ABSTRACT
Cyclosporine-A (CsA) is currently used to treat immune rejection after organ transplantation as a commonly used immunosuppressant. Liver injury is one of the most common adverse effects of CsA, whose precise mechanism has not been fully elucidated. Pregnane X receptor (PXR) plays a critical role in mediating drug-induced liver injury as a key regulator of drug and xenobiotic clearance. As a nuclear receptor, PXR transcriptionally upregulates the expression of drug-metabolizing enzymes and drug transporters, including cytochrome P4503A (CPY3A) and multidrug resistance-associated protein 2 (MRP2). Our study established CsA-induced cytotoxic hepatocytes in an in vitro model, demonstrating that CsA dose-dependently increased the aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) level secreted in the HepG2 cell supernatant, as well as viability and oxidative stress of HepG2 cells. CsA also dose-dependently decreased the PXR, CYP3A4, CPY3A5, and MRP2 levels of HepG2 cells. Mechanistically, altering the expression of PXR, CYP3A4, CYP3A5, and MRP2 affected the impact of CsA on AST and LDH levels. Moreover, altering the expression of PXR also changed the level of CYP3A4, CPY3A5, and MRP2 of HepG2 cells treated by CsA. Our presented findings provide experimental evidence that CsA-induced liver injury is PXR tightly related. We suggest that PXR represents an attractive target for therapy of liver injury due to its central role in the regulation of the metabolizing enzymes CYP3A and MRP2-mediated bile acid transport and detoxification.
Subject(s)
Cyclosporine , Cytochrome P-450 CYP3A , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins , Pregnane X Receptor , Humans , Cyclosporine/toxicity , Pregnane X Receptor/metabolism , Pregnane X Receptor/genetics , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A/genetics , Hep G2 Cells , Multidrug Resistance-Associated Proteins/metabolism , Multidrug Resistance-Associated Proteins/genetics , Dose-Response Relationship, Drug , Cell Survival/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Oxidative Stress/drug effects , Immunosuppressive Agents/toxicity , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/etiology , L-Lactate Dehydrogenase/metabolismABSTRACT
Cyclosporine A (CsA) has shown efficacy against immunity-related diseases despite its toxicity in various organs, including the liver, emphasizing the need to elucidate its underlying hepatotoxicity mechanism. This study aimed to capture the alterations in genome-wide expression over time and the subsequent perturbations of corresponding pathways across species. Six data from humans, mice, and rats, including animal liver tissue, human liver microtissues, and two liver cell lines exposed to CsA toxic dose, were used. The microtissue exposed to CsA for 10 d was analyzed to obtain dynamically differentially expressed genes (DEGs). Single-time points data at 1, 3, 5, 7, and 28 d of different species were used to provide additional evidence. Using liver microtissue-based longitudinal design, DEGs that were consistently up- or down-regulated over time were captured, and the well-known mechanism involved in CsA toxicity was elucidated. Thirty DEGs that consistently changed in longitudinal data were also altered in 28-d rat in-house data with concordant expression. Some genes (e.g. TUBB2A, PLIN2, APOB) showed good concordance with identified DEGs in 1-d and 7-d mouse data. Pathway analysis revealed up-regulations of protein processing, asparagine N-linked glycosylation, and cargo concentration in the endoplasmic reticulum. Furthermore, the down-regulations of pathways related to biological oxidations and metabolite and lipid metabolism were elucidated. These pathways were also enriched in single-time-point data and conserved across species, implying their biological significance and generalizability. Overall, the human organoids-based longitudinal design coupled with cross-species validation provides temporal molecular change tracking, aiding mechanistic elucidation and biologically relevant biomarker discovery.
Subject(s)
Chemical and Drug Induced Liver Injury , Cyclosporine , Liver , Transcriptome , Cyclosporine/toxicity , Animals , Humans , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/etiology , Transcriptome/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Species Specificity , Gene Expression Profiling , Mice , Male , Rats , Time Factors , Immunosuppressive Agents/toxicity , Rats, Sprague-DawleyABSTRACT
Fruiting bodies of Cordyceps cicadae (CC) have been reported to have a therapeutic effect in chronic kidney disease. Due to the rare and expensive resources from natural habitats, artificially cultivated mycelia using submerged liquid cultivation of CC (CCM) have been recently developed as an alternative to scarce sources of CC. However, little is known regarding potential protective effects of CCM against cyclosporine A (CsA)-induced acute nephrotoxicity in vivo and in vitro. In this study, male Sprague-Dawley rats were divided into six groups: control, CCM (40 mg and 400 mg/kg, orally), CsA (10 mg/kg, oral gavage), and CsA + CCM (40 mg and 400 mg/kg, orally). At the end of the study on day 8, all rats were sacrificed, and the blood and kidneys retrieved. CsA-induced acute nephrotoxicity was evident by increased levels of blood urea nitrogen (BUN). Levels of the endoplasmic reticulum (ER) resident chaperone glucose regulated protein 78 (GRP 78) were increased significantly in rats with acute nephrotoxicity. BUN and GRP 78 were significantly ameliorated in synchronous oral groups of CCM (40 or 400 mg/kg) plus CsA. Examination of hematoxylin and eosin stained kidney tissues revealed that the combined treatment of CCM slightly improved vacuolization in renal tubules upon CsA-induced damage. CsA-induced down-regulation of protein expression of magnesium ion channel proteins and transient receptor potential melastatin 6 and 7 were abolished by the combined treatment of CCM. CCM has the potential to protect the kidney against CsA-induced nephrotoxicity by reducing magnesium ion wasting, tubular cell damage, and ER stress demonstrated further by human renal proximal tubular epithelial cell line HK-2. Our results contribute to the in-depth understanding of the role of polysaccharides and nucleobases as the main secondary metabolites of CCM in the defense system of renal functions in CsA-induced acute nephrotoxicity.
Subject(s)
Cyclosporine , Kidney Diseases , Animals , Male , Rats , Cyclosporine/toxicity , Endoplasmic Reticulum Chaperone BiP , Immunosuppressive Agents/therapeutic use , Kidney/metabolism , Kidney Diseases/chemically induced , Kidney Diseases/drug therapy , Kidney Diseases/metabolism , Magnesium/metabolism , Protein Serine-Threonine Kinases/metabolism , Rats, Sprague-DawleyABSTRACT
Calcineurin inhibitors such as cyclosporin A (CsA) have been widely used to improve graft survival following solid-organ transplantation. However, the clinical use of CsA is often limited by its nephrotoxicity. The present study tested the hypothesis that activation of the (pro)renin receptor (PRR) contributes to CsA-induced nephropathy by activating the renin-angiotensin system (RAS). Renal injury in male Sprague-Dawley rats was induced by a low-salt diet combined with CsA as evidenced by elevated plasma creatinine and blood urea nitrogen levels, decreased creatinine clearance and induced renal inflammation, apoptosis and interstitial fibrosis, and elevated urinary N-acetyl-ß-d-glucosaminidase activity and urinary kidney injury molecule-1 content. Each index of renal injury was attenuated following 2 wk of treatment with the PRR decoy inhibitor PRO20. Although CsA-treated rats with kidney injury displayed increased renal soluble (s)PRR abundance, plasma sPRR, renin activity, angiotensin II, and heightened urinary total prorenin/renin content, RAS activation was attenuated by PRO20. Exposure of cultured human renal proximal tubular HK-2 cells to CsA induced expression of fibronectin and sPRR production, but the fibrotic response was attenuated by PRO20 and siRNA-mediated PRR knockdown. These findings support the hypothesis that activation of PRR contributes to CsA-induced nephropathy by activating the RAS in rats. Of importance, we provide strong proof of concept that targeting PRR offers a novel therapeutic strategy to limit nephrotoxic effects of immunosuppressant drugs.NEW & NOTEWORTHY The present study reports, for the first time, that activation of the (pro)renin receptor drives the renin-angiotensin system to induce renal injury during cyclosporin A administration. More importantly, our study has identified that antagonism with PRO20 offers a novel intervention in the management of side effects of cyclosporin A.
Subject(s)
Kidney Diseases , Renin , Animals , Creatinine/metabolism , Cyclosporine/toxicity , Female , Humans , Kidney/metabolism , Kidney Diseases/metabolism , Male , Rats , Rats, Sprague-Dawley , Receptors, Cell Surface/metabolism , Renin/metabolism , Renin-Angiotensin SystemABSTRACT
Chronic Cyclosporine-A treatment is associated with serious side effects, including kidney toxicity and anemia. Although pathophysiology of Cyclosporine-A-induced kidney injury remains incompletely understood, hypoxia is likely involved. Here, we investigated the effect of the hypoxia inducible factor activator daprodustat on Cyclosporine-A -induced kidney toxicity. As Cyclosporine-A profoundly alters protein phosphorylation by inhibiting the phosphatase calcineurin, special attention was directed towards the kidney phospho-proteome. Mice received Cyclosporine-A with or without daprodustat for up to eight weeks. In kidney homogenates, 1360 selected proteins were analyzed at expression and phosphorylation levels. Of these, Cyclosporine-A changed the expression of 79 and the phosphorylation of 86 proteins. However, when Cyclosporine-A treatment was combined with daprodustat, the expression of 95 proteins and phosphorylation of only six proteins was altered suggesting that daprodustat prevented most protein phosphorylation brought about by Cyclosporine-A. Although daprodustat showed only marginal effect on its own, angiogenesis-related pathways were among the most profoundly impacted by daprodustat when given on top of Cyclosporine-A. Additionally, Cyclosporine-A lowered the blood hemoglobin concentration and caused kidney capillary rarefaction, which daprodustat prevented. Thus, combined daprodustat/Cyclosporine-A treatment prevented deleterious Cyclosporine-A effects on microcirculation and hemoglobin, and the protective action of daprodustat involves suppression of broad protein phosphorylation changes caused by Cyclosporine-A.
Subject(s)
Anemia , Cyclosporine , Anemia/chemically induced , Anemia/prevention & control , Animals , Barbiturates , Calcineurin , Cyclosporine/toxicity , Glycine/analogs & derivatives , Hemoglobins/metabolism , Hypoxia/complications , Mice , ProteomeABSTRACT
Drug-induced gingival overgrowth (DIGO) is a side effect of cyclosporine A (CsA), nifedipine (NIF), and phenytoin (PHT). Nuclear receptor 4A1 (NR4A1) plays a role in fibrosis in multiple organs. However, the relationship between NR4A1 and DIGO remains unclear. We herein investigated the involvement of NR4A1 in DIGO. In the DIGO mouse model, CsA inhibited the up-regulation of Nr4a1 expression induced by periodontal disease (PD) in gingival tissue, but not that of Col1a1 and Pai1. We detected gingival overgrowth (GO) in Nr4a1 knock out (KO) mice with PD. A NR4A1 agonist inhibited the development of GO in DIGO model mice. TGF-ß increased Col1a1 and Pai1 expression levels in KO mouse gingival fibroblasts (mGF) than in wild-type mice, while the overexpression of NR4A1 in KO mGF suppressed the levels. NR4A1 expression levels in gingival tissue were significantly lower in DIGO patients than in PD patients. We also investigated the relationship between nuclear factor of activated T cells (NFAT) and NR4A1. NFATc3 siRNA suppressed the TGF-ß-induced up-regulation of NR4A1 mRNA expression in human gingival fibroblasts (hGF). CsA suppressed the TGF-ß-induced translocation of NFATc3 into the nuclei of hGF. Furthermore, NIF and PHT also decreased NR4A1 mRNA expression levels and suppressed the translocation of NFATc3 in hGF. We confirmed that CsA, NIF, and PHT reduced cytosolic calcium levels increased by TGF-ß, while CaCl2 enhanced the TGF-ß-up-regulated NR4A1 expression. We propose that the suppression of the calcium-NFATc3-NR4A1 cascade by these three drugs plays a role in the development of DIGO.
Subject(s)
Calcium/metabolism , Cyclosporine/toxicity , Gingiva/pathology , Immunosuppressive Agents/toxicity , Nuclear Receptor Subfamily 4, Group A, Member 1/physiology , Animals , Cells, Cultured , Disease Models, Animal , Female , Gingiva/drug effects , Gingiva/metabolism , Immunosuppressive Agents/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolismABSTRACT
Cyclosporin A (CsA) is a well-known and effective drug that is commonly used in autoimmune diseases and allotransplantation. However, kidney toxicity and cardiotoxicity limit its use. Circular RNAs (circRNAs) play a crucial role in disease, especially cardiovascular disease. We aimed to explore the circRNA expression profiles and potential mechanisms during CsA-induced cardiotoxicity. Sixty male adult Wistar rats were randomly divided into two groups. The CsA group was injected with CsA (15 mg/kg/day body weight) intraperitoneally (ip) for 2 weeks, whereas the control group was injected ip with the same volume of olive oil. We assessed CsA-induced cardiotoxicity by light microscopy, transferase-mediated dUTP nick-end labeling (TUNEL) staining, and electron microscopy. Microarray analysis was used to detect the expression profiles of circRNAs deregulated in the heart during CsA-induced cardiotoxicity. We confirmed the changes in circRNAs by quantitative PCR. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of the microarray data were performed. A conventional dose of CsA induced cardiotoxicity in rats. We identified 67 upregulated and 37 downregulated circRNAs compared with those in the control group. Six of 12 circRNAs were successfully verified by quantitative real-time polymerase chain reaction (qRT-PCR). GO analyses of the differentially expressed circRNAs indicated that these molecules might play important roles in CsA-induced cardiotoxicity. KEGG pathway analyses showed that the differentially expressed circRNAs in CsA-induced cardiotoxicity may be related to autophagy or the Hippo signaling pathway. We identified differential circRNA expression patterns and provided more insight into the mechanism of CsA-induced cardiotoxicity. CircRNAs may serve as potential biomarkers or therapeutic targets of CsA-mediated cardiotoxicity in the future.
Subject(s)
Biomarkers/metabolism , Cyclosporine/toxicity , Heart/drug effects , Immunosuppressive Agents/toxicity , RNA, Circular/metabolism , Animals , Cardiotoxicity/etiology , Down-Regulation , Heart/physiopathology , Male , Myocardium/pathology , Rats , Rats, Wistar , Up-RegulationABSTRACT
This study aimed to reveal the possible protective effect of dapagliflozin (DAPA) against acute kidney damage due to cyclosporine A (CsA). Thirty-two mice with an eight-week-old Balb\c albino strain were divided into four groups: control group, CsA group, DAPA group, and CsA + DAPA group. On day 9 of treatment, the animals were decapitated, and bilateral nephrectomy was performed. Oxidative stress and apoptosis were evaluated with caspase-3 activity, total oxidant status (TOS), total antioxidant status (TAS), malondialdehyde (MDA), myeloperoxidase (MPO), B-cell lymphoma-2 (Bcl-2), and Bcl-2-associated X protein (Bax) in the right kidney resection material. The left kidney resection material was evaluated histopathologically. CsA increased caspase-3 activity, Bax, TOS, MDA, TAS, and MPO levels, and the administration of DAPA with CsA significantly reduced this increase in levels (p < 0.001, p < 0.001, p < 0.001, p < 0.001, p < 0.001, and p < 0.001, respectively). CsA decreased Bcl-2 levels, and administration of CsA + DAPA significantly increased Bcl-2 levels compared with only CsA administration (p < 0.001). Additionally, administration of DAPA significantly reduced the histopathological findings (parenchymal inflammation, hyaline cast formation, vacuolization, and lysis of renal tubular cells) caused by CsA. DAPA reduces oxidative stress, apoptosis, and histopathological damage caused by CsA in renal tissue.
Subject(s)
Cyclosporine , Kidney Diseases , Animals , Mice , Antioxidants/metabolism , bcl-2-Associated X Protein/metabolism , Caspase 3/metabolism , Cyclosporine/toxicity , Immunosuppressive Agents/toxicity , Immunosuppressive Agents/metabolism , Kidney , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Kidney Diseases/metabolism , Malondialdehyde/metabolism , Oxidants/metabolism , Peroxidase/metabolismABSTRACT
Cyclosporine A (CsA) is an immunosuppressor widely used for the prevention of acute rejection during solid organ transplantation. However, severe nephrotoxicity has substantially limited its long-term usage. Recently, an impaired autophagy pathway was suggested to be involved in the pathogenesis of chronic CsA nephrotoxicity. However, the underlying mechanisms of CsA-induced autophagy blockade in tubular cells remain unclear. In the present study, we observed that CsA suppressed the activation and expression of transcription factor EB (TFEB) by increasing the activation of mTOR, in turn promoting lysosomal dysfunction and autophagy flux blockade in tubular epithelial cells (TECs) in vivo and in vitro. Restoration of TFEB activation by Torin1-mediated mTOR inhibition significantly improved lysosomal function and rescued autophagy pathway activity, suppressing TEC injury. In summary, targeting TFEB-mediated autophagy flux represents a potential therapeutic strategy for CsA-induced nephrotoxicity.
Subject(s)
Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cyclosporine/toxicity , Epithelial Cells/pathology , Kidney Tubules/pathology , Lysosomes/pathology , TOR Serine-Threonine Kinases/metabolism , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Immunosuppressive Agents/toxicity , Kidney Tubules/drug effects , Kidney Tubules/metabolism , Lysosomes/drug effects , Lysosomes/metabolism , Male , Mice , Mice, Inbred BALB C , TOR Serine-Threonine Kinases/geneticsABSTRACT
Calcineurin inhibitors (CNIs) are vital immunosuppressive therapies in the management of inflammatory conditions. A long-term consequence is nephrotoxicity. In the kidneys, the primary, catalytic calcineurin (CnA) isoforms are CnAα and CnAß. Although the renal phenotype of CnAα-/- mice substantially mirrors CNI-induced nephrotoxicity, the mechanisms downstream of CnAα are poorly understood. Since NADPH oxidase-2 (Nox2)-derived oxidative damage has been implicated in CNI-induced nephrotoxicity, we hypothesized that CnAα inhibition drives Nox2 upregulation and promotes oxidative stress. To test the hypothesis, Nox2 regulation was investigated in kidneys from CnAα-/-, CnAß-/-, and wild-type (WT) littermate mice. To identify the downstream mediator of CnAα, nuclear factor of activated T cells (NFAT) and NF-κB regulation was examined. To test if Nox2 is transcriptionally regulated via a NF-κB pathway, CnAα-/- and WT renal fibroblasts were treated with the NF-κB inhibitor caffeic acid phenethyl ester. Our findings showed that cyclosporine A treatment induced Nox2 upregulation and oxidative stress. Furthermore, Nox2 upregulation and elevated ROS generation occurred only in CnAα-/- mice. In these mice, NF-κB but not NFAT activity was increased. In CnAα-/- renal fibroblasts, NF-κB inhibition prevented Nox2 upregulation and reactive oxygen species (ROS) generation. In conclusion, these findings indicate that 1) CnAα loss stimulates Nox2 upregulation, 2) NF-κB is a novel CnAα-regulated transcription factor, and 3) NF-κB mediates CnAα-induced Nox2 and ROS regulation. Our results demonstrate that CnAα plays a key role in Nox2 and ROS generation. Furthermore, these novel findings provide evidence of divergent CnA isoform signaling pathways. Finally, this study advocates for CnAα-sparing CNIs, ultimately circumventing the CNI nephrotoxicity.NEW & NOTEWORTHY A long-term consequence of calcineurin inhibitors (CNIs) is oxidative damage and nephrotoxicity. This study indicates that NF-κB is a novel calcineurin-regulated transcription factor that is activated with calcineurin inhibition, thereby driving oxidative damage in CNI nephropathy. These findings provide additional evidence of divergent calcineurin signaling pathways and suggest that selective CNIs could improve the long-term outcomes of patients by mitigating renal side effects.
Subject(s)
Calcineurin Inhibitors/toxicity , Calcineurin/metabolism , Cyclosporine/toxicity , Immunosuppressive Agents/toxicity , Kidney Diseases/chemically induced , Kidney/drug effects , NADPH Oxidase 2/metabolism , NF-kappa B/metabolism , Animals , Calcineurin/deficiency , Calcineurin/genetics , Cell Line , Fibrosis , Kidney/enzymology , Kidney/pathology , Kidney Diseases/enzymology , Kidney Diseases/genetics , Kidney Diseases/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , NADPH Oxidase 2/genetics , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Up-RegulationABSTRACT
OBJECTIVE: We investigated the importance of reactive oxygen species (ROS) on developing gingival overgrowth (GO) and then introduced the antioxidant strategy to prevent, or even reduce GO. BACKGROUND: Gingival overgrowth is a common side effect of the patients receiving cyclosporine A (CsA), an immune suppressant. Although it has been broadly investigated, the exact pathogenesis of the induced GO is still uncertain. METHODS: We cultured human primary gingival fibroblasts and used animal model of GO to investigate the ameliorative effects of antioxidants on CsA-induced GO. To examine the CsA-induced oxidative stress, associated genes and protein expression, and the overgrown gingiva of rats by using immunocytochemistry, confocal laser scanning microscopy, real-time PCR, ELISA, gelatin zymography, gingival morphological, and immunohistochemical analysis. RESULTS: We found for the first time that ROS was responsible for the CsA-induced oxidative stress and TGF-ß1 expression in human primary gingival fibroblasts, as well as the GO of rats. The antioxidants (oxidative scavenger of vitamin E and an antioxidative enzyme inducer of hemin) ameliorated CsA-induced pathological and morphological alterations of GO without affected the CsA-suppressed il-2 expression in rats. CsA-induced oxidative stress, HO-1, TGF-ß1, and type II EMT were also rescued by antioxidants treatment. CONCLUSIONS: We concluded that CsA repetitively stimulating the production of ROS is the cause of CsA-GO which is ameliorated by treating antioxidants, including vitamin E and sulforaphane. Furthermore, the immunosuppressive effect of CsA is not interfered by antioxidant treatments in rats. This finding may thus help the clinician devise better prevention strategies in patients susceptible to GO.
Subject(s)
Cyclosporine , Gingival Overgrowth , Animals , Antioxidants/pharmacology , Cyclosporine/toxicity , Fibroblasts , Gingiva , Gingival Overgrowth/chemically induced , Gingival Overgrowth/drug therapy , Gingival Overgrowth/prevention & control , Humans , Immunosuppressive Agents/adverse effects , RatsABSTRACT
Mechanism-based risk assessment is urged to advance and fully permeate into current safety assessment practices, possibly at early phases of drug safety testing. Toxicogenomics is a promising source of mechanisms-revealing data, but interpretative analysis tools specific for the testing systems (e.g. hepatocytes) are lacking. In this study, we present the TXG-MAPr webtool (available at https://txg-mapr.eu/WGCNA_PHH/TGGATEs_PHH/ ), an R-Shiny-based implementation of weighted gene co-expression network analysis (WGCNA) obtained from the Primary Human Hepatocytes (PHH) TG-GATEs dataset. The 398 gene co-expression networks (modules) were annotated with functional information (pathway enrichment, transcription factor) to reveal their mechanistic interpretation. Several well-known stress response pathways were captured in the modules, were perturbed by specific stressors and showed preservation in rat systems (rat primary hepatocytes and rat in vivo liver), with the exception of DNA damage and oxidative stress responses. A subset of 87 well-annotated and preserved modules was used to evaluate mechanisms of toxicity of endoplasmic reticulum (ER) stress and oxidative stress inducers, including cyclosporine A, tunicamycin and acetaminophen. In addition, module responses can be calculated from external datasets obtained with different hepatocyte cells and platforms, including targeted RNA-seq data, therefore, imputing biological responses from a limited gene set. As another application, donors' sensitivity towards tunicamycin was investigated with the TXG-MAPr, identifying higher basal level of intrinsic immune response in donors with pre-existing liver pathology. In conclusion, we demonstrated that gene co-expression analysis coupled to an interactive visualization environment, the TXG-MAPr, is a promising approach to achieve mechanistic relevant, cross-species and cross-platform evaluation of toxicogenomic data.
Subject(s)
Chemical and Drug Induced Liver Injury/etiology , Hepatocytes/drug effects , Risk Assessment/methods , Toxicogenetics/methods , Acetaminophen/toxicity , Animals , Chemical and Drug Induced Liver Injury/genetics , Cyclosporine/toxicity , Datasets as Topic , Endoplasmic Reticulum Stress/drug effects , Gene Expression Profiling , Gene Regulatory Networks , Hepatocytes/pathology , Humans , Oxidative Stress/drug effects , Rats , Species Specificity , Tunicamycin/toxicityABSTRACT
The skin hosts a sophisticated immune system involving responses from both innate and adaptive immune cell populations. Swine skin is close to human skin by its structure, composition and function. In addition, the minipig is considered the model of choice in toxicology studies for drugs applied by the dermal route and developed for both the adult and paediatric indications. However, knowledge on the skin immune system in minipigs, particularly in Göttingen Minipigs, is still limited. The objective of our work was first to characterize the main skin immune populations (Langerhans cells, dermal dendritic cells, macrophages and T lymphocytes) in Göttingen Minipigs. In parallel, we compared the skin immune populations from healthy and immunocompromised piglets following oral treatment with cyclosporin A (CsA) at 10 mg/kg/day. We also explored other pathological conditions using a contact dermatitis model in minipigs challenged with a sensitizer, 2,4-dinitrochlorobenzene (DNCB). Langerhans cells and dermal MHCIIlowCD163+ cells were increased one month after oral treatment with CsA at 10 mg/kg/day. The contact dermatitis model in Göttingen Minipigs challenged by DNCB suggested migration of Langerhans cells and dermal dendritic cells as well as T cell recruitment into the skin. These data bring new information in skin immunotoxicology in Göttingen Minipigs and could contribute to a better understanding of the effects of new therapeutic drugs on the developing immune system.
Subject(s)
Dermatitis, Contact/immunology , Immunity, Cellular/drug effects , Immunity, Cellular/immunology , Skin/drug effects , Skin/immunology , Age Factors , Animals , Cyclosporine/toxicity , Dermatitis, Contact/pathology , Female , Immunosuppressive Agents/toxicity , Male , Pregnancy , Skin/pathology , Swine , Swine, MiniatureABSTRACT
Acetaminophen (APAP)-induced hepatotoxicity is the most common cause of acute liver failure in worldwide. N-acetyl cysteine (NAC) is used as the APAP antidote. Cyclosporin A (CsA) is suppressed mitochondrial damage by binding cyclophilin, a mitochondrial pore transport component. The study aimed to evaluate the effects of NAC, CsA, and NAC+CsA treatments on APAP-induced hepatotoxicity in mice. Mice were randomly divided into five groups (n = 6). 400 mg/kg/ip/single dose APAP, 1200 mg/kg/i.p/single dose NAC and 50 mg/kg/i.p/single dose CsA were performed. Light and electron microscopic alterations were investigated in liver samples. Levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and liver glutathione (GSH) were analyzed. 3-nitrotyrosine and cytochrome c immunoreactivities were evaluated in liver tissue. Here, we found that APAP leads to histopathological and ultrastructural changes in mice liver. Also, APAP increased cytochrome c and 3-nitrotyrosine immunopositive staining. Besides, a significant decrease in liver GSH and an increase in serum AST and ALT levels were detected in the APAP group. Interestingly, NAC+CsA treatment improved histological alterations, cytochrome c, and 3-nitrotyrosine immunoreactivities and liver GSH, serum AST/ALT levels caused by APAP. We suggest that the combination of NAC and CsA reduces acetaminophen-induced hepatotoxicity in mice.
Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Acetaminophen/toxicity , Acetylcysteine/pharmacology , Alanine Transaminase , Animals , Chemical and Drug Induced Liver Injury/prevention & control , Cyclosporine/toxicity , Liver , MiceABSTRACT
OBJECTIVE: The aim: The current study was designed to examine the possible Nephroprotective effects of CMN in preventing nephrotoxicity and oxidative stress caused by chronic administration of CsA in rats. PATIENTS AND METHODS: Materials and methods: This study consisted of four groups and each group was made up of 8 rats. The first group was considered as a control group (received vehicle (0.9%N/S orally, and olive oil S.C), and the rest included the following: CMN group (received CMN in a dose of 30mg/kg/day orally), CsA group (received CsA in a dose of 20mg/kg/day S.C), and CMN plus CsA combination group (received CMN (30mg/kg/day, orally) plus CsA (20mg/kg/day, S.C) for 21days). For each group, the following variables wereassessed: Serum urea concentration, Serum creatinine concentration, initial body weight, final body weight, Tissue MDA level, Tissue GpX1 level, Tissue CAT level, Tissue SOD level, and tissue IL-2 level, and histopathological examination. RESULTS: Results: Mean levels of serum urea and creatinine, tissue MDA, tissue IL-2, and histopathological scores are significantly (P<0.05) increased in the CsA group compared with the control, and CMN groups (normal renal tissue). Tissue SOD, CAT, and GpX1 activities are significantly (P<0.05) decreased in the CsA group compared with the control, and CMN group. Concomitant administration of CMN with CsA resulted in significantly (P<0.05) lower elevated levels of MDA, serum urea, and creatinine, significantly higher levels of antioxidant enzymes, and normalization of the altered renal morphology compared with CsA treated rats. CONCLUSION: Conclusions: CMN has antioxidant and anti-inflammatory properties that protect the kidney from CsA's toxicity.
Subject(s)
Curcumin , Kidney Diseases , Renal Insufficiency , Animals , Curcumin/pharmacology , Curcumin/therapeutic use , Cyclosporine/toxicity , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Rats , Rats, WistarABSTRACT
BACKGROUND AND OBJECTIVE: During cyclosporine-induced gingival overgrowth, the homeostatic balance of gingival connective tissue is disrupted leading to fibrosis. Galectins are glycan-binding proteins that can modulate a variety of cellular processes including fibrosis in several organs. Here, we study the role of galectin-8 (Gal-8) in the response of gingival connective tissue cells to cyclosporine. METHODS: We used human gingival fibroblasts and mouse NIH3T3 cells treated with recombinant Gal-8 and/or cyclosporine for analyzing specific mRNA and protein levels through immunoblot, real-time polymerase chain reaction, ELISA and immunofluorescence, pull-down with Gal-8-Sepharose for Gal-8-to-cell surface glycoprotein interactions, short hairpin RNA for Gal-8 silencing and Student's t test and ANOVA for statistical analysis. RESULTS: Galectin-8 stimulated type I collagen and fibronectin protein levels and potentiated CTGF protein levels in TGF-ß1-stimulated human gingival fibroblasts. Gal-8 interacted with α5ß1-integrin and type II TGF-ß receptor. Gal-8 stimulated fibronectin protein and mRNA levels, and this response was dependent on FAK activity but not Smad2/3 signaling. Cyclosporine and tumor necrosis factor alpha (TNF-α) increased Gal-8 protein levels. Finally, silencing of galectin-8 in NIH3T3 cells abolished cyclosporine-induced fibronectin protein levels. CONCLUSION: Taken together, these results reveal for the first time Gal-8 as a fibrogenic stimulus exerted through ß1-integrin/FAK pathways in human gingival fibroblasts, which can be triggered by cyclosporine. Further studies should explore the involvement of Gal-8 in human gingival tissues and its role in drug-induced gingival overgrowth.
Subject(s)
Cyclosporine , Gingival Overgrowth , Animals , Cells, Cultured , Cyclosporine/toxicity , Fibroblasts , Galectins , Gingiva , Gingival Overgrowth/chemically induced , Humans , Mice , NIH 3T3 CellsABSTRACT
BACKGROUND/PURPOSE: Gingival overgrowth can occur as a result of poor oral hygiene or a side effect of taking certain medications, such as cyclosporine A (CsA). It has been shown that this immunosuppressant drug induces epithelial-to-mesenchymal transition (EMT) in the gingival epithelium but the associated molecular mechanism remains to be elucidated. METHODS: We first assessed the relative expression of microRNA-200a (miR-200a) in response to the CsA treatment using qRT-PCR. Next, luciferase reporter assay was applied to examine whether miR-200a was able to regulate ZEB2 and Western blot was utilized to measure the expression of ZEB2 in normal human gingival fibroblasts (HGFs). To confirm the significance of miR-200a and ZEB2 in the CsA-induced gingival overgrowth, miR-200a inhibitor and shRNA mediated knockdown of ZEB2 were used and cell proliferation in HGFs was assessed by MTT assay. RESULTS: The expression of miR-200a was dose-dependently downregulated following the CsA treatment. Luciferase reporter assay confirmed that ZEB2 was a direct downstream target regulated by miR-200a and ZEB2 was indeed increased after the administration of CsA. We demonstrated that knockdown of ZEB2 hampered the CsA-induced HGFs proliferation and the elevated cell proliferation due to inhibition of miR-200a was reversed by repression of ZEB2. CONCLUSION: Our results showed that insufficient miR-200a in HGFs caused by CsA administration may lead to gingival enlargement mediated by the upregulation of ZEB2. This finding supported that CsA-induced EMT contributed to the adverse effect of using CsA and miR-200a may serve as an upstream target to prevent the overgrowth of the gingiva.
Subject(s)
Gingival Overgrowth , MicroRNAs , Pharmaceutical Preparations , Zinc Finger E-box Binding Homeobox 2 , Cell Proliferation , Cyclosporine/toxicity , Humans , MicroRNAs/genetics , Zinc Finger E-box Binding Homeobox 2/geneticsABSTRACT
Mitochondrial dysfunction and oxidative stress have been implicated in cyclosporin A (CsA)-induced nephrotoxicity. CsA interacts with cyclophilin D (CypD), an essential component of the mitochondrial permeability transition pore and regulator of cell death processes. Controversial reports have suggested that CypD deletion may or may not protect cells against oxidative stress-induced cell death. In the present study, we treated wild-type (WT) mice and mice lacking CypD [peptidylprolyl isomerase F knockout (Ppif-/-) mice] with CsA to test the role and contribution of CypD to the widely described CsA-induced renal toxicity and oxidative stress. Our results showed an increase in the levels of several known uremic toxins as well as the oxidative stress markers PGF2α and 8-isoprostane in CsA-treated WT animals but not in Ppif-/- animals. Similarly, a decline in S-adenosylmethionine and the resulting methylation potential indicative of DNA hypomethylation were observed only in CsA-treated WT mice. This confirms previous reports of the protective effects of CypD deletion on the mouse kidney mediated through a stronger resistance of these animals to oxidative stress and DNA methylation damage. However, a negative effect of CsA on the glycolysis and overall energy metabolism in Ppif-/- mice also indicated that additional, CypD-parallel pathways are involved in the toxic effects of CsA on the kidney. In summary, CsA-mediated induction of oxidative stress is associated with CypD, with CypD deletion providing a protective effect, whereas the reduction of energy production observed upon CsA exposure did not depend on the animals' CypD status.
Subject(s)
Cyclosporine/toxicity , Immunosuppressive Agents/toxicity , Kidney/drug effects , Oxidative Stress/drug effects , Peptidyl-Prolyl Isomerase F/deficiency , Animals , Biomarkers/metabolism , Chromatography, High Pressure Liquid , Peptidyl-Prolyl Isomerase F/genetics , DNA Damage , DNA Methylation , Dinoprost/analogs & derivatives , Dinoprost/metabolism , Energy Metabolism/drug effects , Female , Gene Knockdown Techniques , Kidney/enzymology , Kidney/pathology , Male , Metabolomics/methods , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Sex Factors , Tandem Mass SpectrometryABSTRACT
We recently reported that celecoxib, a selective cyclooxygenase-2 (COX2) inhibitor, counteracts the adverse circulatory and renal actions of cyclosporine (CSA). Despite the seemingly advantageous nature of this interaction particularly in clinical settings that necessitate the combined use of the two drugs such as immune-related arthritis, the underlying mechanism remains elusive. This prompted us to test the hypothesis that the facilitation of the cystathionine-γ-lyase (CSE)/hydrogen sulfide (H2S) signaling accounts for such favorable effects of celecoxib on CSA nephrotoxicity. The data showed that the 10-day co-treatment of rats with celecoxib (10 mg/kg/day) ameliorated the hypertensive and biochemical and renal structural damages caused by CSA (20 mg/kg/day). Celecoxib also reversed the CSA-evoked (i) reductions in the tubular and glomerular protein expression of CSE and levels of H2S, prostaglandin E2 (PGE2), and total antioxidant capacity (TAC), and (ii) increases in inflammatory (tumor necrosis factor-α, TNF-α), fibrotic (transforming growth factor-ß1, TGF-ß1) and apoptotic (caspase-3) cytokines. These celecoxib effects disappeared when rats were treated concomitantly with the CSE inhibitor DL-propargylglycine (DL-PAG), indicating the importance of the CSE-derived H2S in mediating the renoprotective action of celecoxib. This view is bolstered by the observation that the beneficial hemodynamic and renal actions of celecoxib were replicated after supplementation of rats with sodium sulfide (Na2S, H2S donor). Together, the increased abundance of renal CSE and H2S and subsequent dampening down of inflammatory, fibrotic, oxidant, and apoptotic pathways play pivotal roles in the capacity of celecoxib to compromise the troublesome hypertensive and nephrotoxic insults caused by CSA in rats.
Subject(s)
Celecoxib/pharmacology , Cyclosporine/toxicity , Cystathionine gamma-Lyase/metabolism , Hydrogen Sulfide/metabolism , Hypertension/drug therapy , Kidney/drug effects , Up-Regulation/drug effects , Alkynes/pharmacology , Animals , Apoptosis/drug effects , Celecoxib/therapeutic use , Cytokines/metabolism , Drug Interactions , Glycine/analogs & derivatives , Glycine/pharmacology , Hemodynamics/drug effects , Hypertension/chemically induced , Hypertension/pathology , Hypertension/physiopathology , Kidney/metabolism , Kidney/pathology , Kidney/physiopathology , Male , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley , Signal TransductionABSTRACT
BACKGROUND/AIMS: Cyclosporine A (CsA) is an immunosuppressant drug that is used during organ transplants. However, its utility is limited by its nephrotoxic potential. This study aimed to investigate whether fluorofenidone (AKF-PD) could provide protection against CsA-induced nephrotoxicity. METHODS: Eighty-five male Sprague-Dawley rats were divided into 5 groups: drug solvent, CsA, CsA with AKF-PD (250, 500 mg/kg/day), and CsA with pirfenidone (PFD, 250 mg/kg/day). Tubulointerstitial injury index, extracellular matrix (ECM) deposition, expression of type I and IV collagen, transforming growth factor (TGF)-ß1, platelet-derived growth factor (PDGF), Fas ligand (FASL), cleaved-caspase-3, cleaved-poly(ADP-ribose) polymerase (PARP)-1, and the number of transferase-mediated nick end-labeling (TUNEL)-positive renal tubule cells were determined. In addition, levels of TGF-ß1, FASL, cleaved-caspase-3, cleaved-PARP-1, and number of annexin V-positive cells were determined in rat proximal tubular epithelial cells (NRK-52E) treated with CsA (20 µmol/L), AKF-PD (400 µg/mL), PFD (400 µg/mL), and GW788388 (5 µmol/L). RESULTS: AKF-PD (250, 500 mg/kg/day) significantly reduced tubulointerstitial injury, ECM deposition, expression of type I and IV collagen, TGF-ß1, PDGF, FASL, cleaved-caspase-3, cleaved-PARP-1, and number of TUNEL-positive renal tubule cells in the CsA-treated kidneys. In addition, AKF-PD (400 µg/mL) significantly decreased TGF-ß1, FASL, cleaved-caspase-3, and PARP-1 expression in NRK-52E cells and further reduced the number of annexin V-positive cells. CONCLUSION: AKF-PD protect kidney from fibrosis and apoptosis in CsA-induced kidney injury.