Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Proc Natl Acad Sci U S A ; 121(21): e2322428121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38739795

ABSTRACT

Protein evolution is guided by structural, functional, and dynamical constraints ensuring organismal viability. Pseudogenes are genomic sequences identified in many eukaryotes that lack translational activity due to sequence degradation and thus over time have undergone "devolution." Previously pseudogenized genes sometimes regain their protein-coding function, suggesting they may still encode robust folding energy landscapes despite multiple mutations. We study both the physical folding landscapes of protein sequences corresponding to human pseudogenes using the Associative Memory, Water Mediated, Structure and Energy Model, and the evolutionary energy landscapes obtained using direct coupling analysis (DCA) on their parent protein families. We found that generally mutations that have occurred in pseudogene sequences have disrupted their native global network of stabilizing residue interactions, making it harder for them to fold if they were translated. In some cases, however, energetic frustration has apparently decreased when the functional constraints were removed. We analyzed this unexpected situation for Cyclophilin A, Profilin-1, and Small Ubiquitin-like Modifier 2 Protein. Our analysis reveals that when such mutations in the pseudogene ultimately stabilize folding, at the same time, they likely alter the pseudogenes' former biological activity, as estimated by DCA. We localize most of these stabilizing mutations generally to normally frustrated regions required for binding to other partners.


Subject(s)
Evolution, Molecular , Proteins , Pseudogenes , Cyclophilin A/genetics , Multigene Family , Protein Folding , Proteins/chemistry , Proteins/genetics , Proteins/metabolism , Small Ubiquitin-Related Modifier Proteins , Humans , Models, Genetic
2.
PLoS Pathog ; 20(3): e1011830, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38512975

ABSTRACT

Human myxovirus resistance 2 (MX2/MXB) is an interferon-induced GTPase that inhibits human immunodeficiency virus-1 (HIV-1) infection by preventing nuclear import of the viral preintegration complex. The HIV-1 capsid (CA) is the major viral determinant for sensitivity to MX2, and complex interactions between MX2, CA, nucleoporins (Nups), cyclophilin A (CypA), and other cellular proteins influence the outcome of viral infection. To explore the interactions between MX2, the viral CA, and CypA, we utilized a CRISPR-Cas9/AAV approach to generate CypA knock-out cell lines as well as cells that express CypA from its endogenous locus, but with specific point mutations that would abrogate CA binding but should not affect enzymatic activity or cellular function. We found that infection of CypA knock-out and point mutant cell lines with wild-type HIV-1 and CA mutants recapitulated the phenotypes observed upon cyclosporine A (CsA) addition, indicating that effects of CsA treatment are the direct result of blocking CA-CypA interactions and are therefore independent from potential interactions between CypA and MX2 or other cellular proteins. Notably, abrogation of GTP hydrolysis by MX2 conferred enhanced antiviral activity when CA-CypA interactions were abolished, and this effect was not mediated by the CA-binding residues in the GTPase domain, or by phosphorylation of MX2 at position T151. We additionally found that elimination of GTPase activity also altered the Nup requirements for MX2 activity. Our data demonstrate that the antiviral activity of MX2 is affected by CypA-CA interactions in a virus-specific and GTPase activity-dependent manner. These findings further highlight the importance of the GTPase domain of MX2 in regulation of substrate specificity and interaction with nucleocytoplasmic trafficking pathways.


Subject(s)
Capsid , Nuclear Pore Complex Proteins , Humans , Capsid/metabolism , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism , Cyclophilin A/genetics , Cyclophilin A/metabolism , GTP Phosphohydrolases/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , Antiviral Agents/metabolism , Myxovirus Resistance Proteins/genetics , Myxovirus Resistance Proteins/metabolism
3.
EMBO Rep ; 25(8): 3432-3455, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38943005

ABSTRACT

Cyclosporin A (CsA) induces DNA double-strand breaks in LIG4 syndrome fibroblasts, specifically upon transit through S-phase. The basis underlying this has not been described. CsA-induced genomic instability may reflect a direct role of Cyclophilin A (CYPA) in DNA repair. CYPA is a peptidyl-prolyl cis-trans isomerase (PPI). CsA inhibits the PPI activity of CYPA. Using an integrated approach involving CRISPR/Cas9-engineering, siRNA, BioID, co-immunoprecipitation, pathway-specific DNA repair investigations as well as protein expression interaction analysis, we describe novel impacts of CYPA loss and inhibition on DNA repair. We characterise a direct CYPA interaction with the NBS1 component of the MRE11-RAD50-NBS1 complex, providing evidence that CYPA influences DNA repair at the level of DNA end resection. We define a set of genetic vulnerabilities associated with CYPA loss and inhibition, identifying DNA replication fork protection as an important determinant of viability. We explore examples of how CYPA inhibition may be exploited to selectively kill cancers sharing characteristic genomic instability profiles, including MYCN-driven Neuroblastoma, Multiple Myeloma and Chronic Myelogenous Leukaemia. These findings propose a repurposing strategy for Cyclophilin inhibitors.


Subject(s)
Acid Anhydride Hydrolases , Cell Cycle Proteins , Cyclophilin A , DNA Repair , DNA Replication , DNA-Binding Proteins , MRE11 Homologue Protein , Nuclear Proteins , Humans , MRE11 Homologue Protein/metabolism , MRE11 Homologue Protein/genetics , Cyclophilin A/metabolism , Cyclophilin A/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Acid Anhydride Hydrolases/metabolism , Acid Anhydride Hydrolases/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/genetics , DNA Breaks, Double-Stranded , DNA Ligase ATP/metabolism , DNA Ligase ATP/genetics , Genomic Instability
4.
J Neurosci Res ; 102(2): e25301, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38361405

ABSTRACT

Our previous study found that receptor interacting protein 3 (RIP3) and apoptosis-inducing factor (AIF) were involved in neuronal programmed necrosis during global cerebral ischemia-reperfusion (I/R) injury. Here, we further studied its downstream mechanisms and the role of the autophagy inhibitors 3-methyladenine (3-MA) and bafilomycin A1 (BAF). A 20-min global cerebral I/R injury model was constructed using the 4-vessel occlusion (4-VO) method in male rats. 3-MA and BAF were injected into the lateral ventricle 1 h before ischemia. Spatial and activation changes of proteins were detected by immunofluorescence (IF), and protein interaction was determined by immunoprecipitation (IP). The phosphorylation of H2AX (γ-H2AX) and activation of mixed lineage kinase domain-like protein (p-MLKL) occurred as early as 6 h after reperfusion. RIP3, AIF, and cyclophilin A (CypA) in the neurons after I/R injury were spatially overlapped around and within the nucleus and combined with each other after reperfusion. The survival rate of CA1 neurons in the 3-MA and BAF groups was significantly higher than that in the I/R group. Autophagy was activated significantly after I/R injury, which was partially inhibited by 3-MA and BAF. Pretreatment with both 3-MA and BAF almost completely inhibited nuclear translocation, spatial overlap, and combination of RIP3, AIF, and CypA proteins. These findings suggest that after global cerebral I/R injury, RIP3, AIF, and CypA translocated into the nuclei and formed the DNA degradation complex RIP3/AIF/CypA in hippocampal CA1 neurons. Pretreatment with autophagy inhibitors could reduce neuronal necroptosis by preventing the formation of the RIP3/AIF/CypA complex and its nuclear translocation.


Subject(s)
Brain Ischemia , Macrolides , Reperfusion Injury , Rats , Male , Animals , Cyclophilin A/genetics , Cyclophilin A/metabolism , Apoptosis Inducing Factor/genetics , Apoptosis Inducing Factor/metabolism , Necroptosis , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Hippocampus/metabolism , Apoptosis , Neurons/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Autophagy
5.
Fish Shellfish Immunol ; 144: 109299, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38104700

ABSTRACT

Cyclophilin A (CypA) or peptidylprolyl isomerase A, plays an important role in protein folding, trafficking, environmental stress, cell signaling and apoptosis etc. In shrimp, the mRNA expression level of PmCypA was stimulated by LPS. In this study, all three types of shrimp hemocytes: hyaline cell, granulocyte and semi-granulocyte expressed the PmCypA protein. The mRNA expression level of PmCypA was found to be up-regulate to four-fold in white spot syndrome virus (WSSV) infected hemocytes at 48 h. Interestingly, PmCypA protein was only detected extracellularly in shrimp plasma at 24 h post WSSV infection. To find out the function of extracellular PmCypA, the recombinant PmCypA (rPmCypA) was produced and administrated in shrimp primary hemocyte cell culture to observe the antiviral properties. In rPmCypA-administrated hemocyte cell culture, the mRNA transcripts of WSSV intermediate early gene, ie1 and early gene, wsv477 were significantly decreased but not that of late gene, vp28. To explore the antiviral mechanism of PmCypA, the expression of PmCypA in shrimp hemocytes was silenced and the expression of immune-related genes were investigated. Surprisingly, the suppression of PmCypA affected other gene expression, decreasing of penaeidin, PmHHAP and PmCaspase and increasing of C-type lectin. Our results suggested that the PmCypA might plays important role in anti-WSSV via apoptosis pathway. Further studies of PmCypA underlying antiviral mechanism are underway to show its biological function in shrimp immunity.


Subject(s)
Penaeidae , White spot syndrome virus 1 , Animals , White spot syndrome virus 1/physiology , Cyclophilin A/genetics , RNA, Messenger/metabolism , Antiviral Agents/metabolism , Hemocytes
6.
PLoS One ; 19(3): e0298211, 2024.
Article in English | MEDLINE | ID: mdl-38427624

ABSTRACT

Cyclophilins are a diverse family of peptidyl-prolyl isomerases (PPIases) of importance in a variety of essential cellular functions. We previously reported that the pan-cyclophilin inhibitor drug reconfilstat (CRV431) decreased disease in mice under the western-diet and carbon tetrachloride (CCl4) non-alcoholic steatohepatitis (NASH) model. CRV431 inhibits several cyclophilin isoforms, among which cyclophilin A (CypA) and B (CypB) are the most abundant. It is not known whether simultaneous inhibition of multiple cyclophilin family members is necessary for the observed therapeutic effects or if loss-of-function of one is sufficient. Identifying the responsible isoform(s) would enable future fine-tuning of drug treatments. Features of human liver fibrosis and complete NASH can be reliably replicated in mice by administration of intraperitoneal CCl4 alone or CCl4 in conjunction with high sugar, high cholesterol western diet, respectively. Here we show that while wild-type (WT) and Ppia-/- CypA KO mice develop severe NASH disease features under these models, Ppib-/- CypB KO mice do not, as measured by analysis of picrosirius red and hematoxylin & eosin-stained liver sections and TNFα immuno-stained liver sections. Cyclophilin inhibition is a promising and novel avenue of treatment for diet-induced NASH. In this study, mice without CypB, but not mice without CypA, were significantly protected from the development of the characteristic features of NASH. These data suggest that CypB is necessary for NASH disease progression. Further investigation is necessary to determine whether the specific role of CypB in the endoplasmic reticulum secretory pathway is of significance to its effect on NASH development.


Subject(s)
Cyclophilin A , Non-alcoholic Fatty Liver Disease , Animals , Mice , Cyclophilin A/genetics , Cyclophilins/genetics , Diet, Western , Hematoxylin
7.
Nat Cell Biol ; 26(4): 593-603, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38553595

ABSTRACT

Loss of protein function is a driving force of ageing. We have identified peptidyl-prolyl isomerase A (PPIA or cyclophilin A) as a dominant chaperone in haematopoietic stem and progenitor cells. Depletion of PPIA accelerates stem cell ageing. We found that proteins with intrinsically disordered regions (IDRs) are frequent PPIA substrates. IDRs facilitate interactions with other proteins or nucleic acids and can trigger liquid-liquid phase separation. Over 20% of PPIA substrates are involved in the formation of supramolecular membrane-less organelles. PPIA affects regulators of stress granules (PABPC1), P-bodies (DDX6) and nucleoli (NPM1) to promote phase separation and increase cellular stress resistance. Haematopoietic stem cell ageing is associated with a post-transcriptional decrease in PPIA expression and reduced translation of IDR-rich proteins. Here we link the chaperone PPIA to the synthesis of intrinsically disordered proteins, which indicates that impaired protein interaction networks and macromolecular condensation may be potential determinants of haematopoietic stem cell ageing.


Subject(s)
Intrinsically Disordered Proteins , Intrinsically Disordered Proteins/chemistry , Cyclophilin A/genetics , Cyclophilin A/metabolism , RNA-Binding Proteins , Hematopoietic Stem Cells/metabolism
8.
Cardiovasc Res ; 120(4): 385-402, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38175781

ABSTRACT

AIMS: Cyclophilin A (CyPA) induces leucocyte recruitment and platelet activation upon release into the extracellular space. Extracellular CyPA therefore plays a critical role in immuno-inflammatory responses in tissue injury and thrombosis upon platelet activation. To date, CD147 (EMMPRIN) has been described as the primary receptor mediating extracellular effects of CyPA in platelets and leucocytes. The receptor for advanced glycation end products (RAGE) shares inflammatory and prothrombotic properties and has also been found to have similar ligands as CD147. In this study, we investigated the role of RAGE as a previously unknown interaction partner for CyPA. METHODS AND RESULTS: Confocal imaging, proximity ligation, co-immunoprecipitation, and atomic force microscopy were performed and demonstrated an interaction of CyPA with RAGE on the cell surface. Static and dynamic cell adhesion and chemotaxis assays towards extracellular CyPA using human leucocytes and leucocytes from RAGE-deficient Ager-/- mice were conducted. Inhibition of RAGE abrogated CyPA-induced effects on leucocyte adhesion and chemotaxis in vitro. Accordingly, Ager-/- mice showed reduced leucocyte recruitment and endothelial adhesion towards CyPA in vivo. In wild-type mice, we observed a downregulation of RAGE on leucocytes when endogenous extracellular CyPA was reduced. We furthermore evaluated the role of RAGE for platelet activation and thrombus formation upon CyPA stimulation. CyPA-induced activation of platelets was found to be dependent on RAGE, as inhibition of RAGE, as well as platelets from Ager-/- mice showed a diminished activation and thrombus formation upon CyPA stimulation. CyPA-induced signalling through RAGE was found to involve central signalling pathways including the adaptor protein MyD88, intracellular Ca2+ signalling, and NF-κB activation. CONCLUSION: We propose RAGE as a hitherto unknown receptor for CyPA mediating leucocyte as well as platelet activation. The CyPA-RAGE interaction thus represents a novel mechanism in thrombo-inflammation.


Subject(s)
Cyclophilin A , Thrombosis , Mice , Humans , Animals , Cyclophilin A/genetics , Cyclophilin A/metabolism , Glycation End Products, Advanced , Ligands , Inflammation , Basigin/metabolism , Thrombosis/genetics
11.
Article in Zh | WPRIM | ID: wpr-878425

ABSTRACT

OBJECTIVES@#To investigate the expression of cyclophilin A (CyPA) in oral squamous cell carcinoma (OSCC) and explore the effect of downregulating the expression of CyPA gene on the proliferation and invasion of SCC-25 cells.@*METHODS@#A total of 77 cases of patients with OSCC were selected. The expression levels of CyPA proteins in OSCC and adjacent normal tissues were evaluated. SCC-25 cells were cultured and divided into the CyPA interference sequence group, negative control group, and blank group. The expression levels of CyPA mRNA and protein in cells were detected by using real-time fluorescent quantitative polymerase chain reaction and Western blot, respectively. Cell proliferation was detected by using methyl thiazolyl tetrazolium and plate colony formation assays. Cell invasion was detected by using Transwell assay.@*RESULTS@#The positive expression rate of CyPA protein in OSCC tissues was 76.62%, which was higher than that in adjacent tissues (@*CONCLUSIONS@#The CyPA protein is highly expressed in OSCC tissues, and the downregulation of CyPA gene expression in SCC-25 cells can reduce cell proliferation and inhibit cell invasion.


Subject(s)
Humans , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cyclophilin A/genetics , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms , Mouth Neoplasms/genetics , Squamous Cell Carcinoma of Head and Neck
12.
Einstein (Säo Paulo) ; 12(3): 336-341, Jul-Sep/2014. tab, graf
Article in English | LILACS | ID: lil-723916

ABSTRACT

Objective A growing number of published articles report the expression of specific genes with different behavior patterns in rats. The levels of messenger ribonucleic acid transcripts are usually analyzed by reverse transcription followed by polymerase chain reaction and quantified after normalization with an internal control or reference gene (housekeeping gene). Nevertheless, housekeeping genes exhibit different expression in the central nervous system, depending on the physiological conditions and the area of the brain to be studied. The choice of a good internal control gene is essential for obtaining reliable results. This study evaluated the expression of three housekeeping genes (beta-actin, cyclophilin A, and ubiquitin C) in different areas of the central nervous system in rats (olfactory bulb, hippocampus, striatum, and prefrontal cortex). Methods Wistar rats (virgin females, n=6) during the diestrum period were used. Total ribonucleic acid was extracted from each region of the brain; the complementary deoxyribonucleic acid was synthesized by reverse transcription and amplified by real-time quantitative polymerase chain reaction using SYBR™ Green and primers specific for each one of the reference genes. The stability of the expression was determined using NormFinder. Results Beta-actin was the most stable gene in the hippocampus and striatum, while cyclophilin A and ubiquitin C showed greater stability in the prefrontal cortex and the olfactory bulb, respectively. Conclusion Based on our study, further studies of gene expression using rats as animal models should take into consideration these results when choosing a reliable internal control gene. .


Objetivo Um número crescente de artigos publicados relaciona a expressão de genes específicos com diferentes padrões de comportamento em ratos. Os níveis de transcritos de ácido ribonucleico mensageiro são geralmente analisados por transcrição reversa, seguida de reação em cadeia da polimerase, e quantificados após a normalização com um controle interno ou gene de referência (gene housekeeping). No entanto, os genes housekeeping exibem expressão diferencial no sistema nervoso central, dependendo das condições fisiológicas e da área do cérebro a ser estudada. A escolha de um bom gene de controle interno é essencial para a obtenção de resultados confiáveis. Este estudo avaliou a expressão de três genes housekeeping (beta-actina, ciclofilina A e ubiquitina C) em diferentes áreas do sistema nervoso central de ratos (bulbo olfatório, hipocampo, estriado e córtex pré-frontal). Métodos Foram usadas ratas Wistar (fêmeas virgens, n=6) durante o período de diestro. O ácido ribonucleico total foi extraído a partir de cada região do cérebro; o ácido desoxirribonucleico complementar foi sintetizado por transcrição reversa e amplificado por reação em cadeia da polimerase quantitativo em tempo real utilizando SYBR® Green e primers específicos para cada um dos genes de referência. A estabilidade de expressão foi determinada utilizando NormFinder. Resultados A beta-actina foi o gene mais estável no hipocampo e estriado, enquanto a ciclofilina A e a ubiquitina C apresentaram maior estabilidade no córtex pré-frontal e no bulbo olfatório, respectivamente. Conclusão Com base em nosso trabalho, estudos posteriores de expressão gênica utilizando ratos como modelos animais devem levar ...


Subject(s)
Animals , Female , Actins/genetics , Brain/physiology , Cyclophilin A/genetics , Ubiquitin C/genetics , Actins/analysis , Behavior, Animal , Cyclophilin A/analysis , Genes, Essential/physiology , Internal-External Control , Rats, Wistar , Real-Time Polymerase Chain Reaction , Reference Values , Reverse Transcription , RNA, Messenger/genetics , Ubiquitin C/analysis
SELECTION OF CITATIONS
SEARCH DETAIL