ABSTRACT
Nitrogen (N2) fixation in oligotrophic surface waters is the main source of new nitrogen to the ocean1 and has a key role in fuelling the biological carbon pump2. Oceanic N2 fixation has been attributed almost exclusively to cyanobacteria, even though genes encoding nitrogenase, the enzyme that fixes N2 into ammonia, are widespread among marine bacteria and archaea3-5. Little is known about these non-cyanobacterial N2 fixers, and direct proof that they can fix nitrogen in the ocean has so far been lacking. Here we report the discovery of a non-cyanobacterial N2-fixing symbiont, 'Candidatus Tectiglobus diatomicola', which provides its diatom host with fixed nitrogen in return for photosynthetic carbon. The N2-fixing symbiont belongs to the order Rhizobiales and its association with a unicellular diatom expands the known hosts for this order beyond the well-known N2-fixing rhizobia-legume symbioses on land6. Our results show that the rhizobia-diatom symbioses can contribute as much fixed nitrogen as can cyanobacterial N2 fixers in the tropical North Atlantic, and that they might be responsible for N2 fixation in the vast regions of the ocean in which cyanobacteria are too rare to account for the measured rates.
Subject(s)
Diatoms , Nitrogen Fixation , Nitrogen , Oceans and Seas , Rhizobium , Seawater , Symbiosis , Carbon/metabolism , Diatoms/metabolism , Diatoms/physiology , Nitrogen/metabolism , Photosynthesis , Phylogeny , Rhizobium/classification , Rhizobium/metabolism , Rhizobium/physiology , Seawater/microbiology , Seawater/chemistry , Cyanobacteria/isolation & purification , Cyanobacteria/metabolism , Atlantic OceanABSTRACT
Anatoxin-a (ATX-a) is a neurotoxin produced by some species of cyanobacteria. Due to its water solubility and stability in natural water, it could pose health risks to human, animals, and plants. Conventional water treatment techniques are not only insufficient for the removal of ATX-a, but they also result in cell lysis and toxin release. The elimination of this toxin through biodegradation may be a promising strategy. This study examines for the first time the biodegradation of ATX-a to a non-toxic metabolite (Epoxy-ATX-a) by a strain of Bacillus that has a history of dealing with toxic cyanobacteria in a eutrophic lake. The Bacillus strain AMRI-03 thrived without lag phase in a lake water containing ATX-a. The strain displayed fast degradation of ATX-a, depending on initial toxin concentration. At the highest initial concentrations (50 & 100 µg L- 1), total ATX-a degradation took place in 4 days, but it took 6 & 7 days at lower concentrations (20, 10, and 1 µg L- 1, respectively). The ATX-a biodegradation rate was also influenced by the initial toxin concentration, reaching its maximum value (12.5 µg L- 1 day- 1) at the highest initial toxin concentrations (50 & 100 µg L- 1). Temperature and pH also had an impact on the rate of ATX-a biodegradation, with the highest rates occurring at 25 and 30 ºC and pH 7 and 8. This nontoxic bacterial strain could be immobilized within a biofilm on sand filters and/or sludge for the degradation and removal of ATX-a and other cyanotoxins during water treatment processes, following the establishment of mesocosm experiments to assess the potential effects of this bacterium on water quality.
Subject(s)
Bacillus subtilis , Biodegradation, Environmental , Cyanobacteria Toxins , Cyanobacteria , Eutrophication , Lakes , Tropanes , Lakes/microbiology , Tropanes/metabolism , Cyanobacteria/metabolism , Cyanobacteria/isolation & purification , Bacillus subtilis/metabolism , Bacillus subtilis/isolation & purification , Bacillus subtilis/genetics , Saudi Arabia , Bacterial Toxins/metabolismABSTRACT
Seagrass meadows play pivotal roles in coastal biochemical cycles, with nitrogen fixation being a well-established process associated with living seagrass. Here, we tested the hypothesis that nitrogen fixation is also associated with seagrass debris in Danish coastal waters. We conducted a 52-day in situ experiment to investigate nitrogen fixation (proxied by acetylene reduction) and dynamics of the microbial community (16S rRNA gene amplicon sequencing) and the nitrogen fixing community (nifH DNA/RNA amplicon sequencing) associated with decomposing Zostera marina leaves. The leaves harboured distinct microbial communities, including distinct nitrogen fixers, relative to the surrounding seawater and sediment throughout the experiment. Nitrogen fixation rates were measurable on most days, but highest on days 3 (dark, 334.8 nmol N g-1 dw h-1) and 15 (light, 194.6 nmol N g-1 dw h-1). Nitrogen fixation rates were not correlated with the concentration of inorganic nutrients in the surrounding seawater or with carbon:nitrogen ratios in the leaves. The composition of nitrogen fixers shifted from cyanobacterial Sphaerospermopsis to heterotrophic genera like Desulfopila over the decomposition period. On the days with highest fixation, nifH RNA gene transcripts were mainly accounted for by cyanobacteria, in particular by Sphaerospermopsis and an unknown taxon (order Nostocales), alongside Proteobacteria. Our study shows that seagrass debris in temperate coastal waters harbours substantial nitrogen fixation carried out by cyanobacteria and heterotrophic bacteria that are distinct relative to the surrounding seawater and sediments. This suggests that seagrass debris constitutes a selective environment where degradation is affected by the import of nitrogen via nitrogen fixation.
Subject(s)
Microbiota , Nitrogen Fixation , Plant Leaves , Seawater , Zosteraceae , Plant Leaves/microbiology , Seawater/microbiology , Seawater/chemistry , Zosteraceae/microbiology , Zosteraceae/metabolism , Nitrogen/metabolism , Nitrogen/analysis , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Denmark , Cyanobacteria/metabolism , Cyanobacteria/genetics , Cyanobacteria/classification , Cyanobacteria/isolation & purificationABSTRACT
BACKGROUND: The Pearl River and its estuary are highly exposed to anthropogenic disturbance. Because bacterial communities play an indispensable role in aquatic ecosystems, there has been an increased research focus on the statuses of these communities under human-induced perturbations. METHODS AND RESULTS: This study investigated the composition, diversity, and structure of bacterial communities across 29 sites from the Guangzhou section of the Pearl River (GZ) to the Pearl River Estuary (PRE) using 16S rRNA gene amplicons. The results revealed similar dominant phyla of bacteria in both GZ and PRE, as well as significant differences in bacterial community composition and diversity between the two sections. Proteobacteria and Cyanobacteria were identified as the primary drivers of compositional differences between GZ and PRE. The Cyanobacteria Dolichospermum_NIES41 and Cuspidothrix issatschenkoi were only present in GZ, whereas the marine Gram-negative bacteria of Porticoccus litoralis and Thalassolituus oleivorans were unique to PRE. CONCLUSIONS: Bacterial community composition and diversity exhibit both similarities and differences between GZ and PRE; Proteobacteria and Cyanobacteria are key factors underlying these variations. Bacterial communities in both GZ and PRE are strongly influenced by human activities, and salinity is an important factor in controlling their differences. This study provides a comprehensive analysis of the bacterial communities in GZ and PRE, establishing a foundation for better management of aquatic ecosystems impacted by anthropogenic activities.
Subject(s)
Bacteria , Cyanobacteria , Estuaries , RNA, Ribosomal, 16S , Rivers , Rivers/microbiology , RNA, Ribosomal, 16S/genetics , China , Bacteria/genetics , Bacteria/classification , Cyanobacteria/genetics , Cyanobacteria/isolation & purification , Cyanobacteria/classification , Phylogeny , Proteobacteria/genetics , Proteobacteria/isolation & purification , Biodiversity , Ecosystem , Water Microbiology , DNA, Bacterial/genetics , Microbiota/geneticsABSTRACT
A novel Gram-negative, white-pigmented, and auxin-producing strain, 20NA77.5T, was isolated from fresh water during cyanobacterial bloom period. Pairwise comparison of the 16S rRNA gene sequences showed that strain 20NA77.5T belonged to the genus Undibacterium and exhibited the highest sequence similarity to the type strains of Undibacterium danionis (98.00%), Undibacterium baiyunense (97.93%), Undibacterium macrobrachii (97.92%), and Undibacterium fentianense (97.71%). The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain 20NA77.5T and its related type strains were below 79.93 and 23.80%, respectively. The predominant fatty acids (> 10% of the total fatty acids) were C16:0 and summed feature 3 (C16:1ω7c and/or C16:1ω6c). The genomic DNA G + C content of strain 20NA77.5T was found to be 48.61%. Based on the phylogenetic distinctness, chemotaxonomic features, and phenotypic features, strain 20NA77.5T is considered to represent a novel species of the genus Undibacterium, for which the name Undibacterium cyanobacteriorum sp. nov is proposed. The type strain is 20NA77.5T (= KCTC 8005T = LMG 33136T).
Subject(s)
Bacterial Typing Techniques , Base Composition , Cyanobacteria , DNA, Bacterial , Fatty Acids , Fresh Water , Indoleacetic Acids , Phylogeny , RNA, Ribosomal, 16S , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Fresh Water/microbiology , Indoleacetic Acids/metabolism , Fatty Acids/analysis , Cyanobacteria/genetics , Cyanobacteria/classification , Cyanobacteria/isolation & purification , Cyanobacteria/metabolism , Nucleic Acid Hybridization , Sequence Analysis, DNA , Water MicrobiologyABSTRACT
Toxic cyanobacterial blooms in various water bodies have been given much attention nowadays as they release hazardous substances in the surrounding areas. These toxic planktonic cyanobacteria in shrimp ponds greatly affect the survival of shrimps. Ecuador is the second highest shrimp producing country in the Americas after Brazil; and the shrimp-based economy is under threat due to toxic cyanobacterial blooms in Ecuador shrimp ponds. This study investigated the abundance of different cyanobacteria in the shrimp ponds at the Chone and Jama rivers (in Manabi province) at Ecuadorian pacific coast, focusing on different environmental factors, such as temperature, pH, salinity, and light. Temperature and pH were identified as key factors in influencing the abundance of cyanobacteria, with a significant positive correlation between Raphidiopsis raciborskii and pH. The highest and lowest abundance of cyanobacteria found during the dry season in the shrimp ponds near the Chone and Jama rivers were > 3 × 106 and 1 × 106 Cell.m-3, respectively. The Shannon-Wiener Diversity Index fluctuated between 0.41-1.15 and 0.31-1.15 for shrimp ponds of Chone and Jama rivers, respectively. This variation was linked to changes in salinity and the presence of harmful algal blooms, highlighting the importance of continuous monitoring. Additionally, the study areas showed eutrophic conditions with low diversity, underlining the need for additional spatiotemporal studies and expanded research in both rivers, to better understand these complex phenomena. The findings underscore the importance of continuous monitoring and expanded research in cyanobacteria ecology, with implications for public health and aquatic resource management.
Subject(s)
Aquaculture , Cyanobacteria , Ponds , Ecuador , Cyanobacteria/classification , Cyanobacteria/isolation & purification , Animals , Ponds/microbiology , Humans , Penaeidae/microbiology , Salinity , Harmful Algal Bloom , Seasons , TemperatureABSTRACT
The Drinking Water Directive (EU) 2020/2184 includes the parameter microcystin LR, a cyanotoxin, which drinking water producers need to analyze if the water source has potential for cyanobacterial blooms. In light of the increasing occurrences of cyanobacterial blooms worldwide and given that more than 50 percent of the drinking water in Sweden is produced from surface water, both fresh and brackish, the need for improved knowledge about cyanotoxin occurrence and cyanobacterial diversity has increased. In this study, a total of 98 cyanobacterial blooms were sampled in 2016-2017 and identified based on their toxin production and taxonomical compositions. The surface water samples from freshwater lakes throughout Sweden including brackish water from eight east coast locations along the Baltic Sea were analyzed for their toxin content with LC-MS/MS and taxonomic composition with 16S rRNA amplicon sequencing. Both the extracellular and the total toxin content were analyzed. Microcystin's prevalence was highest with presence in 82% of blooms, of which as a free toxin in 39% of blooms. Saxitoxins were found in 36% of blooms in which the congener decarbamoylsaxitoxin (dcSTX) was detected for the first time in Swedish surface waters at four sampling sites. Anatoxins were most rarely detected, followed by cylindrospermopsin, which were found in 6% and 10% of samples, respectively. As expected, nodularin was detected in samples collected from the Baltic Sea only. The cyanobacterial operational taxonomic units (OTUs) with the highest abundance and prevalence could be annotated to Aphanizomenon NIES-81 and the second most profuse cyanobacterial taxon to Microcystis PCC 7914. In addition, two correlations were found, one between Aphanizomenon NIES-81 and saxitoxins and another between Microcystis PCC 7914 and microcystins. This study is of value to drinking water management and scientists involved in recognizing and controlling toxic cyanobacteria blooms.
Subject(s)
Cyanobacteria , Lakes , Marine Toxins , Microcystins , Sweden , Cyanobacteria/genetics , Cyanobacteria/isolation & purification , Microcystins/analysis , Lakes/microbiology , Marine Toxins/analysis , Saxitoxin/analysis , Environmental Monitoring , RNA, Ribosomal, 16S/genetics , Bacterial Toxins/analysis , Cyanobacteria Toxins , Tandem Mass SpectrometryABSTRACT
Chernozem soil is a valuable resource and contains a great diversity of microorganisms that play a global role in the process of soil formation, the species diversity of which has changed over the last five years under the influence of different agrotechnologies. For the first time, under the conditions of the Central Chernozem region, grain and fallow crop rotation, studies using the DNA-metabarcoding method were carried out to study the taxonomic structure of bacteria, fungi, cyanobacteria, and microalgae communities in the arable horizon of typical medium loamy chernozem under winter wheat cultivation. A comparative analysis of the composition of the genotypes showed significant differences in the presented level of mineral nutrition of the soil NPK (60) and NPK (100) compared with the control variant. After processing the 16S and 18S rRNA datasets, a similar trend of decreasing numbers of pro- and eukaryotic species was found from 6296 (control without MF) to 5310 with NPK (60) and to 4643 with NPK (100), respectively. The Chao1 index indicated that the expected diversity within the prokaryotic group was higher in the control without MF at 211, but decreased to 182 and 193 with NPK (60) and NPK (100) fertilizers, respectively. Analysis of the eukaryotic group revealed a 2.6- and 2.9-fold decrease in diversity by class and genus, respectively, depending on the nutritional levels in agrotechnologies, owing to the use of MF. In the prokaryotic community, Alphaproteobacteria microorganisms predominated at an amount of 14.20-14.46%, with Cyanophyceae accounting for 5.2-9.9%. The diversity of eukaryotes was smaller than the number of classes of prokaryotes; the main dominant were Zygnematophyceae 19.5-41%, Chlorophyceae occupied 10.4-15.8%. On the other hand, the doses of fertilizers used contributed to the emergence of dominant species adapted to high doses of mineral nutrients for plants.
Subject(s)
Biodiversity , Cyanobacteria , DNA Barcoding, Taxonomic , Microalgae , Soil Microbiology , Soil , Cyanobacteria/genetics , Cyanobacteria/classification , Cyanobacteria/isolation & purification , Microalgae/classification , Microalgae/genetics , Soil/chemistry , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 18S/genetics , Forests , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Climate , Agriculture , Phylogeny , Triticum/microbiology , DNA, Bacterial/geneticsABSTRACT
Soda lake environments are known to be variable and can have distinct differences according to geographical location. In this study, we investigated the effects of different environmental conditions of six adjacent soda lakes in the Pantanal biome (Mato Grosso do Sul state, Brazil) on bacterial communities and their functioning using a metagenomic approach combined with flow cytometry and chemical analyses. Ordination analysis using flow cytometry and water chemistry data from two sampling periods (wet and dry) clustered soda lakes into three different profiles: eutrophic turbid (ET), oligotrophic turbid (OT), and clear vegetated oligotrophic (CVO). Analysis of bacterial community composition and functioning corroborated this ordination; the exception was one ET lake, which was similar to one OT lake during the wet season, indicating drastic shifts between seasons. Microbial abundance and diversity increased during the dry period, along with a considerable number of limnological variables, all indicative of a strong effect of the precipitation-evaporation balance in these systems. Cyanobacteria were associated with high electric conductivity, pH, and nutrient availability, whereas Actinobacteria, Alphaproteobacteria, and Betaproteobacteria were correlated with landscape morphology variability (surface water, surface perimeter, and lake volume) and with lower salinity and pH levels. Stress response metabolism was enhanced in OT and ET lakes and underrepresented in CVO lakes. The microbiome dataset of this study can serve as a baseline for restoring impacted soda lakes. Altogether, the results of this study demonstrate the sensitivity of tropical soda lakes to climate change, as slight changes in hydrological regimes might produce drastic shifts in community diversity.
Subject(s)
Cyanobacteria , Lakes , Lakes/chemistry , Lakes/microbiology , Brazil , Eutrophication , Cyanobacteria/growth & development , Cyanobacteria/isolation & purification , MetagenomicsABSTRACT
The transition from dominant bacterial to eukaryotic marine primary productivity was one of the most profound ecological revolutions in the Earth's history, reorganizing the distribution of carbon and nutrients in the water column and increasing energy flow to higher trophic levels. But the causes and geological timing of this transition, as well as possible links with rising atmospheric oxygen levels and the evolution of animals, remain obscure. Here we present a molecular fossil record of eukaryotic steroids demonstrating that bacteria were the only notable primary producers in the oceans before the Cryogenian period (720-635 million years ago). Increasing steroid diversity and abundance marks the rapid rise of marine planktonic algae (Archaeplastida) in the narrow time interval between the Sturtian and Marinoan 'snowball Earth' glaciations, 659-645 million years ago. We propose that the incumbency of cyanobacteria was broken by a surge of nutrients supplied by the Sturtian deglaciation. The 'Rise of Algae' created food webs with more efficient nutrient and energy transfers, driving ecosystems towards larger and increasingly complex organisms. This effect is recorded by the concomitant appearance of biomarkers for sponges and predatory rhizarians, and the subsequent radiation of eumetazoans in the Ediacaran period.
Subject(s)
Eukaryota/metabolism , Fossils , Animals , Biomarkers/analysis , Carbon Cycle , Cyanobacteria/isolation & purification , Cyanobacteria/metabolism , Eukaryota/isolation & purification , Food Chain , History, Ancient , Ice Cover , Oceans and Seas , Phosphorus/metabolismABSTRACT
Cyanobacteria are one of the most important contributors to oceanic primary production and survive in a wide range of marine habitats. Much effort has been made to understand their ecological features, diversity, and evolution, based mainly on data from free-living cyanobacterial species. In addition, symbiosis has emerged as an important lifestyle of oceanic microbes and increasing knowledge of cyanobacteria in symbiotic relationships with unicellular eukaryotes suggests their significance in understanding the global oceanic ecosystem. However, detailed characteristics of these cyanobacteria remain poorly described. To gain better insight into marine cyanobacteria in symbiosis, we sequenced the genome of cyanobacteria collected from a cell of a pelagic dinoflagellate that is known to host cyanobacterial symbionts within a specialized chamber. Phylogenetic analyses using the genome sequence revealed that the cyanobacterium represents an underdescribed lineage within an extensively studied, ecologically important group of marine cyanobacteria. Metagenomic analyses demonstrated that this cyanobacterial lineage is globally distributed and strictly coexists with its host dinoflagellates, suggesting that the intimate symbiotic association allowed the cyanobacteria to escape from previous metagenomic studies. Furthermore, a comparative analysis of the protein repertoire with related species indicated that the lineage has independently undergone reductive genome evolution to a similar extent as Prochlorococcus, which has the most reduced genomes among free-living cyanobacteria. Discovery of this cyanobacterial lineage, hidden by its symbiotic lifestyle, provides crucial insights into the diversity, ecology, and evolution of marine cyanobacteria and suggests the existence of other undiscovered cryptic cyanobacterial lineages.
Subject(s)
Cyanobacteria/genetics , Dinoflagellida/microbiology , Genomics/methods , Geography , Phylogeny , Single-Cell Analysis/methods , Base Sequence , Cyanobacteria/isolation & purification , DNA Barcoding, Taxonomic , Genome, Bacterial , Likelihood Functions , Metagenomics , Symbiosis/geneticsABSTRACT
Microbial taxon-taxon co-occurrences may directly or indirectly reflect the potential relationships between the members within a microbial community. However, to what extent and the specificity by which these co-occurrences are influenced by environmental factors remains unclear. In this report, we evaluated how the dynamics of microbial taxon-taxon co-occurrence is associated with the changes of environmental factors in Nan Lake at Wuhan city, China with a Modified Liquid Association method. We were able to detect more than 1000 taxon-taxon co-occurrences highly correlated with one or more environmental factors across a phytoplankton bloom using 16S rRNA gene amplicon community profiles. These co-occurrences, referred to as environment dependent co-occurrences (ED_co-occurrences), delineate a unique network in which a taxon-taxon pair exhibits specific, and potentially dynamic correlations with an environmental parameter, while the individual relative abundance of each may not. Microcystis involved ED_co-occurrences are in important topological positions in the network, suggesting relationships between the bloom dominant species and other taxa could play a role in the interplay of microbial community and environment across various bloom stages. Our results may broaden our understanding of the response of a microbial community to the environment, particularly at the level of microbe-microbe associations.
Subject(s)
Cyanobacteria/growth & development , Cyanobacteria/isolation & purification , Lakes/microbiology , China , Cyanobacteria/genetics , Cyanobacteria/metabolism , DNA, Bacterial/genetics , Microbiota , Phytoplankton/classification , Phytoplankton/genetics , Phytoplankton/growth & development , Phytoplankton/isolation & purification , RNA, Ribosomal, 16S/geneticsABSTRACT
The present study investigated the biofilm organisms growing on selected monuments of the Champaner Pavagadh complex (Gujarat, India), which is a UNESCO World Heritage Site. The cyanobacteria and microalgae were isolated from biofilms collected through non-destructive methods. The identification of these biological organisms was done using micro-morphological characters and confirmed by 16S rRNA gene sequencing. The exopolysaccharide of each of the isolated strains was extracted, hydrolysed and analysed by the HPTLC. Six isolated strains representing five cyanobacteria and one microalga belong to the genera Desmonostoc, Nostoc, Leptolyngbya, Chroococcidiopsis and Asterarcys. The relationships between substrates' specificity of these isolated biofilm organisms and those identified globally were evaluated using maximum parsimony analysis to generate a consensus phylogenetic tree. The five strains of cyanobacteria isolated were closely clustered with cyanobacteria belonging to a tropical region. At the generic level, no relationship between the species and substratum specificity was recorded. The exopolysaccharide analysis of the isolated strains revealed the presence of seven monosaccharides. While glucose was present in all the analysed species, the concentration of either fucose or arabinose was high. The current study presents a novel HPTLC-based method for determination of monosaccharides composition from the extracellular polymeric substances.
Subject(s)
Biofilms , Cyanobacteria , Microalgae , Phylogeny , UNESCO , Biodiversity , Cyanobacteria/chemistry , Cyanobacteria/genetics , Cyanobacteria/isolation & purification , India , Microalgae/chemistry , Microalgae/genetics , Microalgae/isolation & purification , RNA, Ribosomal, 16S/geneticsABSTRACT
In Iran, polyphasic studies of unicellular cyanobacteria are still scarce, with more emphasis being placed on filamentous cyanobacteria in paddy fields and fresh water regions. In an effort to increase the knowledge of the diversity of unicellular cyanobacteria from paddy fields in Iran, we have isolated and characterized a new unicellular cyanobacterium strain. The strain was studied using a polyphasic approach based on morphological, ecological and phylogenetic analyses of the 16S-23S ITS rRNA gene region. Complementarily, we have searched for the presence of cyanotoxin genes and analysed the pigment content of the strain. Results showed that the strain was morphologically indistinguishable from the genus Chroococcus, but phylogenetic analyses based on the Bayesian inference and maximum-likelihood methods placed the strain in a separated monophyletic and highly supported (0.99/98, posterior probability/maximum-likelihood) genus-level cluster, distant from Chroococcus sensu stricto and with Chalicogloea cavernicola as sister taxa. The calculated p-distance for the 16S rRNA gene also reinforced the presence of a new genus, by showing 92â% similarity to C. cavernicola. The D1-D1', Box-B and V3 ITS secondary structures showed the uniqueness of this strain, as it shared no similar pattern with closest genera within the Chroococcales. For all these reasons, and in accordance with the International Code of Nomenclature for Algae, Fungi and Plants, we here proposed the description of a new genus with the name Alborzia gen. nov. along with the description of a new species, Alborzia kermanshahica sp. nov. (holotype: CCC1399-a; reference strains CCC1399-b; MCC 4116).
Subject(s)
Cyanobacteria/classification , Fresh Water/microbiology , Phylogeny , Bacterial Typing Techniques , Base Composition , Bayes Theorem , Cyanobacteria/isolation & purification , DNA, Bacterial/genetics , Fatty Acids/chemistry , Iran , Oryza , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNAABSTRACT
The cyanobacterial genus Nostoc is an important contributor to carbon and nitrogen bioavailability in terrestrial ecosystems and a frequent partner in symbiotic relationships with non-diazotrophic organisms. However, since this currently is a polyphyletic genus, the diversity of Nostoc-like cyanobacteria is considerably underestimated at this moment. While reviewing the phylogenetic placement of previously isolated Nostoc-like cyanobacteria originating from Brazilian Amazon, Caatinga and Atlantic forest samples, we detected 17 strains isolated from soil, freshwater, rock and tree surfaces presenting patterns that diverged significantly from related strains when ecological, morphological, molecular and genomic traits were also considered. These observations led to the identification of the evaluated strains as representative of three novel nostocacean genera and species: Amazonocrinis nigriterrae gen. nov., sp. nov.; Atlanticothrix silvestris gen. nov., sp. nov.; and Dendronalium phyllosphericum gen. nov., sp. nov., which are herein described according to the rules of the International Code of Nomenclature for algae, fungi and plants. This finding highlights the great importance of tropical and equatorial South American ecosystems for harbouring an unknown microbial diversity in the face of the anthropogenic threats with which they increasingly struggle.
Subject(s)
Cyanobacteria/isolation & purification , Ecosystem , Environmental Microbiology , Base Composition , Base Sequence , Brazil , Cyanobacteria/cytology , Cyanobacteria/genetics , DNA, Bacterial/genetics , DNA, Intergenic/genetics , Genome, Bacterial , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNAABSTRACT
Marine sponges harbor diverse microbiomes that contribute to their energetic and metabolic needs. Although numerous studies on sponge microbial diversity exist, relatively few focused on sponge microbial community changes under different sources of environmental stress. In this study, we assess the impact of elevated seawater temperature on the microbiome of cultured Lendenfeldia chondrodes, a coral reef sponge commonly found in marine aquaria. Lendenfeldia chondrodes exhibits high thermal tolerance showing no evidence of tissue damage or bleaching at 5 °C above control water temperature (26 °C). High-throughput sequencing of the bacterial 16S rRNA V4 region revealed a response of the microbiome of L. chondrodes to short-term exposure to elevated seawater temperature. Shifts in abundance and richness of the dominant bacterial phyla found in the microbiome of this species, namely Proteobacteria, Cyanobacteria, Planctomycetes, and Bacteroidetes, characterized this response. The observed resilience of L. chondrodes and the responsiveness of its microbiome to short-term increases in seawater temperature suggest that this holobiont may be capable of acclimating to anthropogenic-driven sublethal environmental stress via a re-accommodation of its associated bacterial community. This sheds a new light on the potential for resilience of some sponges to increasing surface seawater temperatures and associated projected regime shifts in coral reefs.
Subject(s)
Bacteroidetes/classification , Cyanobacteria/classification , Microbiota/genetics , Planctomycetales/classification , Porifera/microbiology , Proteobacteria/classification , Animals , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Biodiversity , Climate , Climate Change , Cyanobacteria/genetics , Cyanobacteria/isolation & purification , Hot Temperature , Planctomycetales/genetics , Planctomycetales/isolation & purification , Proteobacteria/genetics , Proteobacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Thermotolerance/geneticsABSTRACT
Black bloom is a worldwide environmental problem. Sediment microbes play important roles in the process of black bloom. The dynamic change of sedimental microbial community and their potential link between taste and odor compounds during black bloom was investigated in an in situ black bloom enclosure simulation experiment. Through high-throughput sequencing and analysis, pronounced shifts of sedimental microbial community were observed on the 3rd and 7th day in the black bloom group. Microbes in Cyanobacteria, Verrucomicrobia, Planctomycetes, and Actinobacteria were obviously increased, while microbes from the phyla OP8, Chloroflexi, and Acidobacteria were decreased significantly. RDA analysis revealed that the concentrations of chlorophyll a (Chla), total phosphorus (TP), and turbidity (NTU) in the water and the TP, TN concentrations in the sediment were the main environmental factors that affect the microbial community in the sediment. Correlation analysis revealed that microbes Dechloromonas sp. (OTU003567 and OTU000093), Desulfococcus sp. (OTU000911), Chromatiaceae (OTU001222), and Methanosaeta sp. (OTU004809) were positively correlated with the taste and odor substances in the sediment, such as dimethyl sulfide (DMS), ß-ionone, ß-cyclocitral and geosmin. The sedimental microbial community gradually recovered in the late phase of black bloom, indicating the stability and self-recovery ability of the sedimental microbial community during black bloom. Noteworthily, we observed many possible pathogens increased significantly during the black bloom, which alerts us to keep away from contaminated sediment when black bloom occurred.
Subject(s)
Eutrophication , Geologic Sediments/microbiology , Microbiota , Cluster Analysis , Cyanobacteria/classification , Cyanobacteria/genetics , Cyanobacteria/isolation & purification , Geologic Sediments/chemistry , Lakes/chemistry , Lakes/microbiology , Microbiota/genetics , Odorants/analysis , Phylogeny , Water Pollutants, Chemical/analysisABSTRACT
Cyanobacteria and their pollution are being increasingly commonly reported worldwide that cause a serious hazard to environmental and human health. Cyanotoxin was the most algal toxin reported to be produced by several orders of cyanobacteria. This study aimed to provide a technique to detect cylindrosprmopsin and saxitoxin biosynthesis genes in the river. In November, December 2019, and January 2020. Cyanobacteria were isolated from freshwater of Tigris River and identified by compound microscope also conventional PCR. Five isolates of cyanobacteria that successfully amplified a gene fragment from the phycocyanin were found in all cyanobacteria (Microcystis flosaquae, Microcystis sp, anabaena circinalis, nostoc commune and westiellopsis prolifica) and all isolates successfully amplified aoaC gene to detecting the cylidrospemopsin and the saxitoxin. Our results concluded that PCR assay can be used for early detection of cylidrospemopsin and the saxitoxin producing cyanobacteria in river water that useful to stations responsible for the preparation of drinking water to public.
Subject(s)
Cyanobacteria/classification , Cyanobacteria/genetics , Rivers/microbiology , Water Microbiology , Cyanobacteria/isolation & purification , Cyanobacteria/metabolism , Cyanobacteria Toxins/biosynthesis , Cyanobacteria Toxins/genetics , Iraq , Polymerase Chain Reaction , Saxitoxin/biosynthesis , Saxitoxin/genetics , Sequence Analysis, DNAABSTRACT
Cyanobacteria are a threat to the safety of water sources for drinking, recreation, and food production, because some cyanobacteria, such as Microcystis, produce cyanotoxins. However, the colonization of plants by Microcystis and the fate of their toxin, microcystins (MCs), in agricultural environments have not been thoroughly studied. This study examined the colonization of lettuce, as a representative of leafy greens, by Microcystis and its potential impact on food safety and crop health. The surfaces of lettuce leaves were exposed to environmentally relevant concentrations of M. aeruginosa (104, 106, and 108mcyE gene copies/mL) by mimicking contamination scenarios during cultivation, such as spraying irrigation with contaminated water or deposits of airborne Microcystis. Scanning electron microscope (SEM) and droplet digital PCR were used. The results showed that M. aeruginosa colonized the surface of leaves and MCs accumulated in the edible part of the lettuce (>20 µg/kg of lettuce). Crop productivity (length, weight, and number of leaves) was negatively affected. The SEM images provide evidence that M. aeruginosa deposited on the lettuce surface can be internalized via natural opening sites of the leaves and then proliferate within the plants. Our findings imply that toxic cyanobacteria contamination in agricultural environments can be a significant cyanotoxin exposure pathway.
Subject(s)
Cyanobacteria/growth & development , Food Contamination/analysis , Lactuca/microbiology , Microcystins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cyanobacteria/genetics , Cyanobacteria/isolation & purification , Cyanobacteria/metabolism , Plant Leaves/microbiologyABSTRACT
BACKGROUND: Harmful cyanobacterial blooms have attracted wide attention all over the world as they cause water quality deterioration and ecosystem health issues. Microcystis aeruginosa associated with a large number of bacteria is one of the most common and widespread bloom-forming cyanobacteria that secret toxins. These associated bacteria are considered to benefit from organic substrates released by the cyanobacterium. In order to avoid the influence of associated heterotrophic bacteria on the target cyanobacteria for physiological and molecular studies, it is urgent to obtain an axenic M. aeruginosa culture and further investigate the specific interaction between the heterotroph and the cyanobacterium. RESULTS: A traditional and reliable method based on solid-liquid alternate cultivation was carried out to purify the xenic cyanobacterium M. aeruginosa FACHB-905. On the basis of 16S rDNA gene sequences, two associated bacteria named strain B905-1 and strain B905-2, were identified as Pannonibacter sp. and Chryseobacterium sp. with a 99 and 97% similarity value, respectively. The axenic M. aeruginosa FACHB-905A (Microcystis 905A) was not able to form colonies on BG11 agar medium without the addition of strain B905-1, while it grew well in BG11 liquid medium. Although the presence of B905-1 was not indispensable for the growth of Microcystis 905A, B905-1 had a positive effect on promoting the growth of Microcystis 905A. CONCLUSIONS: The associated bacteria were eliminated by solid-liquid alternate cultivation method and the axenic Microcystis 905A was successfully purified. The associated bacterium B905-1 has the potentiality to promote the growth of Microcystis 905A. Moreover, the purification technique for cyanobacteria described in this study is potentially applicable to a wider range of unicellular cyanobacteria.