by, markedly long-lived DNA damage. Epigenetic alterations in transcription may therefore be inherently coupled to chromosomal instability and aberrations in nuclear architecture.
Subject(s)
Chromosomal Instability , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Micronuclei, Chromosome-Defective , Neoplasms , Transcription, Genetic , Humans , Chromatin/genetics , Chromatin/metabolism , Chromosomes/genetics , Clone Cells/metabolism , DNA Damage/genetics , Neoplasms/genetics , Neoplasms/pathology , Single-Cell Gene Expression AnalysisABSTRACT
Chromosomal instability (CIN) is a driver of cancer metastasis1-4, yet the extent to which this effect depends on the immune system remains unknown. Using ContactTracing-a newly developed, validated and benchmarked tool to infer the nature and conditional dependence of cell-cell interactions from single-cell transcriptomic data-we show that CIN-induced chronic activation of the cGAS-STING pathway promotes downstream signal re-wiring in cancer cells, leading to a pro-metastatic tumour microenvironment. This re-wiring is manifested by type I interferon tachyphylaxis selectively downstream of STING and a corresponding increase in cancer cell-derived endoplasmic reticulum (ER) stress response. Reversal of CIN, depletion of cancer cell STING or inhibition of ER stress response signalling abrogates CIN-dependent effects on the tumour microenvironment and suppresses metastasis in immune competent, but not severely immune compromised, settings. Treatment with STING inhibitors reduces CIN-driven metastasis in melanoma, breast and colorectal cancers in a manner dependent on tumour cell-intrinsic STING. Finally, we show that CIN and pervasive cGAS activation in micronuclei are associated with ER stress signalling, immune suppression and metastasis in human triple-negative breast cancer, highlighting a viable strategy to identify and therapeutically intervene in tumours spurred by CIN-induced inflammation.
Subject(s)
Chromosomal Instability , Disease Progression , Neoplasms , Humans , Benchmarking , Cell Communication , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Melanoma/drug therapy , Melanoma/genetics , Melanoma/immunology , Melanoma/pathology , Tumor Microenvironment , Interferon Type I/immunology , Neoplasm Metastasis , Endoplasmic Reticulum Stress , Signal Transduction , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/pathology , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/pathologyABSTRACT
Chromosome gains and losses are a frequent feature of human cancers. However, how these aberrations can outweigh the detrimental effects of aneuploidy remains unclear. An initial comparison of existing chromosomal instability (CIN) mouse models suggests that aneuploidy accumulates to low levels in these animals. We therefore developed a novel mouse model that enables unprecedented levels of chromosome missegregation in the adult animal. At the earliest stages of T-cell development, cells with random chromosome gains and/or losses are selected against, but CIN eventually results in the expansion of progenitors with clonal chromosomal imbalances. Clonal selection leads to the development of T-cell lymphomas with stereotypic karyotypes in which chromosome 15, containing the Myc oncogene, is gained with high prevalence. Expressing human MYC from chromosome 6 (MYCChr6) is sufficient to change the karyotype of these lymphomas to include universal chromosome 6 gains. Interestingly, while chromosome 15 is still gained in MYCChr6 tumors after genetic ablation of the endogenous Myc locus, this chromosome is not efficiently gained after deletion of one copy of Rad21, suggesting a synergistic effect of both MYC and RAD21 in driving chromosome 15 gains. Our results show that the initial detrimental effects of random missegregation are outbalanced by clonal selection, which is dictated by the chromosomal location and nature of certain genes and is sufficient to drive cancer with high prevalence.
Subject(s)
Aneuploidy , Chromosomal Instability , Animals , Cell Transformation, Neoplastic/genetics , Chromosomal Instability/genetics , Chromosome Aberrations , Karyotype , Mice , Prevalence , Stem CellsABSTRACT
Abnormal numerical and structural chromosome content is frequently found in human cancer. To test the role of aneuploidy in tumor initiation and progression, we generated mice with random aneuploidies by transient induction of polo-like kinase 4 (Plk4), a master regulator of centrosome number. Short-term chromosome instability (CIN) from transient Plk4 induction resulted in formation of aggressive T-cell lymphomas in mice with heterozygous inactivation of one p53 allele and accelerated tumor development in the absence of p53. Transient CIN increased the frequency of lymphoma-initiating cells with a specific karyotype profile, including trisomy of chromosomes 4, 5, 14, and 15 occurring early in tumorigenesis. Tumor development in mice with chronic CIN induced by an independent mechanism (through inactivation of the spindle assembly checkpoint) gradually trended toward a similar karyotypic profile, as determined by single-cell whole-genome DNA sequencing. Overall, we show how transient CIN generates cells with random aneuploidies from which ones that acquire a karyotype with specific chromosome gains are sufficient to drive cancer formation, and that distinct CIN mechanisms can lead to similar karyotypic cancer-causing outcomes.
Subject(s)
Aneuploidy , Chromosomal Instability , Animals , Cell Transformation, Neoplastic/genetics , Centrosome , Chromosomal Instability/genetics , Clonal Evolution , Genomic Instability/genetics , MiceABSTRACT
Chromosome instability (CIN) and aneuploidy are hallmarks of cancer cells, typically associated with aggressiveness and poor outcomes. Historically, the causative link between aneuploidy and cancer has been difficult to study due to its intrinsic complexity and the poor fitness of aneuploid cells. In this issue of Genes & Development, two companion papers (Trakala and colleagues [pp. 1079-1092] and Shoshani and colleagues [pp. 1093-1108]) exploited sophisticated mouse models to study the progression of aneuploidy from early phases to established tumors. Both groups observed that, while in the early nontumoral cells aneuploidy is characterized by random chromosomal gains, established tumors display a stereotypic karyotype with recurrent gains of only a few chromosomes. Thus, aneuploidy in tumors is not random but shows reproducible patterns of chromosomal changes induced by mechanisms that these two studies are beginning to unveil.
Subject(s)
Aneuploidy , Neoplasms , Animals , Chromosomal Instability/genetics , Chromosome Aberrations , Karyotype , Mice , Neoplasms/genetics , Neoplasms/pathologyABSTRACT
In this perspective, we introduce shelterin and the mechanisms of ATM activation and NHEJ at telomeres, before discussing the following questions: How are t-loops proposed to protect chromosome ends and what is the evidence for this model? Can other models explain how TRF2 mediates end protection? Could t-loops be pathological structures? How is end protection achieved in pluripotent cells? What do the insights into telomere end protection in pluripotent cells mean for the t-loop model of end protection? Why might different cell states have evolved different mechanisms of end protection? Finally, we offer support for an updated t-loop model of end protection, suggesting that the data is supportive of a critical role for t-loops in protecting chromosome ends from NHEJ and ATM activation, but that other mechanisms are involved. Finally, we propose that t-loops are likely dynamic, rather than static, structures.
Subject(s)
DNA Breaks, Double-Stranded , DNA End-Joining Repair/physiology , Telomere/metabolism , Telomere/pathology , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Chromosomal Instability , DNA Repair , Embryonic Stem Cells , Humans , Models, Biological , Pluripotent Stem Cells , Telomeric Repeat Binding Protein 2/metabolismABSTRACT
The centromeric histone H3 variant CENP-A is overexpressed in many cancers. The mislocalization of CENP-A to noncentromeric regions contributes to chromosomal instability (CIN), a hallmark of cancer. However, pathways that promote or prevent CENP-A mislocalization remain poorly defined. Here, we performed a genome-wide RNAi screen for regulators of CENP-A localization which identified DNAJC9, a J-domain protein implicated in histone H3-H4 protein folding, as a factor restricting CENP-A mislocalization. Cells lacking DNAJC9 exhibit mislocalization of CENP-A throughout the genome, and CIN phenotypes. Global interactome analysis showed that DNAJC9 depletion promotes the interaction of CENP-A with the DNA-replication-associated histone chaperone MCM2. CENP-A mislocalization upon DNAJC9 depletion was dependent on MCM2, defining MCM2 as a driver of CENP-A deposition at ectopic sites when H3-H4 supply chains are disrupted. Cells depleted for histone H3.3, also exhibit CENP-A mislocalization. In summary, we have defined novel factors that prevent mislocalization of CENP-A, and demonstrated that the integrity of H3-H4 supply chains regulated by histone chaperones such as DNAJC9 restrict CENP-A mislocalization and CIN.
Subject(s)
Centromere Protein A , Chromosomal Instability , Histones , Humans , Centromere Protein A/metabolism , Centromere Protein A/genetics , Histones/metabolism , Histones/genetics , Minichromosome Maintenance Complex Component 2/metabolism , Minichromosome Maintenance Complex Component 2/genetics , HeLa Cells , HSP40 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Centromere/metabolismABSTRACT
Diploid and stable karyotypes are associated with health and fitness in animals. By contrast, whole-genome duplications-doublings of the entire complement of chromosomes-are linked to genetic instability and frequently found in human cancers1-3. It has been established that whole-genome duplications fuel chromosome instability through abnormal mitosis4-8; however, the immediate consequences of tetraploidy in the first interphase are not known. This is a key question because single whole-genome duplication events such as cytokinesis failure can promote tumorigenesis9. Here we find that human cells undergo high rates of DNA damage during DNA replication in the first S phase following induction of tetraploidy. Using DNA combing and single-cell sequencing, we show that DNA replication dynamics is perturbed, generating under- and over-replicated regions. Mechanistically, we find that these defects result from a shortage of proteins during the G1/S transition, which impairs the fidelity of DNA replication. This work shows that within a single interphase, unscheduled tetraploid cells can acquire highly abnormal karyotypes. These findings provide an explanation for the genetic instability landscape that favours tumorigenesis after tetraploidization.