Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Genes Cells ; 29(8): 613-634, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38937957

ABSTRACT

Bacteria use several means to survive under stress conditions such as nutrient depletion. One such response is the formation of hibernating 100S ribosomes, which are translationally inactive 70S dimers. In Gammaproteobacteria (Enterobacterales), 100S ribosome formation requires ribosome modulation factor (RMF) and short hibernation promoting factor (HPF), whereas it is mediated by only long HPF in the majority of bacteria. Here, we investigated the role of HPFs of Comamonas testosteroni, which belongs to the Betaproteobacteria with common ancestor to the Gammaproteobacteria. C. testosteroni has two genes of HPF homologs of differing length (CtHPF-125 and CtHPF-119). CtHPF-125 was induced in the stationary phase, whereas CtHPF-119 conserved in many other Betaproteobacteria was not expressed in the culture conditions used here. Unlike short HPF and RMF, and long HPF, CtHPF-125 could not form 100S ribosome. We first constructed the deletion mutant of Cthpf-125 gene. When the deletion mutant grows in the stationary phase, 70S particles were degraded faster than in the wild strain. CtHPF-125 contributes to stabilizing the 70S ribosome. CtHPF-125 and CtHPF-119 both inhibited protein synthesis by transcription-translation in vitro. Our findings suggest that CtHPF-125 binds to ribosome, and stabilizes 70S ribosomes, inhibits translation without forming 100S ribosomes and supports prolonging life.


Subject(s)
Bacterial Proteins , Comamonas testosteroni , Ribosomal Proteins , Ribosomes , Ribosomal Proteins/metabolism , Ribosomal Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Ribosomes/metabolism , Comamonas testosteroni/metabolism , Comamonas testosteroni/genetics
2.
J Biol Chem ; 299(10): 105222, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37673337

ABSTRACT

Many microorganisms use both biological and nonbiological molecules as sources of carbon and energy. This resourcefulness means that some microorganisms have mechanisms to assimilate pollutants found in the environment. One such organism is Comamonas testosteroni, which metabolizes 4-methylbenzenesulfonate and 4-methylbenzoate using the TsaMBCD pathway. TsaM is a Rieske oxygenase, which in concert with the reductase TsaB consumes a molar equivalent of NADH. Following this step, the annotated short-chain dehydrogenase/reductase and aldehyde dehydrogenase enzymes TsaC and TsaD each regenerate a molar equivalent of NADH. This co-occurrence ameliorates the need for stoichiometric addition of reducing equivalents and thus represents an attractive strategy for integration of Rieske oxygenase chemistry into biocatalytic applications. Therefore, in this work, to overcome the lack of information regarding NADH recycling enzymes that function in partnership with Rieske non-heme iron oxygenases (Rieske oxygenases), we solved the X-ray crystal structure of TsaC to a resolution of 2.18 Å. Using this structure, a series of substrate analog and protein variant combination reactions, and differential scanning fluorimetry experiments, we identified active site features involved in binding NAD+ and controlling substrate specificity. Further in vitro enzyme cascade experiments demonstrated the efficient TsaC- and TsaD-mediated regeneration of NADH to support Rieske oxygenase chemistry. Finally, through in-depth bioinformatic analyses, we illustrate the widespread co-occurrence of Rieske oxygenases with TsaC-like enzymes. This work thus demonstrates the utility of these NADH recycling enzymes and identifies a library of short-chain dehydrogenase/reductase enzyme prospects that can be used in Rieske oxygenase pathways for in situ regeneration of NADH.


Subject(s)
Bacterial Proteins , Comamonas testosteroni , Oxygenases , Aldehyde Dehydrogenase/metabolism , NAD/metabolism , Oxygenases/metabolism , Substrate Specificity , Comamonas testosteroni/enzymology , Comamonas testosteroni/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Nonheme Iron Proteins/chemistry , Nonheme Iron Proteins/genetics , Nonheme Iron Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Protein Structure, Tertiary , Models, Molecular , Protein Stability , Computational Biology
3.
Appl Environ Microbiol ; 89(10): e0014323, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37815361

ABSTRACT

Comamonas testosteroni is one of the representative aerobic steroid-degrading bacteria. We previously revealed the mechanism of steroidal A,B,C,D-ring degradation by C. testosteroni TA441. The corresponding genes are located in two clusters at both ends of a mega-cluster of steroid degradation genes. ORF7 and ORF6 are the only two genes in these clusters, whose function has not been determined. Here, we characterized ORF7 as encoding the dehydrase responsible for converting the C12ß hydroxyl group to the C10(12) double bond on the C-ring (SteC), and ORF6 as encoding the hydrogenase responsible for converting the C10(12) double bond to a single bond (SteD). SteA and SteB, encoded just upstream of SteC and SteD, are in charge of oxidizing the C12α hydroxyl group to a ketone group and of reducing the latter to the C12ß hydroxyl group, respectively. Therefore, the C12α hydroxyl group in steroids is removed with SteABCD via the C12 ketone and C12ß hydroxyl groups. Given the functional characterization of ORF6 and ORF7, we disclose the entire pathway of steroidal A,B,C,D-ring breakdown by C. testosteroni TA441.IMPORTANCEStudies on bacterial steroid degradation were initiated more than 50 years ago, primarily to obtain materials for steroid drugs. Now, their implications for the environment and humans, especially in relation to the infection and the brain-gut-microbiota axis, are attracting increasing attention. Comamonas testosteroni TA441 is the leading model of bacterial aerobic steroid degradation with the ability to break down cholic acid, the main component of bile acids. Bile acids are known for their variety of physiological activities according to their substituent group(s). In this study, we identified and functionally characterized the genes for the removal of C12 hydroxyl groups and provided a comprehensive summary of the entire A,B,C,D-ring degradation pathway by C. testosteroni TA441 as the representable bacterial aerobic degradation process of the steroid core structure.


Subject(s)
Comamonas testosteroni , Humans , Comamonas testosteroni/genetics , Comamonas testosteroni/metabolism , Oxidoreductases/metabolism , Steroids/metabolism , Cholic Acid/metabolism , Ketones/metabolism
4.
Microb Cell Fact ; 22(1): 188, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37726725

ABSTRACT

BACKGROUND: Plastics are an indispensable part of our daily life. However, mismanagement at their end-of-life results in severe environmental consequences. The microbial conversion of these polymers into new value-added products offers a promising alternative. In this study, we engineered the soil-bacterium Comamonas testosteroni KF-1, a natural degrader of terephthalic acid, for the conversion of the latter to the high-value product 2-pyrone-4,6-dicarboxylic acid. RESULTS: In order to convert terephthalic acid to 2-pyrone-4,6-dicarboxylic acid, we deleted the native PDC hydrolase and observed only a limited amount of product formation. To test whether this was the result of an inhibition of terephthalic acid uptake by the carbon source for growth (i.e. glycolic acid), the consumption of both carbon sources was monitored in the wild-type strain. Both carbon sources were consumed at the same time, indicating that catabolite repression was not the case. Next, we investigated if the activity of pathway enzymes remained the same in the wild-type and mutant strain. Here again, no statistical differences could be observed. Finally, we hypothesized that the presence of a pmdK variant in the degradation operon could be responsible for the observed phenotype and created a double deletion mutant strain. This newly created strain accumulated PDC to a larger extent and again consumed both carbon sources. The double deletion strain was then used in a bioreactor experiment, leading to the accumulation of 6.5 g/L of product in 24 h with an overall productivity of 0.27 g/L/h. CONCLUSIONS: This study shows the production of the chemical building block 2-pyrone-4,6-dicarboxylic acid from terephthalic acid through an engineered C. testosteroni KF-1 strain. It was observed that both a deletion of the native PDC hydrolase as well as a pmdK variant is needed to achieve high conversion yields. A product titer of 6.5 g/L in 24 h with an overall productivity of 0.27 g/L/h was achieved.


Subject(s)
Comamonas testosteroni , Comamonas testosteroni/genetics , Carbon , Dicarboxylic Acids , Hydrolases
5.
Ecotoxicol Environ Saf ; 263: 115244, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37441950

ABSTRACT

The focus on the toxicity of nickel (Ni(II)) in animal and human cells has increased recently. Ni(II) contamination hazards to animals and humans can be reduced by bioremediation methods. However, one of the limitation of bioremediation bacteria in soil remediation is that they cannot survive in moderate and heavy contamination Ni(II)-contaminated environments. Therefore, the Ni(II) response mechanism of Comamonas testosteroni ZG2 which has soil remediation ability in high-concentration Ni(II) environment must be elucidated. The results demonstrated that the ZG2 strain can survive at 350 mg/L concentration of Ni(II), but the growth of ZG2 was completely inhibited under the concentration of 400 mg/L Ni(II) with significant alterations in the membrane morphology, adhesion behavior, and functional groups and serious membrane damage. Furthermore, the metabolic analysis showed that Ni(II) may affect the adhesion behavior and biofilm formation of the ZG2 strain by affecting the abundance of metabolites in amino acid biosynthesis, aminoacyl-tRNA biosynthesis, ABC transporter, and cofactor biosynthesis pathways, and inhibiting its growth. This study provides new evidence clarifying the response mechanism of Ni(II) stress in the ZG2 strain, thus playing a significant role in designing the strategies of bioremediation.


Subject(s)
Comamonas testosteroni , Soil Pollutants , Humans , Comamonas testosteroni/genetics , Comamonas testosteroni/metabolism , Nickel/toxicity , Nickel/metabolism , Biodegradation, Environmental , Bacteria/metabolism , Soil/chemistry , Soil Pollutants/toxicity , Soil Pollutants/metabolism
6.
J Biol Chem ; 297(6): 101416, 2021 12.
Article in English | MEDLINE | ID: mdl-34800435

ABSTRACT

Phthalate, a plasticizer, endocrine disruptor, and potential carcinogen, is degraded by a variety of bacteria. This degradation is initiated by phthalate dioxygenase (PDO), a Rieske oxygenase (RO) that catalyzes the dihydroxylation of phthalate to a dihydrodiol. PDO has long served as a model for understanding ROs despite a lack of structural data. Here we purified PDOKF1 from Comamonas testosteroni KF1 and found that it had an apparent kcat/Km for phthalate of 0.58 ± 0.09 µM-1s-1, over 25-fold greater than for terephthalate. The crystal structure of the enzyme at 2.1 Å resolution revealed that it is a hexamer comprising two stacked α3 trimers, a configuration not previously observed in RO crystal structures. We show that within each trimer, the protomers adopt a head-to-tail configuration typical of ROs. The stacking of the trimers is stabilized by two extended helices, which make the catalytic domain of PDOKF1 larger than that of other characterized ROs. Complexes of PDOKF1 with phthalate and terephthalate revealed that Arg207 and Arg244, two residues on one face of the active site, position these substrates for regiospecific hydroxylation. Consistent with their roles as determinants of substrate specificity, substitution of either residue with alanine yielded variants that did not detectably turnover phthalate. Together, these results provide critical insights into a pollutant-degrading enzyme that has served as a paradigm for ROs and facilitate the engineering of this enzyme for bioremediation and biocatalytic applications.


Subject(s)
Bacterial Proteins/chemistry , Comamonas testosteroni/enzymology , Oxygenases/chemistry , Bacterial Proteins/genetics , Catalysis , Comamonas testosteroni/genetics , Crystallography, X-Ray , Oxygenases/genetics , Protein Domains , Substrate Specificity
7.
Mol Microbiol ; 116(2): 427-437, 2021 08.
Article in English | MEDLINE | ID: mdl-33786926

ABSTRACT

The ant operon of the antimony-mining bacterium Comamonas testosterone JL40 confers resistance to Sb(III). The operon is transcriptionally regulated by the product of the first gene in the operon, antR. AntR is a member of ArsR/SmtB family of metal/metalloid-responsive repressors resistance. We purified and characterized C. testosterone AntR and demonstrated that it responds to metalloids in the order Sb(III) = methylarsenite (MAs(III) >> As(III)). The protein was crystallized, and the structure was solved at 2.1 Å resolution. The homodimeric structure of AntR adopts a classical ArsR/SmtB topology architecture. The protein has five cysteine residues, of which Cys103a from one monomer and Cys113b from the other monomer, are proposed to form one Sb(III) binding site, and Cys113a and Cys103b forming a second binding site. This is the first report of the structure and binding properties of a transcriptional repressor with high selectivity for environmental antimony.


Subject(s)
Antimony/pharmacology , Arsenic/pharmacology , Comamonas testosteroni/metabolism , Gene Expression Regulation, Bacterial/drug effects , Repressor Proteins/drug effects , Transcription, Genetic/drug effects , Amino Acid Sequence , Arsenicals/pharmacology , Binding Sites , Comamonas testosteroni/drug effects , Comamonas testosteroni/genetics , Gene Expression Regulation, Bacterial/genetics , Protein Conformation , Repressor Proteins/metabolism , Transcription Factors/drug effects , Transcription Factors/genetics , Transcription, Genetic/genetics
8.
J Basic Microbiol ; 62(3-4): 508-517, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34596900

ABSTRACT

In this study, characterization of industry-borne Comamonas testosteroni strain PT9 isolate was performed by determining degradation ability on phthalic acid (PA). High-performance liquid chromatography analyses showed that strain PT9 completely degraded 102.94 mg/L of PA within 6 h. Viability polymerase chain reaction (vPCR) was performed with propidium monoazide treatment. vPCR showed that the PA has positively stimulated the cell growth during degradation. To consider the fate of PA, the proposed catalytic genes (ophA2, iphA2, tphA2, tphA3, pmdA, and pmdB) for the degradation pathways of PA isomers for C. testosteroni were screened in strain PT9. All genes except iphA2 were detected in strain PT9, and expression levels of related genes were analyzed by Real-Time PCR (qPCR).


Subject(s)
Comamonas testosteroni , Betahistine/metabolism , Biodegradation, Environmental , Comamonas testosteroni/genetics , Phthalic Acids , Wastewater
9.
Appl Environ Microbiol ; 87(18): e0110221, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34232729

ABSTRACT

Comamonas testosteroni TA441 degrades steroids aerobically via aromatization of the A-ring accompanied by B-ring cleavage, followed by D- and C-ring cleavage. We previously revealed major enzymes and intermediate compounds in A,B-ring cleavage, the ß-oxidation cycle of the cleaved B-ring, and partial C,D-ring cleavage. Here, we elucidate the C-ring cleavage and the ß-oxidation cycle that follows. ScdL1L2, a 3-ketoacid coenzyme A (CoA) transferase which belongs to the SugarP_isomerase superfamily, was thought to cleave the C-ring of 9-oxo-1,2,3,4,5,6,10,19-octanor-13,17-secoandrost-8(14)-ene-7,17-dioic acid-CoA ester, the key intermediate compound in the degradation of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid (3aα-H-4α [3'-propionic acid]-7aß-methylhexahydro-1,5-indanedione; HIP)-CoA ester in our previous study; however, the present study suggested that ScdL1L2 is the isomerase of the derivative with a hydroxyl group at C-14 which cleaves the C-ring. The subsequent ring-cleaved product was indicated to be converted to 4-methyl-5-oxo-octane-1,8-dioic acid-CoA ester mainly by ORF33-encoded CoA-transferase (named ScdJ), followed by dehydrogenation by ORF21- and 22-encoded acyl-CoA dehydrogenase (named ScdM1M2). Then, a water molecule is added by ScdN for further degradation by ß-oxidation. ScdN is proposed to catalyze the last reaction in C,D-ring degradation by the enzymes encoded in the steroid degradation gene cluster tesB to tesR. IMPORTANCE Studies on bacterial steroid degradation were initiated more than 50 years ago primarily to obtain materials for steroid drugs. Steroid-degrading bacteria are globally distributed, and the role of bacterial steroid degradation in the environment, as well as in humans, is attracting attention. The overall degradation process of the four steroidal rings has been proposed; however, there is still much to be revealed to understand the complete degradation pathway. This study aimed to uncover the whole steroid degradation process in C. testosteroni, which is one of the most studied representative steroid-degrading bacteria and is suitable for exploring the degradation pathway because the involvement of degradation-related genes can be determined by gene disruption.


Subject(s)
Bacterial Proteins/metabolism , Coenzyme A/metabolism , Comamonas testosteroni/metabolism , Steroids/metabolism , Bacterial Proteins/genetics , Coenzyme A/genetics , Comamonas testosteroni/genetics , Esters
10.
Arch Microbiol ; 203(7): 4101-4112, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34057546

ABSTRACT

Para-toluic acid, a major pollutant in industrial wastewater, is hazardous to human health. It has been demonstrated that Gram-negative bacteria are among the most effective degraders of para-toluic acid. In this study, the ability of Comamonas testosteroni strain 3a2, isolated from a petrochemical industry wastewater, to degrade para-toluic acid was investigated. The effect of different carbon (glucose and ethylene glycol) and nitrogen sources (urea, yeast extract, peptone, NaNO3, NH4NO3) on the biodegradation of para-toluic acid by the isolate 3a2 was evaluated. Furthermore, ring hydroxylating dioxygenase genes were amplified by PCR and their expression was evaluated during the biodegradation of para-toluic acid. The results indicated that strain 3a2 was able to degrade up to 1000 mg/L of para-toluic acid after 14 h. The highest degradation yield was recorded in the presence of yeast extract as nitrogen source. However, the formation of terephthalic acid and phthalic acid was noted during para-toluic acid degradation by the isolate 3a2. Toluate 1,2-dioxygenase, terephthalate 1,2 dioxygenase, and phthalate 4,5 dioxygenase genes were detected in the genomic DNA of 3a2. The induction of ring hydroxylating dioxygenase genes was proportional to the concentration of each hydrocarbon. This study showed that the isolate 3a2 can produce terephthalate and phthalate during the para-toluic acid biodegradation, which were also degraded after 24 h.


Subject(s)
Comamonas testosteroni , Dioxygenases , Environmental Pollutants , Biodegradation, Environmental , Comamonas testosteroni/enzymology , Comamonas testosteroni/genetics , Dioxygenases/genetics , Environmental Pollutants/metabolism , Phthalic Acids/metabolism
11.
Mol Biol Rep ; 48(11): 7067-7075, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34677711

ABSTRACT

BACKGROUND: 3,17ß-hydroxysteroid dehydrogenase (3,17ß-HSD) is a key enzyme in the metabolic pathway for steroid compounds catabolism in Comamonas testosteroni. Tetracycline repressor (TetR) family, repressors existing in most microorganisms, may play key roles in regulating the expression of 3,17ß-HSD. Previous reports showed that three tetR genes are located in the contig58 of C. testosteroni ATCC 11996 (GenBank: AHIL01000049.1), among which the first tetR gene encoded a potential repressor of 3,17ß-HSD by sensing environmental signals. However, whether the other proposed tetR genes act as repressors of 3,17ß-HSD are still unknown. METHODS AND RESULTS: In the present study, we cloned the second tetR gene and analyzed the regulatory mechanism of the protein on 3,17ß-HSD using electrophoretic mobility shift assay (EMSA), gold nanoparticles (AuNPs)-based assay, and loss-of-function analysis. The results showed that the second tetR gene was 660-bp, encoding a 26 kD protein, which could regulate the expression of 3,17ß-HSD gene via binding to the conserved consensus sequences located 1100-bp upstream of the 3,17ß-HSD gene. Furthermore, the mutant strain of C. testosteroni with the second tetR gene knocked-out mutant expresses good biological genetic stability, and the expression of 3,17ß-HSD in the mutant strain is slightly higher than that in the wild type under testosterone induction. CONCLUSIONS: The second tetR gene acts as a negative regulator in 3,17ß-HSD expression, and the mutant has potential application in bioremediation of steroids contaminated environment.


Subject(s)
17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , Bacterial Proteins , Cloning, Molecular , Comamonas testosteroni , Enzyme Inhibitors , Trans-Activators , Bacterial Proteins/biosynthesis , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Comamonas testosteroni/chemistry , Comamonas testosteroni/genetics , Comamonas testosteroni/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Trans-Activators/biosynthesis , Trans-Activators/chemistry , Trans-Activators/genetics
12.
Mol Microbiol ; 112(3): 906-917, 2019 09.
Article in English | MEDLINE | ID: mdl-31177588

ABSTRACT

Transmembrane chemoreceptors are widely present in Bacteria and Archaea. They play a critical role in sensing various signals outside and transmitting to the cell interior. Here, we report the structure of the periplasmic ligand-binding domain (LBD) of the transmembrane chemoreceptor MCP2201, which governs chemotaxis to citrate and other organic compounds in Comamonas testosteroni. The apo-form LBD crystal revealed a typical four-helix bundle homodimer, similar to previously well-studied chemoreceptors such as Tar and Tsr of Escherichia coli. However, the citrate-bound LBD revealed a four-helix bundle homotrimer that had not been observed in bacterial chemoreceptor LBDs. This homotrimer was further confirmed with size-exclusion chromatography, analytical ultracentrifugation and cross-linking experiments. The physiological importance of the homotrimer for chemotaxis was demonstrated with site-directed mutations of key amino acid residues in C. testosteroni mutants.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Comamonas testosteroni/metabolism , Methyl-Accepting Chemotaxis Proteins/chemistry , Methyl-Accepting Chemotaxis Proteins/metabolism , Bacterial Proteins/genetics , Chemotaxis , Citric Acid/metabolism , Comamonas testosteroni/chemistry , Comamonas testosteroni/genetics , Dimerization , Ligands , Methyl-Accepting Chemotaxis Proteins/genetics , Protein Binding , Protein Conformation , Protein Conformation, alpha-Helical , Protein Domains
13.
Appl Environ Microbiol ; 85(20)2019 10 15.
Article in English | MEDLINE | ID: mdl-31375491

ABSTRACT

Comamonas testosteroni TA441 degrades steroids via aromatization of the A ring, followed by degradation of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid, mainly by ß-oxidation. In this study, we revealed that 7ß,9α-dihydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostanoic acid-coenzyme A (CoA) ester is dehydrogenated by (3S)-3-hydroxylacyl CoA-dehydrogenase, encoded by scdE (ORF27), and then the resultant 9α-hydroxy-7,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid-CoA ester is converted by 3-ketoacyl-CoA transferase, encoded by scdF (ORF23). With these results, the whole cycle of ß-oxidation on the side chain at C-8 of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid is clarified; 9-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid-CoA ester is dehydrogenated at C-6 by ScdC1C2, followed by hydration by ScdD. 7ß,9α-Dihydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostanoic acid-CoA ester then is dehydrogenated by ScdE to be converted to 9α-hydroxy-17-oxo-1,2,3,4,5,6,10,19-octanorandrostan-7-oic acid-CoA ester and acetyl-CoA by ScdF. ScdF is an ortholog of FadA6 in Mycobacterium tuberculosis H37Rv, which was reported as a 3-ketoacyl-CoA transferase involved in C ring cleavage. We also obtained results suggesting that ScdF is also involved in C ring cleavage, but further investigation is required for confirmation. ORF25 and ORF26, located between scdF and scdE, encode enzymes belonging to the amidase superfamily. Disrupting either ORF25 or ORF26 did not affect steroid degradation. Among the bacteria having gene clusters similar to those of tesB to tesR, some have both ORF25- and ORF26-like proteins or only an ORF26-like protein, but others do not have either ORF25- or ORF26-like proteins. ORF25 and ORF26 are not crucial for steroid degradation, yet they might provide clues to elucidate the evolution of bacterial steroid degradation clusters.IMPORTANCE Studies on bacterial steroid degradation were initiated more than 50 years ago primarily to obtain materials for steroid drugs. Steroid-degrading bacteria are globally distributed, and the role of bacterial steroid degradation in the environment as well as in relation to human health is attracting attention. The overall aerobic degradation of the four basic steroidal rings has been proposed; however, there is still much to be revealed to understand the complete degradation pathway. This study aims to uncover the whole steroid degradation process in Comamonas testosteroni TA441 as a model of steroid-degrading bacteria. C. testosteroni is one of the most studied representative steroid-degrading bacteria and is suitable for exploring the degradation pathway, because the involvement of degradation-related genes can be determined by gene disruption. Here, we elucidated the entire ß-oxidation cycle of the cleaved B ring. This cycle is essential for the following C and D ring cleavage.


Subject(s)
Comamonas testosteroni/metabolism , Steroids/chemistry , Steroids/metabolism , Bacterial Proteins/genetics , Cholic Acid/metabolism , Comamonas testosteroni/enzymology , Comamonas testosteroni/genetics , Multigene Family , Oxidation-Reduction , Oxidoreductases , Testosterone/metabolism
14.
Appl Environ Microbiol ; 84(22)2018 11 15.
Article in English | MEDLINE | ID: mdl-30194104

ABSTRACT

Bacterial steroid degradation has been studied mainly with Rhodococcus equi (Nocardia restrictus) and Comamonas testosteroni as representative steroid degradation bacteria for more than 50 years. The primary purpose was to obtain materials for steroid drugs, but recent studies showed that many genera of bacteria (Mycobacterium, Rhodococcus, Pseudomonas, etc.) degrade steroids and that steroid-degrading bacteria are globally distributed and found particularly in wastewater treatment plants, the soil, plant rhizospheres, and the marine environment. The role of bacterial steroid degradation in the environment is, however, yet to be revealed. To uncover the whole steroid degradation process in a representative steroid-degrading bacterium, C. testosteroni, to provide basic information for further studies on the role of bacterial steroid degradation, we elucidated the two indispensable oxidative reactions and hydration before D-ring cleavage in C. testosteroni TA441. In bacterial oxidative steroid degradation, A- and B-rings of steroids are cleaved to produce 2-hydroxyhexa-2,4-dienoic acid and 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid. The latter compound was revealed to be degraded to the coenzyme A (CoA) ester of 9α-hydroxy-17-oxo-1,2,3,4,5,6,10,19-octanorandrostan-7-oic acid, which is converted to the CoA ester of 9,17-dioxo-1,2,3,4,5,6,10,19-octanorandrostan-7-oic acid by ORF31-encoded hydroxylacyl dehydrogenase (ScdG), followed by conversion to the CoA ester of 9,17-dioxo-1,2,3,4,5,6,10,19-octanorandrost-8(14)-en-7-oic acid by ORF4-encoded acyl-CoA dehydrogenase (ScdK). Then, a water molecule is added by the ORF5-encoded enoyl-CoA hydratase (ScdY), which leads to the cleavage of the D-ring. The conversion by ScdG is presumed to be a reversible reaction. The elucidated pathway in C. testosteroni TA441 is different from the corresponding pathways in Mycobacterium tuberculosis H37Rv.IMPORTANCE Studies on representative steroid degradation bacteria Rhodococcus equi (Nocardia restrictus) and Comamonas testosteroni were initiated more than 50 years ago primarily to obtain materials for steroid drugs. A recent study showed that steroid-degrading bacteria are globally distributed and found particularly in wastewater treatment plants, the soil, plant rhizospheres, and the marine environment, but the role of bacterial steroid degradation in the environment is yet to be revealed. This study aimed to uncover the whole steroid degradation process in C. testosteroni TA441, in which major enzymes for steroidal A- and B-ring cleavage were elucidated, to provide basic information for further studies on bacterial steroid degradation. C. testosteroni is suitable for exploring the degradation pathway because the involvement of degradation-related genes can be determined by gene disruption. We elucidated the two indispensable oxidative reactions and hydration before D-ring cleavage, which appeared to differ from those present in Mycobacterium tuberculosis H37Rv.


Subject(s)
Bacterial Proteins/genetics , Comamonas testosteroni/metabolism , Steroids/chemistry , Steroids/metabolism , Bacterial Proteins/metabolism , Biodegradation, Environmental , Comamonas testosteroni/enzymology , Comamonas testosteroni/genetics , Molecular Structure , Oxidation-Reduction , Oxidoreductases/genetics , Oxidoreductases/metabolism
15.
J Am Chem Soc ; 139(32): 11089-11095, 2017 08 16.
Article in English | MEDLINE | ID: mdl-28719738

ABSTRACT

Control of enzyme activity is fundamental to biology and represents a long-term goal in bioengineering and precision therapeutics. While several powerful molecular strategies have been developed, limitations remain in their generalizability and dynamic range. We demonstrate a control mechanism via separate small molecules that turn on the enzyme (activator) and turn off the activation (blocker). We show that a pocket created near the active site base of the enzyme ketosteriod isomerase (KSI) allows efficient and saturable base rescue when the enzyme's natural general base is removed. Binding a small molecule with similar properties but lacking general-base capability in this pocket shuts off rescue. The ability of small molecules to directly participate in and directly block catalysis may afford a broad controllable dynamic range. This approach may be amenable to numerous enzymes and to engineering and screening approaches to identify activators and blockers with strong, specific binding for engineering and therapeutic applications.


Subject(s)
Catalytic Domain/drug effects , Comamonas testosteroni/enzymology , Pseudomonas putida/enzymology , Small Molecule Libraries/pharmacology , Steroid Isomerases/metabolism , Binding Sites/drug effects , Comamonas testosteroni/chemistry , Comamonas testosteroni/drug effects , Comamonas testosteroni/genetics , Enzyme Activation/drug effects , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Pseudomonas putida/chemistry , Pseudomonas putida/drug effects , Pseudomonas putida/genetics , Small Molecule Libraries/chemistry , Steroid Isomerases/chemistry , Steroid Isomerases/genetics
16.
J Basic Microbiol ; 57(11): 941-949, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28833312

ABSTRACT

A Comamonas testosterone bacterial strain, named as DB-7, capable of utilizing dimethyl phthalate (DMP) as sole carbon source and energy for growth was isolated from soil with plastic film mulching by an enrichment culture technique. This bacterium was identified as C. testosterone by 16S rRNA sequence analysis and phospholipid fatty acid profile. DB-7 could degrade more than 99% of 450 mg L-1 DMP within 14 hours, and degraded DMP of different concentrations rapidly. The optimal degradation temperature and pH were 30-35 °C and pH 9.0, respectively. The degradation rate of DMP was positively related to inoculum volume of the bacterium. The result of HPLC and LC/MS analysis of metabolic products indicated that the major degrading intermediates were mono-methyl phthalate (MMP) and phthalic acid (PA) during the degradation of DMP by DB-7. Partial sequences of three genes involved in PA metabolism were detected in DB-7, and the expression of phthalate 4, 5-dioxygenase was drastically induced in the presence of DMP and PA. DB-7 is promising to be applied to DMP bioremediation because of its high degrading efficiency.


Subject(s)
Biodegradation, Environmental , Comamonas testosteroni/isolation & purification , Comamonas testosteroni/metabolism , Phthalic Acids/metabolism , Soil Microbiology , Comamonas , Comamonas testosteroni/genetics , Comamonas testosteroni/growth & development , Fatty Acids , Genes, Bacterial/genetics , Hydrogen-Ion Concentration , Metabolism/genetics , Oxygenases/genetics , Oxygenases/metabolism , RNA, Ribosomal, 16S/genetics , Sequence Analysis , Temperature , Time Factors
17.
Appl Environ Microbiol ; 82(14): 4401-4409, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27208104

ABSTRACT

UNLABELLED: Bioaugmentation has been frequently proposed in wastewater and soil treatment to remove toxic aromatic compounds. The performance of bioaugmentation is affected by a number of biological and environmental factors, including the interaction between the target pollutant and the augmented bacterial cells. In this study, using Comamonas testosteroni and 3-chloroaniline (3-CA) as the model organism and target pollutant, we explored the influence of toxic aromatic pollutants on the biofilm lifestyle of bacteria capable of degrading aromatic compounds toward a better understanding of cell-pollutant interaction in bioaugmentation. Our results showed that the exposure to 3-CA greatly reduced the retention of C. testosteroni cells in packed-bed bioreactors (from 22% to 15% after three pore volumes), which could be attributed to the altered bacterial motility and cell surface hydrophobicity. To further understand the molecular mechanisms, we employed an integrated genomic and transcriptomic analysis to examine the influence of 3-CA on the expression of genes important to the biofilm lifestyle of C. testosteroni We found that exposure to 3-CA reduced the intracellular c-di-GMP level by downregulating the expression of genes encoding c-di-GMP synthases and induced massive cell dispersal from the biofilms. Our findings provide novel environmental implications on bioaugmentation, particularly in biofilm reactors, for the treatment of wastewater containing recalcitrant industrial pollutants. IMPORTANCE: Bioaugmentation is a bioremediation approach that often has been described in the literature but has almost never been successfully applied in practice. Many biological and environmental factors influence the overall performance of bioaugmentation. Among these, the interaction between the target pollutant and the augmented bacterial cells is one of the most important factors. In this study, we revealed the influence of toxic aromatic pollutants on the biofilm lifestyle of bacteria capable of degrading aromatic compounds toward a better understanding of cell-pollutant interaction in bioaugmentation. Our findings provide novel environmental implications on bioaugmentation for the treatment of wastewater containing recalcitrant industrial pollutants; in particular, the exposure to toxic pollutants may reduce the retention of augmented organisms in biofilm reactors by reducing the c-di-GMP level, and approaches to elevating or maintaining a high c-di-GMP level may be promising to establish and maintain sustainable bioaugmentation activity.


Subject(s)
Aniline Compounds/metabolism , Biofilms/drug effects , Biofilms/growth & development , Comamonas testosteroni/drug effects , Comamonas testosteroni/physiology , Water Pollutants/metabolism , Aniline Compounds/toxicity , Comamonas testosteroni/genetics , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Gene Expression Profiling , Water Pollutants/toxicity
18.
BMC Genomics ; 16: 110, 2015 Feb 21.
Article in English | MEDLINE | ID: mdl-25766446

ABSTRACT

BACKGROUND: Members of Comamonas testosteroni are environmental microorganisms that are usually found in polluted environment samples. They utilize steroids and aromatic compounds but rarely sugars, and show resistance to multiple heavy metals and multiple drugs. However, comprehensive genomic analysis among the C. testosteroni strains is lacked. RESULTS: To understand the genome bases of the features of C. testosteroni, we sequenced 10 strains of this species and analyzed them together with other related published genome sequences. The results revealed that: 1) the strains of C. testosteroni have genome sizes ranging from 5.1 to 6.0 Mb and G + C contents ranging from 61.1% to 61.8%. The pan-genome contained 10,165 gene families and the core genome contained 3,599 gene families. Heap's law analysis indicated that the pan-genome of C. testosteroni may be open (α = 0.639); 2) by analyzing 31 phenotypes of 11 available C. testosteroni strains, 99.4% of the genotypes (putative genes) were found to be correlated to the phenotypes, indicating a high correlation between phenotypes and genotypes; 3) gene clusters for nitrate reduction, steroids degradation and metal and multi-drug resistance were found and were highly conserved among all the genomes of this species; 4) the genome similarity of C. testosteroni may be related to the geographical distances. CONCLUSIONS: This work provided an overview on the genomes of C. testosteroni and new genome resources that would accelerate the further investigations of this species. Importantly, this work focused on the analysis of potential genetic determinants for the typical characters and found high correlation between the phenotypes and their corresponding genotypes.


Subject(s)
Comamonas testosteroni/genetics , Genetic Association Studies , Genome, Bacterial/genetics , Base Sequence , Environment
19.
Environ Sci Technol ; 49(19): 11551-9, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-26327221

ABSTRACT

Comamonas is one of the most abundant microorganisms in biofilm communities driving wastewater treatment. Little has been known about the role of this group of organisms and their biofilm mode of life. In this study, using Comamonas testosteroni as a model organism, we demonstrated the involvement of Comamonas biofilms in denitrification under bulk aerobic conditions and elucidated the influence of nitrate respiration on its biofilm lifestyle. Our results showed that C. testosteroni could use nitrate as the sole electron acceptor for anaerobic growth. Under bulk aerobic condition, biofilms of C. testosteroni were capable of reducing nitrate, and intriguingly, nitrate reduction significantly enhanced viability of the biofilm-cells and reduced cell detachment from the biofilms. Nitrate respiration was further shown to play an essential role in maintaining high cell viability in the biofilms. RNA-seq analysis, quantitative polymerase chain reaction, and liquid chromatography-mass spectrometry revealed a higher level of bis(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) in cells respiring on nitrate than those grown aerobically (1.3 × 10(-4) fmol/cell vs 7.9 × 10(-6) fmol/cell; P < 0.01). C-di-GMP is one universal signaling molecule that regulates the biofilm mode of life, and a higher c-di-GMP concentration reduces cell detachment from biofilms. Taking these factors together, this study reveals that nitrate reduction occurs in mature biofilms of C. testosteroni under bulk aerobic conditions, and the respiratory reduction of nitrate is beneficial to the biofilm lifestyle by providing more metabolic energy to maintain high viability and a higher level of c-di-GMP to reduce cell detachment.


Subject(s)
Comamonas testosteroni/physiology , Denitrification , Wastewater/microbiology , Aerobiosis , Biofilms/growth & development , Comamonas testosteroni/genetics , Comamonas testosteroni/metabolism , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Gene Expression Regulation, Bacterial , Nitrates/metabolism , Polymerase Chain Reaction , Sequence Analysis, RNA
20.
Appl Microbiol Biotechnol ; 99(8): 3519-32, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25786738

ABSTRACT

Comamonas testosteroni is an important environmental bacterium capable of degrading a variety of toxic aromatic pollutants and has been demonstrated to be a promising biocatalyst for environmental decontamination. This organism is often found to be among the primary surface colonizers in various natural and engineered ecosystems, suggesting an extraordinary capability of this organism in environmental adaptation and biofilm formation. The goal of this study was to gain genetic insights into the adaption of C. testosteroni to versatile environments and the importance of a biofilm lifestyle. Specifically, a draft genome of C. testosteroni I2 was obtained. The draft genome is 5,778,710 bp in length and comprises 110 contigs. The average G+C content was 61.88 %. A total of 5365 genes with 5263 protein-coding genes were predicted, whereas 4324 (80.60 % of total genes) protein-encoding genes were associated with predicted functions. The catabolic genes responsible for biodegradation of steroid and other aromatic compounds on draft genome were identified. Plasmid pI2 was found to encode a complete pathway for aniline degradation and a partial catabolic pathway for chloroaniline. This organism was found to be equipped with a sophisticated signaling system which helps it find ideal niches and switch between planktonic and biofilm lifestyles. A large number of putative multi-drug-resistant genes coding for abundant outer membrane transporters, chaperones, and heat shock proteins for the protection of cellular function were identified in the genome of strain I2. In addition, the genome of strain I2 was predicted to encode several proteins involved in producing, secreting, and uptaking siderophores under iron-limiting conditions. The genome of strain I2 contains a number of genes responsible for the synthesis and secretion of exopolysaccharides, an extracellular component essential for biofilm formation. Overall, our results reveal the genomic features underlying the adaption of C. testosteroni to versatile environments and highlighting the importance of its biofilm lifestyle.


Subject(s)
Adaptation, Biological , Biofilms/growth & development , Comamonas testosteroni/genetics , Comamonas testosteroni/physiology , Environmental Microbiology , Genome, Bacterial , Base Composition , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Genes, Bacterial , Metabolic Networks and Pathways/genetics , Plasmids , Sequence Analysis, DNA , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL