ABSTRACT
The COVID-19 pandemic was caused by the recently emerged ß-coronavirus SARS-CoV-2. SARS-CoV-2 has had a catastrophic impact, resulting in nearly 7 million fatalities worldwide to date. The innate immune system is the first line of defense against infections, including the detection and response to SARS-CoV-2. Here, we discuss the innate immune mechanisms that sense coronaviruses, with a focus on SARS-CoV-2 infection and how these protective responses can become detrimental in severe cases of COVID-19, contributing to cytokine storm, inflammation, long-COVID, and other complications. We also highlight the complex cross talk among cytokines and the cellular components of the innate immune system, which can aid in viral clearance but also contribute to inflammatory cell death, cytokine storm, and organ damage in severe COVID-19 pathogenesis. Furthermore, we discuss how SARS-CoV-2 evades key protective innate immune mechanisms to enhance its virulence and pathogenicity, as well as how innate immunity can be therapeutically targeted as part of the vaccination and treatment strategy. Overall, we highlight how a comprehensive understanding of innate immune mechanisms has been crucial in the fight against SARS-CoV-2 infections and the development of novel host-directed immunotherapeutic strategies for various diseases.
Subject(s)
COVID-19 , Immunity, Innate , SARS-CoV-2 , Humans , COVID-19/immunology , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Cytokine Release Syndrome/immunology , Cytokines/metabolism , Animals , Coronavirus Infections/immunology , Coronavirus Infections/virology , Coronavirus Infections/prevention & control , Immune EvasionABSTRACT
Identification of host genes essential for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may reveal novel therapeutic targets and inform our understanding of coronavirus disease 2019 (COVID-19) pathogenesis. Here we performed genome-wide CRISPR screens in Vero-E6 cells with SARS-CoV-2, Middle East respiratory syndrome CoV (MERS-CoV), bat CoV HKU5 expressing the SARS-CoV-1 spike, and vesicular stomatitis virus (VSV) expressing the SARS-CoV-2 spike. We identified known SARS-CoV-2 host factors, including the receptor ACE2 and protease Cathepsin L. We additionally discovered pro-viral genes and pathways, including HMGB1 and the SWI/SNF chromatin remodeling complex, that are SARS lineage and pan-coronavirus specific, respectively. We show that HMGB1 regulates ACE2 expression and is critical for entry of SARS-CoV-2, SARS-CoV-1, and NL63. We also show that small-molecule antagonists of identified gene products inhibited SARS-CoV-2 infection in monkey and human cells, demonstrating the conserved role of these genetic hits across species. This identifies potential therapeutic targets for SARS-CoV-2 and reveals SARS lineage-specific and pan-CoV host factors that regulate susceptibility to highly pathogenic CoVs.
Subject(s)
Coronavirus Infections/genetics , Genome-Wide Association Study , Host-Pathogen Interactions , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/immunology , COVID-19/virology , Cell Line , Chlorocebus aethiops , Clustered Regularly Interspaced Short Palindromic Repeats , Coronavirus/classification , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Gene Knockout Techniques , Gene Regulatory Networks , HEK293 Cells , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Host-Pathogen Interactions/drug effects , Humans , Vero Cells , Virus InternalizationABSTRACT
The SARS-CoV-2 pandemic has posed a significant challenge for risk evaluation and mitigation among cancer patients. Susceptibility to and severity of COVID-19 in cancer patients has not been studied in a prospective and broadly applicable manner. CAPTURE is a pan-cancer, longitudinal immune profiling study designed to address this knowledge gap.
Subject(s)
Coronavirus Infections/complications , Monitoring, Immunologic/methods , Neoplasms/complications , Pneumonia, Viral/complications , Antibodies, Viral/immunology , COVID-19 , Coronavirus Infections/immunology , Humans , Longitudinal Studies , Neoplasms/immunology , Neoplasms/virology , Pandemics , Pneumonia, Viral/immunologyABSTRACT
SARS-CoV-2-specific memory T cells will likely prove critical for long-term immune protection against COVID-19. Here, we systematically mapped the functional and phenotypic landscape of SARS-CoV-2-specific T cell responses in unexposed individuals, exposed family members, and individuals with acute or convalescent COVID-19. Acute-phase SARS-CoV-2-specific T cells displayed a highly activated cytotoxic phenotype that correlated with various clinical markers of disease severity, whereas convalescent-phase SARS-CoV-2-specific T cells were polyfunctional and displayed a stem-like memory phenotype. Importantly, SARS-CoV-2-specific T cells were detectable in antibody-seronegative exposed family members and convalescent individuals with a history of asymptomatic and mild COVID-19. Our collective dataset shows that SARS-CoV-2 elicits broadly directed and functionally replete memory T cell responses, suggesting that natural exposure or infection may prevent recurrent episodes of severe COVID-19.
Subject(s)
Convalescence , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , T-Lymphocytes/immunology , Adult , Antibodies, Viral/immunology , Asymptomatic Infections , Betacoronavirus/immunology , COVID-19 , Coronavirus Infections/pathology , Female , Humans , Immunologic Memory , Male , Middle Aged , Pandemics , Pneumonia, Viral/pathology , SARS-CoV-2ABSTRACT
Humoral responses in coronavirus disease 2019 (COVID-19) are often of limited durability, as seen with other human coronavirus epidemics. To address the underlying etiology, we examined post mortem thoracic lymph nodes and spleens in acute SARS-CoV-2 infection and observed the absence of germinal centers and a striking reduction in Bcl-6+ germinal center B cells but preservation of AID+ B cells. Absence of germinal centers correlated with an early specific block in Bcl-6+ TFH cell differentiation together with an increase in T-bet+ TH1 cells and aberrant extra-follicular TNF-α accumulation. Parallel peripheral blood studies revealed loss of transitional and follicular B cells in severe disease and accumulation of SARS-CoV-2-specific "disease-related" B cell populations. These data identify defective Bcl-6+ TFH cell generation and dysregulated humoral immune induction early in COVID-19 disease, providing a mechanistic explanation for the limited durability of antibody responses in coronavirus infections, and suggest that achieving herd immunity through natural infection may be difficult.
Subject(s)
Coronavirus Infections/immunology , Germinal Center/immunology , Pneumonia, Viral/immunology , T-Lymphocytes, Helper-Inducer/immunology , Aged , Aged, 80 and over , B-Lymphocytes/immunology , COVID-19 , Female , Germinal Center/pathology , Humans , Male , Middle Aged , Pandemics , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/metabolism , Spleen/immunology , Spleen/pathology , Tumor Necrosis Factor-alpha/metabolismABSTRACT
Vaccines save millions of lives from infectious diseases caused by viruses and bacteria. As the world awaits safe and effective COVID-19 vaccines, we celebrate the progresses made and highlight challenges ahead in vaccines and the science behind them.
Subject(s)
Communicable Disease Control , Communicable Diseases/immunology , Vaccines/immunology , Adjuvants, Immunologic/administration & dosage , COVID-19 , COVID-19 Vaccines , Clinical Trials as Topic , Communicable Diseases/microbiology , Communicable Diseases/parasitology , Communicable Diseases/virology , Coronavirus Infections/etiology , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Drug Utilization , Humans , Immunity, Herd , Pandemics/prevention & control , Patient Acceptance of Health Care , Pneumonia, Viral/immunology , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , Vaccination , Vaccines/administration & dosage , Viral Vaccines/chemistry , Viral Vaccines/immunologyABSTRACT
The 2020 Lasker Awards, a celebration of one of the most prestigious international prizes given to individuals for extraordinary contributions to Basic and Clinical Medical Research, Pubic Health, and Special Achievement, was cancelled because of the COVID-19 pandemic. Typically, essays on the awardees and their scientific and medical contributions are solicited and published in Cell in collaboration with the Lasker Committee. This year, the Lasker Committee commissioned an essay to reflect on the historic contributions that scientists and physicians have made to our understanding of immunology and virology, and future directions in medical and basic research that have been highlighted by COVID-19 pandemic.
Subject(s)
Allergy and Immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Immunity , Pneumonia, Viral/immunology , Allergy and Immunology/history , Animals , Awards and Prizes , COVID-19 , Cytokines/immunology , History, 19th Century , History, 20th Century , History, 21st Century , Humans , Immune System/cytology , Immunoglobulins/genetics , Immunoglobulins/immunology , Lymphocytes/cytology , Pandemics , SARS-CoV-2 , Vaccination/historyABSTRACT
The coronavirus disease 2019 pandemic has made deployment of an effective vaccine a global health priority. We evaluated the protective activity of a chimpanzee adenovirus-vectored vaccine encoding a prefusion stabilized spike protein (ChAd-SARS-CoV-2-S) in challenge studies with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and mice expressing the human angiotensin-converting enzyme 2 receptor. Intramuscular dosing of ChAd-SARS-CoV-2-S induces robust systemic humoral and cell-mediated immune responses and protects against lung infection, inflammation, and pathology but does not confer sterilizing immunity, as evidenced by detection of viral RNA and induction of anti-nucleoprotein antibodies after SARS-CoV-2 challenge. In contrast, a single intranasal dose of ChAd-SARS-CoV-2-S induces high levels of neutralizing antibodies, promotes systemic and mucosal immunoglobulin A (IgA) and T cell responses, and almost entirely prevents SARS-CoV-2 infection in both the upper and lower respiratory tracts. Intranasal administration of ChAd-SARS-CoV-2-S is a candidate for preventing SARS-CoV-2 infection and transmission and curtailing pandemic spread.
Subject(s)
Coronavirus Infections/immunology , Immunogenicity, Vaccine , Pneumonia, Viral/immunology , Viral Vaccines/immunology , Adenoviridae/genetics , Administration, Intranasal , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 , COVID-19 Vaccines , Chlorocebus aethiops , Coronavirus Infections/pathology , Coronavirus Infections/prevention & control , Female , HEK293 Cells , Humans , Injections, Intramuscular , Mice , Mice, Inbred BALB C , Pandemics , Pneumonia, Viral/pathology , Respiratory Mucosa/immunology , Respiratory Mucosa/pathology , Respiratory Mucosa/virology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells , Viral Vaccines/administration & dosageABSTRACT
Coronavirus disease 2019 (COVID-19) is a mild to moderate respiratory tract infection, however, a subset of patients progress to severe disease and respiratory failure. The mechanism of protective immunity in mild forms and the pathogenesis of severe COVID-19 associated with increased neutrophil counts and dysregulated immune responses remain unclear. In a dual-center, two-cohort study, we combined single-cell RNA-sequencing and single-cell proteomics of whole-blood and peripheral-blood mononuclear cells to determine changes in immune cell composition and activation in mild versus severe COVID-19 (242 samples from 109 individuals) over time. HLA-DRhiCD11chi inflammatory monocytes with an interferon-stimulated gene signature were elevated in mild COVID-19. Severe COVID-19 was marked by occurrence of neutrophil precursors, as evidence of emergency myelopoiesis, dysfunctional mature neutrophils, and HLA-DRlo monocytes. Our study provides detailed insights into the systemic immune response to SARS-CoV-2 infection and reveals profound alterations in the myeloid cell compartment associated with severe COVID-19.
Subject(s)
Coronavirus Infections/immunology , Myeloid Cells/immunology , Myelopoiesis , Pneumonia, Viral/immunology , Adult , Aged , CD11 Antigens/genetics , CD11 Antigens/metabolism , COVID-19 , Cells, Cultured , Coronavirus Infections/blood , Coronavirus Infections/pathology , Female , HLA-DR Antigens/genetics , HLA-DR Antigens/metabolism , Humans , Male , Middle Aged , Myeloid Cells/cytology , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/pathology , Proteome/genetics , Proteome/metabolism , Proteomics , Single-Cell AnalysisABSTRACT
The COVID-19 pandemic urgently needs therapeutic and prophylactic interventions. Here, we report the rapid identification of SARS-CoV-2-neutralizing antibodies by high-throughput single-cell RNA and VDJ sequencing of antigen-enriched B cells from 60 convalescent patients. From 8,558 antigen-binding IgG1+ clonotypes, 14 potent neutralizing antibodies were identified, with the most potent one, BD-368-2, exhibiting an IC50 of 1.2 and 15 ng/mL against pseudotyped and authentic SARS-CoV-2, respectively. BD-368-2 also displayed strong therapeutic and prophylactic efficacy in SARS-CoV-2-infected hACE2-transgenic mice. Additionally, the 3.8 Å cryo-EM structure of a neutralizing antibody in complex with the spike-ectodomain trimer revealed the antibody's epitope overlaps with the ACE2 binding site. Moreover, we demonstrated that SARS-CoV-2-neutralizing antibodies could be directly selected based on similarities of their predicted CDR3H structures to those of SARS-CoV-neutralizing antibodies. Altogether, we showed that human neutralizing antibodies could be efficiently discovered by high-throughput single B cell sequencing in response to pandemic infectious diseases.
Subject(s)
Antibodies, Monoclonal/isolation & purification , Antibodies, Neutralizing/isolation & purification , B-Lymphocytes/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Single-Cell Analysis , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , COVID-19 , Convalescence , High-Throughput Nucleotide Sequencing , Humans , Mice , Pandemics , Sequence Analysis, RNA , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , VDJ ExonsABSTRACT
Viral pandemics, such as the one caused by SARS-CoV-2, pose an imminent threat to humanity. Because of its recent emergence, there is a paucity of information regarding viral behavior and host response following SARS-CoV-2 infection. Here we offer an in-depth analysis of the transcriptional response to SARS-CoV-2 compared with other respiratory viruses. Cell and animal models of SARS-CoV-2 infection, in addition to transcriptional and serum profiling of COVID-19 patients, consistently revealed a unique and inappropriate inflammatory response. This response is defined by low levels of type I and III interferons juxtaposed to elevated chemokines and high expression of IL-6. We propose that reduced innate antiviral defenses coupled with exuberant inflammatory cytokine production are the defining and driving features of COVID-19.
Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , RNA Viruses/immunology , Animals , COVID-19 , Cells, Cultured , Chemokines/genetics , Chemokines/immunology , Coronavirus Infections/genetics , Disease Models, Animal , Host-Pathogen Interactions , Humans , Immunity, Innate , Inflammation/virology , Interferons/genetics , Interferons/immunology , Pandemics , Pneumonia, Viral/genetics , RNA Viruses/classification , SARS-CoV-2 , Transcription, GeneticABSTRACT
SARS-CoV-2 infection is mild in the majority of individuals but progresses into severe pneumonia in a small proportion of patients. The increased susceptibility to severe disease in the elderly and individuals with co-morbidities argues for an initial defect in anti-viral host defense mechanisms. Long-term boosting of innate immune responses, also termed "trained immunity," by certain live vaccines (BCG, oral polio vaccine, measles) induces heterologous protection against infections through epigenetic, transcriptional, and functional reprogramming of innate immune cells. We propose that induction of trained immunity by whole-microorganism vaccines may represent an important tool for reducing susceptibility to and severity of SARS-CoV-2.
Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/immunology , Immunity, Innate , Immunomodulation , Pneumonia, Viral/immunology , Severe acute respiratory syndrome-related coronavirus/physiology , Animals , BCG Vaccine/immunology , COVID-19 , Clinical Trials as Topic , Coronavirus Infections/pathology , Coronavirus Infections/physiopathology , Coronavirus Infections/transmission , Humans , Immunity, Innate/drug effects , Lung/immunology , Lung/pathology , Lymphopenia/pathology , Middle East Respiratory Syndrome Coronavirus/physiology , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/physiopathology , Pneumonia, Viral/transmission , SARS-CoV-2 , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/pathology , Virus ReplicationABSTRACT
The SARS-CoV-2 pandemic has unprecedented implications for public health, social life, and the world economy. Because approved drugs and vaccines are limited or not available, new options for COVID-19 treatment and prevention are in high demand. To identify SARS-CoV-2-neutralizing antibodies, we analyzed the antibody response of 12 COVID-19 patients from 8 to 69 days after diagnosis. By screening 4,313 SARS-CoV-2-reactive B cells, we isolated 255 antibodies from different time points as early as 8 days after diagnosis. Of these, 28 potently neutralized authentic SARS-CoV-2 with IC100 as low as 0.04 µg/mL, showing a broad spectrum of variable (V) genes and low levels of somatic mutations. Interestingly, potential precursor sequences were identified in naive B cell repertoires from 48 healthy individuals who were sampled before the COVID-19 pandemic. Our results demonstrate that SARS-CoV-2-neutralizing antibodies are readily generated from a diverse pool of precursors, fostering hope for rapid induction of a protective immune response upon vaccination.
Subject(s)
Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/isolation & purification , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/genetics , Antibodies, Viral/immunology , B-Lymphocytes/immunology , Betacoronavirus/immunology , COVID-19 , Humans , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/immunology , Immunologic Memory , Longitudinal Studies , Pandemics , SARS-CoV-2 , Somatic Hypermutation, ImmunoglobulinABSTRACT
Understanding adaptive immunity to SARS-CoV-2 is important for vaccine development, interpreting coronavirus disease 2019 (COVID-19) pathogenesis, and calibration of pandemic control measures. Using HLA class I and II predicted peptide "megapools," circulating SARS-CoV-2-specific CD8+ and CD4+ T cells were identified in â¼70% and 100% of COVID-19 convalescent patients, respectively. CD4+ T cell responses to spike, the main target of most vaccine efforts, were robust and correlated with the magnitude of the anti-SARS-CoV-2 IgG and IgA titers. The M, spike, and N proteins each accounted for 11%-27% of the total CD4+ response, with additional responses commonly targeting nsp3, nsp4, ORF3a, and ORF8, among others. For CD8+ T cells, spike and M were recognized, with at least eight SARS-CoV-2 ORFs targeted. Importantly, we detected SARS-CoV-2-reactive CD4+ T cells in â¼40%-60% of unexposed individuals, suggesting cross-reactive T cell recognition between circulating "common cold" coronaviruses and SARS-CoV-2.
Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/immunology , Epitopes, T-Lymphocyte , Pneumonia, Viral/immunology , Betacoronavirus/genetics , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19 , COVID-19 Vaccines , Convalescence , Coronavirus Infections/blood , Coronavirus Infections/metabolism , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Cross Reactions , Humans , Leukocytes, Mononuclear/immunology , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Viral Proteins/metabolism , Viral Vaccines/immunologyABSTRACT
Viruses are a constant threat to global health as highlighted by the current COVID-19 pandemic. Currently, lack of data underlying how the human host interacts with viruses, including the SARS-CoV-2 virus, limits effective therapeutic intervention. We introduce Viral-Track, a computational method that globally scans unmapped single-cell RNA sequencing (scRNA-seq) data for the presence of viral RNA, enabling transcriptional cell sorting of infected versus bystander cells. We demonstrate the sensitivity and specificity of Viral-Track to systematically detect viruses from multiple models of infection, including hepatitis B virus, in an unsupervised manner. Applying Viral-Track to bronchoalveloar-lavage samples from severe and mild COVID-19 patients reveals a dramatic impact of the virus on the immune system of severe patients compared to mild cases. Viral-Track detects an unexpected co-infection of the human metapneumovirus, present mainly in monocytes perturbed in type-I interferon (IFN)-signaling. Viral-Track provides a robust technology for dissecting the mechanisms of viral-infection and pathology.
Subject(s)
Coronavirus Infections/physiopathology , Host-Pathogen Interactions , Pneumonia, Viral/physiopathology , Software , Animals , Betacoronavirus/isolation & purification , COVID-19 , Coinfection/immunology , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Humans , Interferons/immunology , Lung/pathology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2 , Sensitivity and Specificity , Sequence Analysis, RNA , Severity of Illness Index , Single-Cell AnalysisABSTRACT
The SARS-CoV-2 pandemic that causes COVID-19 respiratory syndrome has caused global public health and economic crises, necessitating rapid development of vaccines and therapeutic countermeasures. The world-wide response to the COVID-19 pandemic has been unprecedented with government, academic, and private partnerships working together to rapidly develop vaccine and antibody countermeasures. Many of the technologies being used are derived from prior government-academic partnerships for response to other emerging infections.
Subject(s)
Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/drug therapy , Pneumonia, Viral/prevention & control , Viral Vaccines/immunology , AIDS Vaccines/immunology , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Betacoronavirus/physiology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/immunology , Humans , Intersectoral Collaboration , Pneumonia, Viral/immunology , SARS-CoV-2 , Viral Vaccines/chemistry , COVID-19 Drug TreatmentABSTRACT
SARS-CoV-2 infection displays immense inter-individual clinical variability, ranging from silent infection to lethal disease. The role of human genetics in determining clinical response to the virus remains unclear. Studies of outliers-individuals remaining uninfected despite viral exposure and healthy young patients with life-threatening disease-present a unique opportunity to reveal human genetic determinants of infection and disease.
Subject(s)
Coronavirus Infections/genetics , Coronavirus Infections/immunology , Genetic Predisposition to Disease , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , Age Factors , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/physiopathology , Disease Resistance , Genetic Association Studies , Genetic Diseases, Inborn/immunology , Genetic Variation , Genome, Human , Host-Pathogen Interactions , Humans , Infections/genetics , Infections/immunology , Infections/physiopathology , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/physiopathology , SARS-CoV-2ABSTRACT
There is an urgent need for vaccines against coronavirus disease 2019 (COVID-19) because of the ongoing SARS-CoV-2 pandemic. Among all approaches, a messenger RNA (mRNA)-based vaccine has emerged as a rapid and versatile platform to quickly respond to this challenge. Here, we developed a lipid nanoparticle-encapsulated mRNA (mRNA-LNP) encoding the receptor binding domain (RBD) of SARS-CoV-2 as a vaccine candidate (called ARCoV). Intramuscular immunization of ARCoV mRNA-LNP elicited robust neutralizing antibodies against SARS-CoV-2 as well as a Th1-biased cellular response in mice and non-human primates. Two doses of ARCoV immunization in mice conferred complete protection against the challenge of a SARS-CoV-2 mouse-adapted strain. Additionally, ARCoV is manufactured as a liquid formulation and can be stored at room temperature for at least 1 week. ARCoV is currently being evaluated in phase 1 clinical trials.
Subject(s)
RNA, Messenger/genetics , RNA, Viral/genetics , Vaccines, Synthetic/immunology , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , Binding Sites , COVID-19 Vaccines , Chlorocebus aethiops , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Female , HEK293 Cells , HeLa Cells , Humans , Immunogenicity, Vaccine , Injections, Intramuscular , Macaca fascicularis , Male , Mice , Mice, Inbred ICR , Nanoparticles/chemistry , RNA, Messenger/metabolism , RNA, Viral/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Th1 Cells/immunology , Vaccine Potency , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vero Cells , Viral Vaccines/administration & dosage , Viral Vaccines/geneticsABSTRACT
Limited knowledge is available on the relationship between antigen-specific immune responses and COVID-19 disease severity. We completed a combined examination of all three branches of adaptive immunity at the level of SARS-CoV-2-specific CD4+ and CD8+ T cell and neutralizing antibody responses in acute and convalescent subjects. SARS-CoV-2-specific CD4+ and CD8+ T cells were each associated with milder disease. Coordinated SARS-CoV-2-specific adaptive immune responses were associated with milder disease, suggesting roles for both CD4+ and CD8+ T cells in protective immunity in COVID-19. Notably, coordination of SARS-CoV-2 antigen-specific responses was disrupted in individuals ≥ 65 years old. Scarcity of naive T cells was also associated with aging and poor disease outcomes. A parsimonious explanation is that coordinated CD4+ T cell, CD8+ T cell, and antibody responses are protective, but uncoordinated responses frequently fail to control disease, with a connection between aging and impaired adaptive immune responses to SARS-CoV-2.
Subject(s)
Adaptive Immunity , Antigens, Viral/immunology , Coronavirus Infections/pathology , Pneumonia, Viral/pathology , Acute Disease , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Betacoronavirus/immunology , Betacoronavirus/isolation & purification , Betacoronavirus/metabolism , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cytokines/blood , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2 , Severity of Illness Index , Young AdultABSTRACT
Coronavirus disease 2019 (COVID-19) is a novel respiratory illness caused by SARS-CoV-2. Viral entry is mediated through viral spike protein and host ACE2 enzyme interaction. Most cases are mild; severe disease often involves cytokine storm and organ failure. Therapeutics including antivirals, immunomodulators, and vaccines are in development. To view this SnapShot, open or download the PDF.