Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Plant Physiol ; 186(3): 1473-1486, 2021 07 06.
Article in English | MEDLINE | ID: mdl-33826743

ABSTRACT

Betalains are the nitrogenous pigments that replace anthocyanins in the plant order Caryophyllales. Here, we describe unconventional decarboxylated betalains in quinoa (Chenopodium quinoa) grains. Decarboxylated betalains are derived from a previously unconsidered activity of the 4,5-DOPA-extradiol-dioxygenase enzyme (DODA), which has been identified as the key enzymatic step in the established biosynthetic pathway of betalains. Here, dopamine is fully characterized as an alternative substrate of the DODA enzyme able to yield an intermediate and structural unit of plant pigments: 6-decarboxy-betalamic acid, which is proposed and described. To characterize this activity, quinoa grains of different colors were analyzed in depth by chromatography, time-of-flight mass spectrometry, and reactions were performed in enzymatic assays and bioreactors. The enzymatic-chemical scheme proposed leads to an uncharacterized family of 6-decarboxylated betalains produced by a hitherto unknown enzymatic activity. All intermediate compounds as well as the final products of the dopamine-based biosynthetic pathway of pigments have been unambiguously determined and the reactions have been characterized from the enzymatic and functional perspectives. Results evidence a palette of molecules in quinoa grains of physiological relevance and which explain minor betalains described in plants of the Caryophyllales order. An entire family of betalains is anticipated.


Subject(s)
Betalains/biosynthesis , Biosynthetic Pathways/genetics , Chenopodium quinoa/genetics , Chenopodium quinoa/metabolism , Decarboxylation/physiology , Dopamine/metabolism , Pigments, Biological/metabolism , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Decarboxylation/genetics , Dopamine/genetics , Genetic Variation , Genotype , Pigments, Biological/genetics
2.
Biotechnol Bioeng ; 115(4): 943-954, 2018 04.
Article in English | MEDLINE | ID: mdl-29278414

ABSTRACT

Acetate, a non-food based substrate obtained from multiple biological and chemical ways, is now being paid great attention in bio-manufacturing and have a strong potential to compete with sugar-based carbon source. In this study, acetate can be efficiently converted to succinate by engineered Escherichia coli strains via the combination of several metabolic engineering strategies, including reducing OAA decarboxylation, engineering TCA cycle, enhancement of acetate assimilation pathway and increasing aerobic ATP supply through cofactor engineering. The engineered strain HB03(pTrc99a-gltA, pBAD33-Trc-fdh) accumulated 30.9 mM of succinate in 72 hr and the yield reached the maximum theoretical yield (∼0.50 mol/mol). In the resting-cell experiments, the yield of succinate in HB03(pTrc99a-gltA) and HB03(pTrc99a-gltA, pBAD33-Trc-fdh) dropped dramatically, although the productivity of succinate increased due to the high cell density. Further deletion of icdA, formed HB04(pTrc99a-gltA) and HB04(pTrc99a-gltA, pBAD33-Trc-fdh), increased the yield of succinate in the resting-cell experiments. The highest concentration of succinate achieved 194 mM and the yield reached 0.44 mol/mol in 16 hr by HB04(pTrc99a-gltA, pBAD33-Trc-fdh). The results showed the metabolically engineered E. coli strains have great potential to produce succinate from acetate.


Subject(s)
Acetates/metabolism , DNA, Bacterial/genetics , Escherichia coli/genetics , Metabolic Engineering , Succinic Acid/metabolism , Aerobiosis , Citric Acid Cycle/genetics , Decarboxylation/genetics , Escherichia coli/enzymology , Gene Deletion , Genes, Bacterial/genetics , Microorganisms, Genetically-Modified/genetics , Oxaloacetic Acid/metabolism
3.
Biochim Biophys Acta ; 1854(2): 146-55, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25500286

ABSTRACT

Dialkylglycine decarboxylase (DGD) is an unusual pyridoxal phosphate dependent enzyme that catalyzes decarboxylation in the first and transamination in the second half-reaction of its ping-pong catalytic cycle. Directed evolution was employed to alter the substrate specificity of DGD from 2-aminoisobutyrate (AIB) to 1-aminocyclohexane-1-carboxylate (AC6C). Four rounds of directed evolution led to the identification of several mutants, with clones in the final rounds containing five persistent mutations. The best clones show ~2.5-fold decrease in KM and ~2-fold increase in kcat, giving a modest ~5-fold increase in catalytic efficiency for AC6C. Additional rounds of directed evolution did not improve catalytic activity toward AC6C. Only one (S306F) of the five persistent mutations is close to the active site. S306F was observed in all 33 clones except one, and the mutation is shown to stabilize the enzyme toward denaturation. The other four persistent mutations are near the surface of the enzyme. The S306F mutation and the distal mutations all have significant effects on the kinetic parameters for AIB and AC6C. Molecular dynamics simulations suggest that the mutations alter the conformational landscape of the enzyme, favoring a more open active site conformation that facilitates the reactivity of the larger substrate. We speculate that the small increases in kcat/KM for AC6C are due to two constraints. The first is the mechanistic requirement for catalyzing oxidative decarboxylation via a concerted decarboxylation/proton transfer transition state. The second is that DGD must catalyze transamination at the same active site in the second half-reaction of the ping-pong catalytic cycle.


Subject(s)
Carboxy-Lyases/chemistry , Catalysis , Directed Molecular Evolution , Protein Conformation , Binding Sites , Burkholderia cepacia/enzymology , Carboxy-Lyases/genetics , Catalytic Domain , Decarboxylation/genetics , Kinetics , Molecular Dynamics Simulation , Pyridoxal Phosphate/metabolism , Substrate Specificity
4.
Plant Physiol ; 167(1): 44-59, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25378692

ABSTRACT

Mitochondrial NAD-malic enzyme (ME) and/or cytosolic/plastidic NADP-ME combined with the cytosolic/plastidic pyruvate orthophosphate dikinase (PPDK) catalyze two key steps during light-period malate decarboxylation that underpin secondary CO(2) fixation in some Crassulacean acid metabolism (CAM) species. We report the generation and phenotypic characterization of transgenic RNA interference lines of the obligate CAM species Kalanchoë fedtschenkoi with reduced activities of NAD-ME or PPDK. Transgenic line rNAD-ME1 had 8%, and rPPDK1 had 5% of the wild-type level of activity, and showed dramatic changes in the light/dark cycle of CAM CO(2) fixation. In well-watered conditions, these lines fixed all of their CO(2) in the light; they thus performed C(3) photosynthesis. The alternative malate decarboxylase, NADP-ME, did not appear to compensate for the reduction in NAD-ME, suggesting that NAD-ME was the key decarboxylase for CAM. The activity of other CAM enzymes was reduced as a consequence of knocking out either NAD-ME or PPDK activity, particularly phosphoenolpyruvate carboxylase (PPC) and PPDK in rNAD-ME1. Furthermore, the circadian clock-controlled phosphorylation of PPC in the dark was reduced in both lines, especially in rNAD-ME1. This had the consequence that circadian rhythms of PPC phosphorylation, PPC kinase transcript levels and activity, and the classic circadian rhythm of CAM CO(2) fixation were lost, or dampened toward arrhythmia, under constant light and temperature conditions. Surprisingly, oscillations in the transcript abundance of core circadian clock genes also became arrhythmic in the rNAD-ME1 line, suggesting that perturbing CAM in K. fedtschenkoi feeds back to perturb the central circadian clock.


Subject(s)
Decarboxylation/genetics , Decarboxylation/physiology , Kalanchoe/metabolism , Circadian Rhythm/genetics , Circadian Rhythm/physiology , Dehydration/metabolism , Gene Knockout Techniques , Kalanchoe/genetics , Kalanchoe/growth & development , Kalanchoe/physiology , Malate Dehydrogenase/genetics , Malate Dehydrogenase/metabolism , Malates/metabolism , Phosphorylation/genetics , Phosphorylation/physiology , Photosynthesis/genetics , Photosynthesis/physiology , Plants, Genetically Modified , Pyruvate, Orthophosphate Dikinase/genetics , Pyruvate, Orthophosphate Dikinase/metabolism , Starch/metabolism
5.
Microb Cell Fact ; 15: 51, 2016 Mar 12.
Article in English | MEDLINE | ID: mdl-26971319

ABSTRACT

BACKGROUND: The yeast amino acid catabolism plays an important role in flavour generation since higher alcohols and acetate esters, amino acid catabolism end products, are key components of overall flavour and aroma in fermented products. Comparative studies have shown that other Saccharomyces species, such as S. kudriavzevii, differ during the production of aroma-active higher alcohols and their esters compared to S. cerevisiae. RESULTS: In this study, we performed a comparative analysis of the enzymes involved in the amino acid catabolism of S. kudriavzevii with their potential to improve the flavour production capacity of S. cerevisiae. In silico screening, based on the severity of amino acid substitutions evaluated by Grantham matrix, revealed four candidates, of which S. kudriavzevii Aro10p (SkAro10p) had the highest score. The analysis of higher alcohols and esters produced by S. cerevisiae then revealed enhanced formation of isobutanol, isoamyl alcohol and their esters when endogenous ARO10 was replaced with ARO10 from S. kudriavzevii. Also, significant differences in the aroma profile were found in fermentations of synthetic wine must. Substrate specificities of SkAro10p were compared with those of S. cerevisiae Aro10p (ScAro10p) by their expression in a 2-keto acid decarboxylase-null S. cerevisiae strain. Unlike the cell extracts with expressed ScAro10p which showed greater activity for phenylpyruvate, which suggests this phenylalanine-derivative to be the preferred substrate, the decarboxylation activities measured in the cell extracts with SkAro10p ranged with all the tested substrates at the same level. The activities of SkAro10p towards substrates (except phenylpyruvate) were higher than of those for ScAro10p. CONCLUSIONS: The results indicate that the amino acid variations observed between the orthologues decarboxylases encoded by SkARO10 and ScARO10 could be the reason for the distinct enzyme properties, which possibly lead to the enhanced production of several flavour compounds. The knowledge on the important enzyme involved in higher alcohols biosynthesis by S. kudriavzevii could be of scientific as well as of applied interest.


Subject(s)
Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Flavoring Agents/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces , Alcohols/metabolism , Cloning, Molecular , Decarboxylation/genetics , Esters/metabolism , Fermentation/genetics , Gene Expression Regulation, Fungal , Saccharomyces/enzymology , Saccharomyces/genetics , Saccharomyces/metabolism , Saccharomyces cerevisiae Proteins/isolation & purification , Substrate Specificity , Wine
6.
Appl Microbiol Biotechnol ; 91(3): 565-76, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21533580

ABSTRACT

Development of a butanologenic strain with high selectivity for butanol production is often proposed as a possible route for improving the economics of biobutanol production by solventogenic Clostridium species. The acetoacetate decarboxylase (aadc) gene encoding acetoacetate decarboxylase (AADC), which catalyzes the decarboxylation of acetoacetate into acetone and CO(2), was successfully disrupted by homologous recombination in solventogenic Clostridium beijerinckii NCIMB 8052 to generate an aadc ( - ) mutant. Our fermentation studies revealed that this mutant produces a maximum acetone concentration of 3 g/L (in P2 medium), a value comparable to that produced by wild-type C. beijerinckii 8052. Therefore, we postulated that AADC-catalyzed decarboxylation of acetoacetate is not the sole means for acetone generation. Our subsequent finding that non-enzymatic decarboxylation of acetoacetate in vitro, under conditions similar to in vivo acetone-butanol-ethanol (ABE) fermentation, produces 1.3 to 5.2 g/L acetone between pH 6.5 and 4 helps rationalize why various knock-out and knock-down strategies designed to disrupt aadc in solventogenic Clostridium species did not eliminate acetone production during ABE fermentation. Based on these results, we discuss alternatives to enhance selectivity for butanol production.


Subject(s)
Acetoacetates/metabolism , Acetone/metabolism , Clostridium beijerinckii/metabolism , Butanols/metabolism , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Clostridium beijerinckii/genetics , Decarboxylation/genetics , Fermentation , Gene Knockout Techniques , Industrial Microbiology/methods , Polymerase Chain Reaction
7.
Mol Genet Metab ; 100(4): 324-32, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20570198

ABSTRACT

Maple syrup urine disease (MSUD) is caused by a defect in branched chain alpha-ketoacid dehydrogenase complex (BCKD), an essential metabolon for the catabolism of the branched chain amino acids. Here, we report four novel mutations in the DBT gene, encoding the transacylase subunit (E2) of BCKD, resulting in intermittent MSUD in seven Norwegian patients. The patients had episodes with neurological symptoms including lethargy and/or ataxia during childhood infections. All seven patients were heterozygous for the annotated R301C mutation. The second allelic mutations were identified in five patients; one nonsense mutation (G62X), two missense mutations (W84C and R376C) and a mutation in the 3' untranslated region (UTR; c. *358A>C) in two patients. These four novel mutations result in near depletion of E2 protein, and the common R301C protein contributes predominantly to the residual (14%) cellular BCKD activity. Structural analyses of the mutations implied that the W84C and R376C mutations affect stability of intramolecular domains in E2, while the R301C mutation likely disturbs E2 trimer assembly as previously reported. The UTR mutated allele coincided with a strong reduction in mRNA levels, as did the non-R301C specific allele in two patients where the second mutation could not be identified. In summary, the pathogenic effect of the novel mutations is depletion of cellular protein, and the intermittent form of MSUD appears to be attributed to the residual R301C mutant protein in these patients.


Subject(s)
Acyltransferases/genetics , Amino Acid Substitution/genetics , Maple Syrup Urine Disease/genetics , Mutation/genetics , Acyltransferases/chemistry , Acyltransferases/metabolism , Alleles , Amino Acids, Branched-Chain/metabolism , Base Sequence , Child , Child, Preschool , DNA Mutational Analysis , Decarboxylation/genetics , Fibroblasts/enzymology , Fibroblasts/pathology , Gene Expression Regulation , Heterozygote , Humans , Infant , Maple Syrup Urine Disease/enzymology , Molecular Sequence Data , Mutation, Missense/genetics , Norway , Protein Structure, Secondary , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism
8.
Bioresour Technol ; 192: 90-6, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26022970

ABSTRACT

The aim of the study was to increase production of (R)-PAC by altering carboligation activity of Pdc in Saccharomyces cerevisiae. Pdc1 activity was modified by over-expression as well as changing the rate of decarboxylation and carboligation by site specific mutation in Pdc1. Over-expression of mutant Pdc1 resulted in 50 ± 2.5% increase in levels of (R)-PAC in wild-type and further 30-40% in pdc null background. The combination of mutant Pdc1 in pdc null background was successfully evaluated for production of (R)-PAC at industrial scale. This is the first report of enhancing (R)-PAC product in yeast by recombinant technology with capability of commercial production.


Subject(s)
Pyruvate Decarboxylase/genetics , Pyruvate Decarboxylase/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Decarboxylation/genetics , Methanol/metabolism , Mutation/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
9.
Braz J Microbiol ; 46(3): 753-7, 2015.
Article in English | MEDLINE | ID: mdl-26413057

ABSTRACT

Quinolones and fluoroquinolones are widely used to treat uropathogenic Escherichia coli infections. Bacterial resistance to these antimicrobials primarily involves mutations in gyrA and parC genes. To date, no studies have examined the potential relationship between biochemical characteristics and quinolone resistance in uropathogenic E. coli strains. The present work analyzed the quinolone sensitivity and biochemical activities of fifty-eight lactose-negative uropathogenic E. coli strains. A high percentage of the isolates (48.3%) was found to be resistant to at least one of the tested quinolones, and DNA sequencing revealed quinolone resistant determining region gyrA and parC mutations in the multi-resistant isolates. Statistical analyses suggested that the lack of ornithine decarboxylase (ODC) activity is correlated with quinolone resistance. Despite the low number of isolates examined, this is the first study correlating these characteristics in lactose-negative E. coli isolates.


Subject(s)
Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli Infections/drug therapy , Fluoroquinolones/therapeutic use , Lactose/metabolism , Nalidixic Acid/therapeutic use , Ornithine Decarboxylase/genetics , Urinary Tract Infections/drug therapy , Uropathogenic Escherichia coli/genetics , Anti-Bacterial Agents/therapeutic use , Brazil , DNA Gyrase/genetics , DNA Topoisomerase IV/genetics , Decarboxylation/genetics , Decarboxylation/physiology , Escherichia coli Infections/microbiology , Humans , Microbial Sensitivity Tests , Ornithine/metabolism , Urinary Tract Infections/microbiology , Uropathogenic Escherichia coli/drug effects , Uropathogenic Escherichia coli/enzymology , Uropathogenic Escherichia coli/isolation & purification
10.
Braz. j. microbiol ; 46(3): 753-757, July-Sept. 2015. tab, ilus
Article in English | LILACS | ID: lil-755797

ABSTRACT

Quinolones and fluoroquinolones are widely used to treat uropathogenic Escherichia coli infections. Bacterial resistance to these antimicrobials primarily involves mutations in gyrA and parC genes. To date, no studies have examined the potential relationship between biochemical characteristics and quinolone resistance in uropathogenic E. coli strains. The present work analyzed the quinolone sensitivity and biochemical activities of fifty-eight lactose-negative uropathogenic E. coli strains. A high percentage of the isolates (48.3%) was found to be resistant to at least one of the tested quinolones, and DNA sequencing revealed quinolone resistant determining region gyrA and parC mutations in the multi-resistant isolates. Statistical analyses suggested that the lack of ornithine decarboxylase (ODC) activity is correlated with quinolone resistance. Despite the low number of isolates examined, this is the first study correlating these characteristics in lactose-negative E. coli isolates.

.


Subject(s)
Humans , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli Infections/drug therapy , Fluoroquinolones/therapeutic use , Lactose/metabolism , Nalidixic Acid/therapeutic use , Ornithine Decarboxylase/genetics , Urinary Tract Infections/drug therapy , Uropathogenic Escherichia coli/genetics , Anti-Bacterial Agents/therapeutic use , Brazil , DNA Gyrase/genetics , DNA Topoisomerase IV/genetics , Decarboxylation/genetics , Decarboxylation/physiology , Escherichia coli Infections/microbiology , Microbial Sensitivity Tests , Ornithine/metabolism , Urinary Tract Infections/microbiology , Uropathogenic Escherichia coli/drug effects , Uropathogenic Escherichia coli/enzymology , Uropathogenic Escherichia coli/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL