Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96.714
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 38: 123-145, 2020 04 26.
Article in English | MEDLINE | ID: mdl-32045313

ABSTRACT

Throughout the body, T cells monitor MHC-bound ligands expressed on the surface of essentially all cell types. MHC ligands that trigger a T cell immune response are referred to as T cell epitopes. Identifying such epitopes enables tracking, phenotyping, and stimulating T cells involved in immune responses in infectious disease, allergy, autoimmunity, transplantation, and cancer. The specific T cell epitopes recognized in an individual are determined by genetic factors such as the MHC molecules the individual expresses, in parallel to the individual's environmental exposure history. The complexity and importance of T cell epitope mapping have motivated the development of computational approaches that predict what T cell epitopes are likely to be recognized in a given individual or in a broader population. Such predictions guide experimental epitope mapping studies and enable computational analysis of the immunogenic potential of a given protein sequence region.


Subject(s)
Epitopes, T-Lymphocyte/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Biomarkers , Computational Biology/methods , Disease Susceptibility , Histocompatibility Antigens/immunology , Humans , Ligands , Machine Learning , Protein Binding
2.
Annu Rev Immunol ; 37: 547-570, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30699000

ABSTRACT

Adaptive immune recognition is mediated by antigen receptors on B and T cells generated by somatic recombination during lineage development. The high level of diversity resulting from this process posed technical limitations that previously limited the comprehensive analysis of adaptive immune recognition. Advances over the last ten years have produced data and approaches allowing insights into how T cells develop, evolutionary signatures of recombination and selection, and the features of T cell receptors that mediate epitope-specific binding and T cell activation. The size and complexity of these data have necessitated the generation of novel computational and analytical approaches, which are transforming how T cell immunology is conducted. Here we review the development and application of novel biological, theoretical, and computational methods for understanding T cell recognition and discuss the potential for improved models of receptor:antigen interactions.


Subject(s)
Computational Biology/methods , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes/immunology , Adaptive Immunity , Animals , Antigens/immunology , Antigens/metabolism , Cell Differentiation , Clonal Selection, Antigen-Mediated , Epitopes, T-Lymphocyte/metabolism , High-Throughput Nucleotide Sequencing , Humans , Lymphocyte Activation , Receptors, Antigen, T-Cell/metabolism
3.
Annu Rev Immunol ; 35: 403-439, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28226229

ABSTRACT

This is an exciting time for immunology because the future promises to be replete with exciting new discoveries that can be translated to improve health and treat disease in novel ways. Immunologists are attempting to answer increasingly complex questions concerning phenomena that range from the genetic, molecular, and cellular scales to that of organs, whole animals or humans, and populations of humans and pathogens. An important goal is to understand how the many different components involved interact with each other within and across these scales for immune responses to emerge, and how aberrant regulation of these processes causes disease. To aid this quest, large amounts of data can be collected using high-throughput instrumentation. The nonlinear, cooperative, and stochastic character of the interactions between components of the immune system as well as the overwhelming amounts of data can make it difficult to intuit patterns in the data or a mechanistic understanding of the phenomena being studied. Computational models are increasingly important in confronting and overcoming these challenges. I first describe an iterative paradigm of research that integrates laboratory experiments, clinical data, computational inference, and mechanistic computational models. I then illustrate this paradigm with a few examples from the recent literature that make vivid the power of bringing together diverse types of computational models with experimental and clinical studies to fruitfully interrogate the immune system.


Subject(s)
Computational Biology , Computer Simulation , Models, Immunological , T-Lymphocytes/immunology , Vaccines/immunology , Animals , Biomedical Research , High-Throughput Screening Assays , Humans , Monitoring, Immunologic/methods , Receptors, Antigen, T-Cell/genetics , Signal Transduction
4.
Cell ; 187(3): 545-562, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38306981

ABSTRACT

Determining the structure and mechanisms of all individual functional modules of cells at high molecular detail has often been seen as equal to understanding how cells work. Recent technical advances have led to a flush of high-resolution structures of various macromolecular machines, but despite this wealth of detailed information, our understanding of cellular function remains incomplete. Here, we discuss present-day limitations of structural biology and highlight novel technologies that may enable us to analyze molecular functions directly inside cells. We predict that the progression toward structural cell biology will involve a shift toward conceptualizing a 4D virtual reality of cells using digital twins. These will capture cellular segments in a highly enriched molecular detail, include dynamic changes, and facilitate simulations of molecular processes, leading to novel and experimentally testable predictions. Transferring biological questions into algorithms that learn from the existing wealth of data and explore novel solutions may ultimately unveil how cells work.


Subject(s)
Biology , Computational Biology , Macromolecular Substances/chemistry
5.
Cell ; 187(10): 2343-2358, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38729109

ABSTRACT

As the number of single-cell datasets continues to grow rapidly, workflows that map new data to well-curated reference atlases offer enormous promise for the biological community. In this perspective, we discuss key computational challenges and opportunities for single-cell reference-mapping algorithms. We discuss how mapping algorithms will enable the integration of diverse datasets across disease states, molecular modalities, genetic perturbations, and diverse species and will eventually replace manual and laborious unsupervised clustering pipelines.


Subject(s)
Algorithms , Single-Cell Analysis , Single-Cell Analysis/methods , Humans , Computational Biology/methods , Data Analysis , Animals , Cluster Analysis
6.
Cell ; 186(26): 5677-5689, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38065099

ABSTRACT

RNA sequencing in situ allows for whole-transcriptome characterization at high resolution, while retaining spatial information. These data present an analytical challenge for bioinformatics-how to leverage spatial information effectively? Properties of data with a spatial dimension require special handling, which necessitate a different set of statistical and inferential considerations when compared to non-spatial data. The geographical sciences primarily use spatial data and have developed methods to analye them. Here we discuss the challenges associated with spatial analysis and examine how we can take advantage of practice from the geographical sciences to realize the full potential of spatial information in transcriptomic datasets.


Subject(s)
Data Analysis , Spatial Analysis , Transcriptome , Computational Biology , Gene Expression Profiling , Transcriptome/genetics
7.
Annu Rev Immunol ; 33: 227-56, 2015.
Article in English | MEDLINE | ID: mdl-25581310

ABSTRACT

The diverse microbial populations constituting the intestinal microbiota promote immune development and differentiation, but because of their complex metabolic requirements and the consequent difficulty culturing them, they remained, until recently, largely uncharacterized and mysterious. In the last decade, deep nucleic acid sequencing platforms, new computational and bioinformatics tools, and full-genome characterization of several hundred commensal bacterial species facilitated studies of the microbiota and revealed that differences in microbiota composition can be associated with inflammatory, metabolic, and infectious diseases, that each human is colonized by a distinct bacterial flora, and that the microbiota can be manipulated to reduce and even cure some diseases. Different bacterial species induce distinct immune cell populations that can play pro- and anti-inflammatory roles, and thus the composition of the microbiota determines, in part, the level of resistance to infection and susceptibility to inflammatory diseases. This review summarizes recent work characterizing commensal microbes that contribute to the antimicrobial defense/inflammation axis.


Subject(s)
Disease Resistance/immunology , Gastroenteritis/immunology , Gastroenteritis/microbiology , Gastrointestinal Microbiome/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Adaptive Immunity , Animals , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Autoimmune Diseases/microbiology , Computational Biology , Diet , Disease Susceptibility , Gastroenteritis/metabolism , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Immunity, Mucosal , Intestinal Mucosa/metabolism , Metabolome , Neoplasms/etiology , Vitamins/metabolism
8.
Cell ; 185(1): 184-203.e19, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34963056

ABSTRACT

Cancers display significant heterogeneity with respect to tissue of origin, driver mutations, and other features of the surrounding tissue. It is likely that individual tumors engage common patterns of the immune system-here "archetypes"-creating prototypical non-destructive tumor immune microenvironments (TMEs) and modulating tumor-targeting. To discover the dominant immune system archetypes, the University of California, San Francisco (UCSF) Immunoprofiler Initiative (IPI) processed 364 individual tumors across 12 cancer types using standardized protocols. Computational clustering of flow cytometry and transcriptomic data obtained from cell sub-compartments uncovered dominant patterns of immune composition across cancers. These archetypes were profound insofar as they also differentiated tumors based upon unique immune and tumor gene-expression patterns. They also partitioned well-established classifications of tumor biology. The IPI resource provides a template for understanding cancer immunity as a collection of dominant patterns of immune organization and provides a rational path forward to learn how to modulate these to improve therapy.


Subject(s)
Censuses , Neoplasms/genetics , Neoplasms/immunology , Transcriptome/genetics , Tumor Microenvironment/immunology , Biomarkers, Tumor , Cluster Analysis , Cohort Studies , Computational Biology/methods , Flow Cytometry/methods , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/classification , Neoplasms/pathology , RNA-Seq/methods , San Francisco , Universities
9.
Cell ; 184(11): 3022-3040.e28, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33961781

ABSTRACT

Thousands of interactions assemble proteins into modules that impart spatial and functional organization to the cellular proteome. Through affinity-purification mass spectrometry, we have created two proteome-scale, cell-line-specific interaction networks. The first, BioPlex 3.0, results from affinity purification of 10,128 human proteins-half the proteome-in 293T cells and includes 118,162 interactions among 14,586 proteins. The second results from 5,522 immunoprecipitations in HCT116 cells. These networks model the interactome whose structure encodes protein function, localization, and complex membership. Comparison across cell lines validates thousands of interactions and reveals extensive customization. Whereas shared interactions reside in core complexes and involve essential proteins, cell-specific interactions link these complexes, "rewiring" subnetworks within each cell's interactome. Interactions covary among proteins of shared function as the proteome remodels to produce each cell's phenotype. Viewable interactively online through BioPlexExplorer, these networks define principles of proteome organization and enable unknown protein characterization.


Subject(s)
Protein Interaction Mapping/methods , Protein Interaction Maps/genetics , Proteome/genetics , Computational Biology/methods , HCT116 Cells/metabolism , HEK293 Cells/metabolism , Humans , Mass Spectrometry/methods , Protein Interaction Maps/physiology , Proteome/metabolism , Proteomics/methods
10.
Cell ; 184(20): 5179-5188.e8, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34499854

ABSTRACT

We present evidence for multiple independent origins of recombinant SARS-CoV-2 viruses sampled from late 2020 and early 2021 in the United Kingdom. Their genomes carry single-nucleotide polymorphisms and deletions that are characteristic of the B.1.1.7 variant of concern but lack the full complement of lineage-defining mutations. Instead, the remainder of their genomes share contiguous genetic variation with non-B.1.1.7 viruses circulating in the same geographic area at the same time as the recombinants. In four instances, there was evidence for onward transmission of a recombinant-origin virus, including one transmission cluster of 45 sequenced cases over the course of 2 months. The inferred genomic locations of recombination breakpoints suggest that every community-transmitted recombinant virus inherited its spike region from a B.1.1.7 parental virus, consistent with a transmission advantage for B.1.1.7's set of mutations.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Pandemics , Recombination, Genetic , SARS-CoV-2/genetics , Base Sequence/genetics , COVID-19/virology , Computational Biology/methods , Gene Frequency , Genome, Viral , Genotype , Humans , Mutation , Phylogeny , Polymorphism, Single Nucleotide , United Kingdom/epidemiology , Whole Genome Sequencing/methods
11.
Nat Rev Mol Cell Biol ; 24(10): 695-713, 2023 10.
Article in English | MEDLINE | ID: mdl-37280296

ABSTRACT

Single-cell multi-omics technologies and methods characterize cell states and activities by simultaneously integrating various single-modality omics methods that profile the transcriptome, genome, epigenome, epitranscriptome, proteome, metabolome and other (emerging) omics. Collectively, these methods are revolutionizing molecular cell biology research. In this comprehensive Review, we discuss established multi-omics technologies as well as cutting-edge and state-of-the-art methods in the field. We discuss how multi-omics technologies have been adapted and improved over the past decade using a framework characterized by optimization of throughput and resolution, modality integration, uniqueness and accuracy, and we also discuss multi-omics limitations. We highlight the impact that single-cell multi-omics technologies have had in cell lineage tracing, tissue-specific and cell-specific atlas production, tumour immunology and cancer genetics, and in mapping of cellular spatial information in fundamental and translational research. Finally, we discuss bioinformatics tools that have been developed to link different omics modalities and elucidate functionality through the use of better mathematical modelling and computational methods.


Subject(s)
Computational Biology , Multiomics , Cell Lineage , Epigenome , Metabolome
12.
Cell ; 181(4): 922-935.e21, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32315617

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) provides a leap forward in resolving cellular diversity and developmental trajectories but fails to comprehensively delineate the spatial organization and precise cellular makeup of individual embryos. Here, we reconstruct from scRNA-seq and light sheet imaging data a canonical digital embryo that captures the genome-wide gene expression trajectory of every single cell at every cell division in the 18 lineages up to gastrulation in the ascidian Phallusia mammillata. By using high-coverage scRNA-seq, we devise a computational framework that stratifies single cells of individual embryos into cell types without prior knowledge. Unbiased transcriptome data analysis mapped each cell's physical position and lineage history, yielding the complete history of gene expression at the genome-wide level for every single cell in a developing embryo. A comparison of individual embryos reveals both extensive reproducibility between symmetric embryo sides and a large inter-embryonic variability due to small differences in embryogenesis timing.


Subject(s)
Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Animals , Cell Lineage/genetics , Chordata/genetics , Computational Biology/methods , Gastrulation/genetics , Gene Expression Regulation, Developmental/genetics , Reproducibility of Results , Transcriptome/genetics , Urochordata/genetics
13.
Cell ; 182(6): 1474-1489.e23, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32841603

ABSTRACT

Widespread changes to DNA methylation and chromatin are well documented in cancer, but the fate of higher-order chromosomal structure remains obscure. Here we integrated topological maps for colon tumors and normal colons with epigenetic, transcriptional, and imaging data to characterize alterations to chromatin loops, topologically associated domains, and large-scale compartments. We found that spatial partitioning of the open and closed genome compartments is profoundly compromised in tumors. This reorganization is accompanied by compartment-specific hypomethylation and chromatin changes. Additionally, we identify a compartment at the interface between the canonical A and B compartments that is reorganized in tumors. Remarkably, similar shifts were evident in non-malignant cells that have accumulated excess divisions. Our analyses suggest that these topological changes repress stemness and invasion programs while inducing anti-tumor immunity genes and may therefore restrain malignant progression. Our findings call into question the conventional view that tumor-associated epigenomic alterations are primarily oncogenic.


Subject(s)
Chromatin/metabolism , Chromosomes/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic/genetics , Cell Division , Cellular Senescence/genetics , Chromatin Immunoprecipitation Sequencing , Chromosomes/genetics , Cohort Studies , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Computational Biology , DNA Methylation/genetics , Epigenomics , HCT116 Cells , Humans , In Situ Hybridization, Fluorescence , Microscopy, Electron, Transmission , Molecular Dynamics Simulation , RNA-Seq , Spatial Analysis , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
14.
Cell ; 182(6): 1490-1507.e19, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32916131

ABSTRACT

Metabolic reprogramming is a key feature of many cancers, but how and when it contributes to tumorigenesis remains unclear. Here we demonstrate that metabolic reprogramming induced by mitochondrial fusion can be rate-limiting for immortalization of tumor-initiating cells (TICs) and trigger their irreversible dedication to tumorigenesis. Using single-cell transcriptomics, we find that Drosophila brain tumors contain a rapidly dividing stem cell population defined by upregulation of oxidative phosphorylation (OxPhos). We combine targeted metabolomics and in vivo genetic screening to demonstrate that OxPhos is required for tumor cell immortalization but dispensable in neural stem cells (NSCs) giving rise to tumors. Employing an in vivo NADH/NAD+ sensor, we show that NSCs precisely increase OxPhos during immortalization. Blocking OxPhos or mitochondrial fusion stalls TICs in quiescence and prevents tumorigenesis through impaired NAD+ regeneration. Our work establishes a unique connection between cellular metabolism and immortalization of tumor-initiating cells.


Subject(s)
Brain Neoplasms/metabolism , Carcinogenesis/metabolism , Cell Transformation, Neoplastic/metabolism , Mitochondrial Dynamics , NAD/metabolism , Neoplastic Stem Cells/metabolism , Neural Stem Cells/metabolism , Oxidative Phosphorylation , Animals , Brain Neoplasms/genetics , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Transformation, Neoplastic/pathology , Citric Acid Cycle/genetics , Computational Biology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Drosophila , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Glycolysis/genetics , Mass Spectrometry , Metabolomics , Microscopy, Electron, Transmission , Multigene Family , Neural Stem Cells/pathology , Oxygen Consumption/genetics , RNA Interference , Reactive Oxygen Species/metabolism , Single-Cell Analysis , Transcriptome/genetics
15.
Cell ; 177(6): 1384-1403, 2019 05 30.
Article in English | MEDLINE | ID: mdl-31150619

ABSTRACT

Integrative structure determination is a powerful approach to modeling the structures of biological systems based on data produced by multiple experimental and theoretical methods, with implications for our understanding of cellular biology and drug discovery. This Primer introduces the theory and methods of integrative approaches, emphasizing the kinds of data that can be effectively included in developing models and using the nuclear pore complex as an example to illustrate the practice and challenges involved. These guidelines are intended to aid the researcher in understanding and applying integrative structural methods to systems of their interest and thus take advantage of this rapidly evolving field.


Subject(s)
Computational Biology/methods , Systems Biology/methods , Algorithms , Animals , Humans , Models, Molecular , Molecular Biology , Nuclear Pore/physiology , Software , Systems Analysis , Systems Integration
16.
Cell ; 178(6): 1465-1477.e17, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31491388

ABSTRACT

Most human protein-coding genes are regulated by multiple, distinct promoters, suggesting that the choice of promoter is as important as its level of transcriptional activity. However, while a global change in transcription is recognized as a defining feature of cancer, the contribution of alternative promoters still remains largely unexplored. Here, we infer active promoters using RNA-seq data from 18,468 cancer and normal samples, demonstrating that alternative promoters are a major contributor to context-specific regulation of transcription. We find that promoters are deregulated across tissues, cancer types, and patients, affecting known cancer genes and novel candidates. For genes with independently regulated promoters, we demonstrate that promoter activity provides a more accurate predictor of patient survival than gene expression. Our study suggests that a dynamic landscape of active promoters shapes the cancer transcriptome, opening new diagnostic avenues and opportunities to further explore the interplay of regulatory mechanisms with transcriptional aberrations in cancer.


Subject(s)
Computational Biology/methods , Gene Expression Regulation, Neoplastic/genetics , Neoplasms/genetics , Promoter Regions, Genetic/genetics , Transcriptome/genetics , Databases, Genetic , Humans , RNA-Seq/methods
17.
Cell ; 177(6): 1375-1383, 2019 05 30.
Article in English | MEDLINE | ID: mdl-31150618

ABSTRACT

Recent studies of the tumor genome seek to identify cancer pathways as groups of genes in which mutations are epistatic with one another or, specifically, "mutually exclusive." Here, we show that most mutations are mutually exclusive not due to pathway structure but to interactions with disease subtype and tumor mutation load. In particular, many cancer driver genes are mutated preferentially in tumors with few mutations overall, causing mutations in these cancer genes to appear mutually exclusive with numerous others. Researchers should view current epistasis maps with caution until we better understand the multiple cause-and-effect relationships among factors such as tumor subtype, positive selection for mutations, and gross tumor characteristics including mutational signatures and load.


Subject(s)
Epistasis, Genetic/genetics , Genes, Neoplasm/genetics , Neoplasms/genetics , Algorithms , Computational Biology/methods , Epistasis, Genetic/physiology , Genes, Neoplasm/physiology , Humans , Models, Genetic , Mutation/genetics , Oncogenes/genetics
18.
Cell ; 177(6): 1405-1418.e17, 2019 05 30.
Article in English | MEDLINE | ID: mdl-31130379

ABSTRACT

How do genes modify cellular growth to create morphological diversity? We study this problem in two related plants with differently shaped leaves: Arabidopsis thaliana (simple leaf shape) and Cardamine hirsuta (complex shape with leaflets). We use live imaging, modeling, and genetics to deconstruct these organ-level differences into their cell-level constituents: growth amount, direction, and differentiation. We show that leaf shape depends on the interplay of two growth modes: a conserved organ-wide growth mode that reflects differentiation; and a local, directional mode that involves the patterning of growth foci along the leaf edge. Shape diversity results from the distinct effects of two homeobox genes on these growth modes: SHOOTMERISTEMLESS broadens organ-wide growth relative to edge-patterning, enabling leaflet emergence, while REDUCED COMPLEXITY inhibits growth locally around emerging leaflets, accentuating shape differences created by patterning. We demonstrate the predictivity of our findings by reconstructing key features of C. hirsuta leaf morphology in A. thaliana. VIDEO ABSTRACT.


Subject(s)
Arabidopsis/growth & development , Cardamine/growth & development , Plant Leaves/growth & development , Arabidopsis/genetics , Cardamine/genetics , Cell Lineage/genetics , Computational Biology/methods , Gene Expression Regulation, Plant/genetics , Plant Leaves/genetics , Plant Proteins/metabolism
19.
Cell ; 179(4): 895-908.e21, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31675498

ABSTRACT

The peptidergic system is the most abundant network of ligand-receptor-mediated signaling in humans. However, the physiological roles remain elusive for numerous peptides and more than 100 G protein-coupled receptors (GPCRs). Here we report the pairing of cognate peptides and receptors. Integrating comparative genomics across 313 species and bioinformatics on all protein sequences and structures of human class A GPCRs, we identify universal characteristics that uncover additional potential peptidergic signaling systems. Using three orthogonal biochemical assays, we pair 17 proposed endogenous ligands with five orphan GPCRs that are associated with diseases, including genetic, neoplastic, nervous and reproductive system disorders. We also identify additional peptides for nine receptors with recognized ligands and pathophysiological roles. This integrated computational and multifaceted experimental approach expands the peptide-GPCR network and opens the way for studies to elucidate the roles of these signaling systems in human physiology and disease. VIDEO ABSTRACT.


Subject(s)
Genomics , Peptides/genetics , Protein Conformation , Receptors, G-Protein-Coupled/genetics , Amino Acid Sequence/genetics , Computational Biology , Gene Regulatory Networks/genetics , Genitalia/metabolism , Genitalia/pathology , Humans , Ligands , Neoplasms/genetics , Neoplasms/pathology , Nervous System Diseases/genetics , Nervous System Diseases/pathology , Signal Transduction/genetics
20.
Cell ; 177(6): 1649-1661.e9, 2019 05 30.
Article in English | MEDLINE | ID: mdl-31080069

ABSTRACT

Current machine learning techniques enable robust association of biological signals with measured phenotypes, but these approaches are incapable of identifying causal relationships. Here, we develop an integrated "white-box" biochemical screening, network modeling, and machine learning approach for revealing causal mechanisms and apply this approach to understanding antibiotic efficacy. We counter-screen diverse metabolites against bactericidal antibiotics in Escherichia coli and simulate their corresponding metabolic states using a genome-scale metabolic network model. Regression of the measured screening data on model simulations reveals that purine biosynthesis participates in antibiotic lethality, which we validate experimentally. We show that antibiotic-induced adenine limitation increases ATP demand, which elevates central carbon metabolism activity and oxygen consumption, enhancing the killing effects of antibiotics. This work demonstrates how prospective network modeling can couple with machine learning to identify complex causal mechanisms underlying drug efficacy.


Subject(s)
Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Metabolic Networks and Pathways/drug effects , Adenine/metabolism , Computational Biology/methods , Drug Evaluation, Preclinical/methods , Escherichia coli/metabolism , Machine Learning , Metabolic Networks and Pathways/immunology , Models, Theoretical , Purines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL