Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 772
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 187(10): 2574-2594.e23, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38729112

ABSTRACT

High-resolution electron microscopy of nervous systems has enabled the reconstruction of synaptic connectomes. However, we do not know the synaptic sign for each connection (i.e., whether a connection is excitatory or inhibitory), which is implied by the released transmitter. We demonstrate that artificial neural networks can predict transmitter types for presynapses from electron micrographs: a network trained to predict six transmitters (acetylcholine, glutamate, GABA, serotonin, dopamine, octopamine) achieves an accuracy of 87% for individual synapses, 94% for neurons, and 91% for known cell types across a D. melanogaster whole brain. We visualize the ultrastructural features used for prediction, discovering subtle but significant differences between transmitter phenotypes. We also analyze transmitter distributions across the brain and find that neurons that develop together largely express only one fast-acting transmitter (acetylcholine, glutamate, or GABA). We hope that our publicly available predictions act as an accelerant for neuroscientific hypothesis generation for the fly.


Subject(s)
Drosophila melanogaster , Microscopy, Electron , Neurotransmitter Agents , Synapses , Animals , Brain/ultrastructure , Brain/metabolism , Connectome , Drosophila melanogaster/ultrastructure , Drosophila melanogaster/metabolism , gamma-Aminobutyric Acid/metabolism , Microscopy, Electron/methods , Neural Networks, Computer , Neurons/metabolism , Neurons/ultrastructure , Neurotransmitter Agents/metabolism , Synapses/ultrastructure , Synapses/metabolism
2.
Cell ; 184(3): 759-774.e18, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33400916

ABSTRACT

To investigate circuit mechanisms underlying locomotor behavior, we used serial-section electron microscopy (EM) to acquire a synapse-resolution dataset containing the ventral nerve cord (VNC) of an adult female Drosophila melanogaster. To generate this dataset, we developed GridTape, a technology that combines automated serial-section collection with automated high-throughput transmission EM. Using this dataset, we studied neuronal networks that control leg and wing movements by reconstructing all 507 motor neurons that control the limbs. We show that a specific class of leg sensory neurons synapses directly onto motor neurons with the largest-caliber axons on both sides of the body, representing a unique pathway for fast limb control. We provide open access to the dataset and reconstructions registered to a standard atlas to permit matching of cells between EM and light microscopy data. We also provide GridTape instrumentation designs and software to make large-scale EM more accessible and affordable to the scientific community.


Subject(s)
Aging/physiology , Drosophila melanogaster/ultrastructure , Microscopy, Electron, Transmission , Motor Neurons/ultrastructure , Sensory Receptor Cells/ultrastructure , Animals , Automation , Connectome , Extremities/innervation , Peripheral Nerves/ultrastructure , Synapses/ultrastructure
3.
Nature ; 631(8020): 360-368, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38926570

ABSTRACT

A deep understanding of how the brain controls behaviour requires mapping neural circuits down to the muscles that they control. Here, we apply automated tools to segment neurons and identify synapses in an electron microscopy dataset of an adult female Drosophila melanogaster ventral nerve cord (VNC)1, which functions like the vertebrate spinal cord to sense and control the body. We find that the fly VNC contains roughly 45 million synapses and 14,600 neuronal cell bodies. To interpret the output of the connectome, we mapped the muscle targets of leg and wing motor neurons using genetic driver lines2 and X-ray holographic nanotomography3. With this motor neuron atlas, we identified neural circuits that coordinate leg and wing movements during take-off. We provide the reconstruction of VNC circuits, the motor neuron atlas and tools for programmatic and interactive access as resources to support experimental and theoretical studies of how the nervous system controls behaviour.


Subject(s)
Connectome , Drosophila melanogaster , Motor Neurons , Nerve Tissue , Neural Pathways , Synapses , Animals , Female , Datasets as Topic , Drosophila melanogaster/anatomy & histology , Drosophila melanogaster/cytology , Drosophila melanogaster/physiology , Drosophila melanogaster/ultrastructure , Extremities/physiology , Extremities/innervation , Holography , Microscopy, Electron , Motor Neurons/cytology , Motor Neurons/physiology , Motor Neurons/ultrastructure , Movement , Muscles/innervation , Muscles/physiology , Nerve Tissue/anatomy & histology , Nerve Tissue/cytology , Nerve Tissue/physiology , Nerve Tissue/ultrastructure , Neural Pathways/cytology , Neural Pathways/physiology , Neural Pathways/ultrastructure , Synapses/physiology , Synapses/ultrastructure , Tomography, X-Ray , Wings, Animal/innervation , Wings, Animal/physiology
4.
Cell ; 149(4): 832-46, 2012 May 11.
Article in English | MEDLINE | ID: mdl-22579286

ABSTRACT

Localized protein synthesis requires assembly and transport of translationally silenced ribonucleoprotein particles (RNPs), some of which are exceptionally large. Where in the cell such large RNP granules first assemble was heretofore unknown. We previously reported that during synapse development, a fragment of the Wnt-1 receptor, DFrizzled2, enters postsynaptic nuclei where it forms prominent foci. Here we show that these foci constitute large RNP granules harboring synaptic protein transcripts. These granules exit the nucleus by budding through the inner and the outer nuclear membranes in a nuclear egress mechanism akin to that of herpes viruses. This budding involves phosphorylation of A-type lamin, a protein linked to muscular dystrophies. Thus nuclear envelope budding is an endogenous nuclear export pathway for large RNP granules.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Frizzled Receptors/metabolism , Lamin Type A/metabolism , Neuromuscular Junction/metabolism , Nuclear Envelope/metabolism , RNA, Messenger/metabolism , Ribonucleoproteins/metabolism , Animals , Drosophila melanogaster/ultrastructure , Humans , Larva/metabolism , Larva/ultrastructure , Muscle Fibers, Skeletal/ultrastructure , Nuclear Envelope/ultrastructure , Signal Transduction
5.
Nature ; 599(7883): 147-151, 2021 11.
Article in English | MEDLINE | ID: mdl-34616045

ABSTRACT

Understanding cellular architecture is essential for understanding biology. Electron microscopy (EM) uniquely visualizes cellular structures with nanometre resolution. However, traditional methods, such as thin-section EM or EM tomography, have limitations in that they visualize only a single slice or a relatively small volume of the cell, respectively. Focused ion beam-scanning electron microscopy (FIB-SEM) has demonstrated the ability to image small volumes of cellular samples with 4-nm isotropic voxels1. Owing to advances in the precision and stability of FIB milling, together with enhanced signal detection and faster SEM scanning, we have increased the volume that can be imaged with 4-nm voxels by two orders of magnitude. Here we present a volume EM atlas at such resolution comprising ten three-dimensional datasets for whole cells and tissues, including cancer cells, immune cells, mouse pancreatic islets and Drosophila neural tissues. These open access data (via OpenOrganelle2) represent the foundation of a field of high-resolution whole-cell volume EM and subsequent analyses, and we invite researchers to explore this atlas and pose questions.


Subject(s)
Datasets as Topic , Information Dissemination , Microscopy, Electron, Scanning , Organelles/ultrastructure , Animals , Cell Line , Cells, Cultured , Drosophila melanogaster/cytology , Drosophila melanogaster/ultrastructure , Female , Golgi Apparatus/ultrastructure , Humans , Interphase , Islets of Langerhans/cytology , Male , Mice , Microscopy, Electron, Scanning/methods , Microscopy, Electron, Scanning/standards , Microtubules/ultrastructure , Neuroglia/ultrastructure , Neurons/ultrastructure , Open Access Publishing , Ovarian Neoplasms/immunology , Ovarian Neoplasms/ultrastructure , Ribosomes/ultrastructure , Synaptic Vesicles/ultrastructure , T-Lymphocytes, Cytotoxic/cytology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/ultrastructure
6.
Development ; 147(20)2020 10 29.
Article in English | MEDLINE | ID: mdl-32994170

ABSTRACT

Programmed cell death and consecutive removal of cellular remnants is essential for development. During late stages of Drosophila melanogaster oogenesis, the small somatic follicle cells that surround the large nurse cells promote non-apoptotic nurse cell death, subsequently engulf them, and contribute to the timely removal of nurse cell corpses. Here, we identify a role for Vps13 in the timely removal of nurse cell corpses downstream of developmental programmed cell death. Vps13 is an evolutionarily conserved peripheral membrane protein associated with membrane contact sites and lipid transfer. It is expressed in late nurse cells, and persistent nurse cell remnants are observed when Vps13 is depleted from nurse cells but not from follicle cells. Microscopic analysis revealed enrichment of Vps13 in close proximity to the plasma membrane and the endoplasmic reticulum in nurse cells undergoing degradation. Ultrastructural analysis uncovered the presence of an underlying Vps13-dependent membranous structure in close association with the plasma membrane. The newly identified structure and function suggests the presence of a Vps13-dependent process required for complete degradation of bulky remnants of dying cells.


Subject(s)
Apoptosis , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/metabolism , Vesicular Transport Proteins/metabolism , Animals , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Cell Nucleus/metabolism , Down-Regulation , Drosophila melanogaster/ultrastructure , Endoplasmic Reticulum/metabolism , Female , Fertility , Mutation/genetics , Oogenesis , Ovarian Follicle/cytology , Ovarian Follicle/metabolism , Ovarian Follicle/ultrastructure , Phenotype
7.
J Biol Chem ; 297(1): 100804, 2021 07.
Article in English | MEDLINE | ID: mdl-34044018

ABSTRACT

The functional amyloid Orb2 belongs to the cytoplasmic polyadenylation element binding (CPEB) protein family and plays an important role in long-term memory formation in Drosophila. The Orb2 domain structure combines RNA recognition motifs with low-complexity sequences similar to many RNA-binding proteins shown to form protein droplets via liquid-liquid phase separation (LLPS) in vivo and in vitro. This similarity suggests that Orb2 might also undergo LLPS. However, cellular Orb2 puncta have very little internal protein mobility, and Orb2 forms fibrils in Drosophila brains that are functionally active indicating that LLPS might not play a role for Orb2. In the present work, we reconcile these two views on Orb2 droplet formation. Using fluorescence microscopy, we show that soluble Orb2 can indeed phase separate into protein droplets. However, fluorescence recovery after photobleaching (FRAP) data shows that these droplets have either no or only an extremely short-lived liquid phase and appear maturated right after formation. Orb2 fragments that lack the C-terminal RNA-binding domain (RBD) form fibrils out of these droplets. Solid-state NMR shows that these fibrils have well-ordered static domains in addition to the Gln/His-rich fibril core. Further, we find that full-length Orb2B, which is by far the major component of Orb2 fibrils in vivo, does not transition into fibrils but remains in the droplet phase. Together, our data suggest that phase separation might play a role in initiating the formation of functional Orb2 fibrils.


Subject(s)
Amyloid/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Transcription Factors/metabolism , mRNA Cleavage and Polyadenylation Factors/metabolism , Amino Acid Sequence , Amyloid/ultrastructure , Animals , Benzothiazoles/metabolism , Carbon Isotopes , Drosophila Proteins/chemistry , Drosophila melanogaster/ultrastructure , Fluorescence , Osmolar Concentration , Protein Domains , Transcription Factors/chemistry , mRNA Cleavage and Polyadenylation Factors/chemistry
8.
Development ; 145(12)2018 06 21.
Article in English | MEDLINE | ID: mdl-29802150

ABSTRACT

Using electron microscopy to localize rare cellular events or structures in complex tissue is challenging. Correlative light and electron microscopy procedures have been developed to link fluorescent protein expression with ultrastructural resolution. Here, we present an optimized scanning electron microscopy (SEM) workflow for volumetric array tomography for asymmetric samples and model organisms (Caenorhabditis elegans, Drosophila melanogaster, Danio rerio). We modified a diamond knife to simplify serial section array acquisition with minimal artifacts. After array acquisition, the arrays were transferred to a glass coverslip or silicon wafer support. Using light microscopy, the arrays were screened rapidly for initial recognition of global anatomical features (organs or body traits). Then, using SEM, an in-depth study of the cells and/or organs of interest was performed. Our manual and automatic data acquisition strategies make 3D data acquisition and correlation simpler and more precise than alternative methods. This method can be used to address questions in cell and developmental biology that require the efficient identification of a labeled cell or organelle.


Subject(s)
Imaging, Three-Dimensional , Microscopy, Electron, Scanning , Tomography , Animals , Caenorhabditis elegans/cytology , Drosophila melanogaster/cytology , Drosophila melanogaster/ultrastructure , Microscopy, Fluorescence , Models, Biological
9.
Development ; 145(20)2018 10 16.
Article in English | MEDLINE | ID: mdl-30143542

ABSTRACT

Disruptions of normal Hox gene expression can lead to severe morphological defects, revealing a link between the regulation of Hox expression and pattern formation. Here, we explore these links, focusing on the impact of microRNA regulation on the expression of the Drosophila Hox gene Ultrabithorax (Ubx) during haltere development. Through a combination of bioinformatic and transcriptomic analyses, we identify the miR-310/313 cluster (miR-310C) as a candidate regulator of Ubx Several experiments confirm this. First, miR-310C and Ubx protein show complementary expression patterns in haltere imaginal discs; second, artificial activation of miR-310C expression in haltere discs leads to Ubx-like phenotypes. Third, expression of a fluorescent reporter bearing Ubx 3'UTR sequences is reduced when co-expressed with miR-310C Fourth, deletion of miR-310C leads to Ubx upregulation and changes the array of mechanosensory sensilla at the base of the haltere. Fifth, an artificial increase of Ubx levels within the miR-310C expression domain phenocopies the mechanosensory defects observed in miR-310C mutants. We propose that miR-310C-mediated repression delimits Ubx fine-grain expression, contributing to the sculpting of complex morphologies in the Drosophila haltere with implications for flight control. Our work reveals a novel role of microRNA regulation in the control of Hox gene expression with impact on morphology.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/anatomy & histology , Drosophila melanogaster/genetics , Gene Expression Regulation, Developmental , Genes, Homeobox , Homeodomain Proteins/genetics , MicroRNAs/metabolism , Transcription Factors/genetics , Wings, Animal/anatomy & histology , 3' Untranslated Regions/genetics , Animals , Body Patterning/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/ultrastructure , Genetic Loci , Homeodomain Proteins/metabolism , MicroRNAs/genetics , Mutation/genetics , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/metabolism , Up-Regulation/genetics , Wings, Animal/ultrastructure
10.
Nat Methods ; 15(12): 1090-1097, 2018 12.
Article in English | MEDLINE | ID: mdl-30478326

ABSTRACT

Fluorescence microscopy is a key driver of discoveries in the life sciences, with observable phenomena being limited by the optics of the microscope, the chemistry of the fluorophores, and the maximum photon exposure tolerated by the sample. These limits necessitate trade-offs between imaging speed, spatial resolution, light exposure, and imaging depth. In this work we show how content-aware image restoration based on deep learning extends the range of biological phenomena observable by microscopy. We demonstrate on eight concrete examples how microscopy images can be restored even if 60-fold fewer photons are used during acquisition, how near isotropic resolution can be achieved with up to tenfold under-sampling along the axial direction, and how tubular and granular structures smaller than the diffraction limit can be resolved at 20-times-higher frame rates compared to state-of-the-art methods. All developed image restoration methods are freely available as open source software in Python, FIJI, and KNIME.


Subject(s)
Fluorescent Dyes/chemistry , Image Processing, Computer-Assisted/methods , Microscopy, Fluorescence/methods , Software , Animals , Drosophila melanogaster/metabolism , Drosophila melanogaster/ultrastructure , HeLa Cells , Humans , Liver/metabolism , Liver/ultrastructure , Photons , Planarians/metabolism , Planarians/ultrastructure , Retina/metabolism , Retina/ultrastructure , Tribolium/metabolism , Tribolium/ultrastructure , Zebrafish/metabolism
11.
PLoS Biol ; 16(4): e2004718, 2018 04.
Article in English | MEDLINE | ID: mdl-29702642

ABSTRACT

Sarcomeres are stereotyped force-producing mini-machines of striated muscles. Each sarcomere contains a pseudocrystalline order of bipolar actin and myosin filaments, which are linked by titin filaments. During muscle development, these three filament types need to assemble into long periodic chains of sarcomeres called myofibrils. Initially, myofibrils contain immature sarcomeres, which gradually mature into their pseudocrystalline order. Despite the general importance, our understanding of myofibril assembly and sarcomere maturation in vivo is limited, in large part because determining the molecular order of protein components during muscle development remains challenging. Here, we applied polarization-resolved microscopy to determine the molecular order of actin during myofibrillogenesis in vivo. This method revealed that, concomitantly with mechanical tension buildup in the myotube, molecular actin order increases, preceding the formation of immature sarcomeres. Mechanistically, both muscle and nonmuscle myosin contribute to this actin order gain during early stages of myofibril assembly. Actin order continues to increase while myofibrils and sarcomeres mature. Muscle myosin motor activity is required for the regular and coordinated assembly of long myofibrils but not for the high actin order buildup during sarcomere maturation. This suggests that, in muscle, other actin-binding proteins are sufficient to locally bundle or cross-link actin into highly regular arrays.


Subject(s)
Actin Cytoskeleton/ultrastructure , Actins/metabolism , Drosophila melanogaster/ultrastructure , Myofibrils/ultrastructure , Pupa/ultrastructure , Sarcomeres/ultrastructure , Actin Cytoskeleton/metabolism , Actins/ultrastructure , Animals , Biomechanical Phenomena , Connectin/metabolism , Connectin/ultrastructure , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Flight, Animal/physiology , Microscopy, Polarization/methods , Myofibrils/metabolism , Myosins/metabolism , Myosins/ultrastructure , Pupa/growth & development , Pupa/metabolism , Sarcomeres/metabolism
12.
EMBO Rep ; 20(3)2019 03.
Article in English | MEDLINE | ID: mdl-30692130

ABSTRACT

The ubiquitin ligase Highwire restrains synaptic growth and promotes evoked neurotransmission at NMJ synapses in Drosophila Highwire regulates synaptic morphology by downregulating the MAP3K Wallenda, but excess Wallenda signaling does not account for the decreased presynaptic release observed in highwire mutants. Hence, Highwire likely has a second substrate that inhibits neurotransmission. Highwire targets the NAD+ biosynthetic and axoprotective enzyme dNmnat to regulate axonal injury responses. dNmnat localizes to synapses and interacts with the active zone protein Bruchpilot, leading us to hypothesize that Highwire promotes evoked release by downregulating dNmnat. Here, we show that excess dNmnat is necessary in highwire mutants and sufficient in wild-type larvae to reduce quantal content, likely via disruption of active zone ultrastructure. Catalytically active dNmnat is required to drive defects in evoked release, and depletion of a second NAD+ synthesizing enzyme is sufficient to suppress these defects in highwire mutants, suggesting that excess NAD+ biosynthesis is the mechanism inhibiting neurotransmission. Thus, Highwire downregulates dNmnat to promote evoked synaptic release, suggesting that Highwire balances the axoprotective and synapse-inhibitory functions of dNmnat.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/enzymology , Drosophila melanogaster/physiology , NAD/biosynthesis , Nerve Tissue Proteins/metabolism , Nicotinamide-Nucleotide Adenylyltransferase/metabolism , Synaptic Transmission , Animals , Biocatalysis , Drosophila melanogaster/ultrastructure , Mutation/genetics , Neuromuscular Junction/metabolism , Presynaptic Terminals/metabolism , Presynaptic Terminals/ultrastructure , Probability
13.
Am J Physiol Cell Physiol ; 318(6): C1107-C1122, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32267718

ABSTRACT

Tetraspanin-2A (Tsp2A) is an integral membrane protein of smooth septate junctions in Drosophila melanogaster. To elucidate its structural and functional roles in Malpighian tubules, we used the c42-GAL4/UAS system to selectively knock down Tsp2A in principal cells of the tubule. Tsp2A localizes to smooth septate junctions (sSJ) in Malpighian tubules in a complex shared with partner proteins Snakeskin (Ssk), Mesh, and Discs large (Dlg). Knockdown of Tsp2A led to the intracellular retention of Tsp2A, Ssk, Mesh, and Dlg, gaps and widening spaces in remaining sSJ, and tumorous and cystic tubules. Elevated protein levels together with diminished V-type H+-ATPase activity in Tsp2A knockdown tubules are consistent with cell proliferation and reduced transport activity. Indeed, Malpighian tubules isolated from Tsp2A knockdown flies failed to secrete fluid in vitro. The absence of significant transepithelial voltages and resistances manifests an extremely leaky epithelium that allows secreted solutes and water to leak back to the peritubular side. The tubular failure to excrete fluid leads to extracellular volume expansion in the fly and to death within the first week of adult life. Expression of the c42-GAL4 driver begins in Malpighian tubules in the late embryo and progresses upstream to distal tubules in third instar larvae, which can explain why larvae survive Tsp2A knockdown and adults do not. Uncontrolled cell proliferation upon Tsp2A knockdown confirms the role of Tsp2A as tumor suppressor in addition to its role in sSJ structure and transepithelial transport.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Epithelial Cells/metabolism , Malpighian Tubules/metabolism , Tetraspanins/metabolism , Tight Junctions/metabolism , Animals , Animals, Genetically Modified , Cell Proliferation , Drosophila Proteins/genetics , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Drosophila melanogaster/ultrastructure , Electric Impedance , Epithelial Cells/ultrastructure , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Larva/genetics , Larva/metabolism , Larva/ultrastructure , Malpighian Tubules/embryology , Malpighian Tubules/ultrastructure , Secretory Pathway , Signal Transduction , Tetraspanins/genetics , Tight Junctions/genetics , Tight Junctions/ultrastructure , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism
14.
Dev Biol ; 453(1): 56-67, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31158364

ABSTRACT

Photoreceptor cells (PRCs) across the animal kingdom are characterized by a stacking of apical membranes to accommodate the high abundance of photopigment. In arthropods and many other invertebrate phyla PRC membrane stacks adopt the shape of densely packed microvilli that form a structure called rhabdomere. PRCs and surrounding accessory cells, including pigment cells and lens-forming cells, are grouped in stereotyped units, the ommatidia. In larvae of holometabolan insects, eyes (called stemmata) are reduced in terms of number and composition of ommatidia. The stemma of Drosophila (Bolwig organ) is reduced to a bilateral cluster of subepidermal PRCs, lacking all other cell types. In the present paper we have analyzed the development and fine structure of the Drosophila larval PRCs. Shortly after their appearance in the embryonic head ectoderm, PRC precursors delaminate and lose expression of apical markers of epithelial cells, including Crumbs and several centrosome-associated proteins. In the early first instar larva, PRCs show an expanded, irregularly shaped apical surface that is folded into multiple horizontal microvillar-like processes (MLPs). Apical PRC membranes and MLPs are covered with a layer of extracellular matrix. MLPs are predominantly aligned along an axis that extends ventro-anteriorly to dorso-posteriorly, but vary in length, diameter, and spacing. Individual MLPs present a "beaded" shape, with thick segments (0.2-0.3 µm diameter) alternating with thin segments (>0.1 µm). We show that loss of the glycoprotein Chaoptin, which is absolutely essential for rhabdomere formation in the adult PRCs, does not lead to severe abnormalities in larval PRCs.


Subject(s)
Drosophila melanogaster/ultrastructure , Eye/ultrastructure , Microscopy, Electron , Microvilli/ultrastructure , Photoreceptor Cells, Invertebrate/ultrastructure , Animals , Drosophila Proteins/metabolism , Drosophila melanogaster/embryology , Embryonic Development , Larva/ultrastructure , Mutation/genetics
15.
Development ; 144(19): 3499-3510, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28860114

ABSTRACT

Synaptogenesis requires orchestrated communication between pre- and postsynaptic cells via coordinated trans-synaptic signaling across the extracellular synaptomatrix. The first Wnt signaling ligand discovered, Drosophila Wingless (Wg; Wnt1 in mammals), plays crucial roles in synaptic development, regulating synapse architecture as well as functional differentiation. Here, we investigate synaptogenic functions of the secreted extracellular deacylase Notum, which restricts Wg signaling by cleaving an essential palmitoleate moiety. At the glutamatergic neuromuscular junction (NMJ) synapse, we find that Notum secreted from the postsynaptic muscle acts to strongly modulate synapse growth, structural architecture, ultrastructural development and functional differentiation. In Notum null flies, we find upregulated extracellular Wg ligand and nuclear trans-synaptic signal transduction, as well as downstream misregulation of both pre- and postsynaptic molecular assembly. Structural, functional and molecular synaptogenic defects are all phenocopied by Wg overexpression, suggesting that Notum acts solely by inhibiting Wg trans-synaptic signaling. Moreover, these synaptic development phenotypes are suppressed by genetically correcting Wg levels in Notum null mutants, indicating that Notum normally functions to coordinate synaptic structural and functional differentiation via negative regulation of Wg trans-synaptic signaling in the extracellular synaptomatrix.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Extracellular Space/metabolism , Signal Transduction , Synapses/metabolism , Wnt1 Protein/metabolism , Animals , Cell Differentiation , Cell Movement , Cytoplasmic Vesicles/metabolism , Cytoplasmic Vesicles/ultrastructure , Drosophila melanogaster/ultrastructure , Ligands , Muscles/metabolism , Mutation/genetics , Neuroglia/metabolism , Neuromuscular Junction/metabolism , Phenotype , Synapses/ultrastructure
16.
EMBO Rep ; 19(8)2018 08.
Article in English | MEDLINE | ID: mdl-29898954

ABSTRACT

Charcot-Marie-Tooth disease type 2A (CMT2A) is caused by dominant alleles of the mitochondrial pro-fusion factor Mitofusin 2 (MFN2). To address the consequences of these mutations on mitofusin activity and neuronal function, we generate Drosophila models expressing in neurons the two most frequent substitutions (R94Q and R364W, the latter never studied before) and two others localizing to similar domains (T105M and L76P). All alleles trigger locomotor deficits associated with mitochondrial depletion at neuromuscular junctions, decreased oxidative metabolism and increased mtDNA mutations, but they differently alter mitochondrial morphology and organization. Substitutions near or within the GTPase domain (R94Q, T105M) result in loss of function and provoke aggregation of unfused mitochondria. In contrast, mutations within helix bundle 1 (R364W, L76P) enhance mitochondrial fusion, as demonstrated by the rescue of mitochondrial alterations and locomotor deficits by over-expression of the fission factor DRP1. In conclusion, we show that both dominant negative and dominant active forms of mitofusin can cause CMT2A-associated defects and propose for the first time that excessive mitochondrial fusion drives CMT2A pathogenesis in a large number of patients.


Subject(s)
Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/pathology , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Gain of Function Mutation/genetics , Loss of Function Mutation/genetics , Membrane Proteins/genetics , Alleles , Amino Acid Sequence , Animals , Charcot-Marie-Tooth Disease/physiopathology , Disease Models, Animal , Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Drosophila melanogaster/ultrastructure , Humans , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Mice , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitochondrial Dynamics , Motor Activity , Neuromuscular Junction/metabolism , Neurons/metabolism , Neurons/pathology , Neurons/ultrastructure
17.
Nucleic Acids Res ; 46(17): 9189-9200, 2018 09 28.
Article in English | MEDLINE | ID: mdl-30053160

ABSTRACT

In Eukaryotes, DNA is wound around the histone octamer forming the basic chromatin unit, the nucleosome. Atomic structures have been obtained from crystallography and single particle cryo-electron microscopy (cryoEM) of identical engineered particles. But native nucleosomes are dynamical entities with diverse DNA sequence and histone content, and little is known about their conformational variability, especially in the cellular context. Using cryoEM and tomography of vitreous sections we analyse native nucleosomes, both in vitro, using purified particles solubilized at physiologically relevant concentrations (25-50%), and in situ, within interphase nuclei. We visualize individual nucleosomes at a level of detail that allows us to measure the distance between the DNA gyres wrapped around. In concentrated solutions, we demonstrate a salt-dependent transition, with a high salt compact conformation resembling the canonical nucleosome and an open low salt one, closer to nuclear nucleosomes. Although further particle characterization and cartography are needed to understand the relationship between this conformational variability and chromatin functional states, this work opens a route to chromatin exploration in situ.


Subject(s)
DNA/ultrastructure , Drosophila melanogaster/ultrastructure , Histones/ultrastructure , Interphase , Lymphocytes/ultrastructure , Nucleosomes/ultrastructure , Animals , Brain/cytology , Brain/ultrastructure , Cell Line, Tumor , Cryoelectron Microscopy , Drosophila melanogaster/embryology , Embryo, Nonmammalian , HT29 Cells , Humans , Microtomy , Nucleic Acid Conformation , Osmolar Concentration , Vitrification
18.
Proc Natl Acad Sci U S A ; 114(33): E6857-E6866, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28760978

ABSTRACT

The synaptonemal complex (SC), a structure highly conserved from yeast to mammals, assembles between homologous chromosomes and is essential for accurate chromosome segregation at the first meiotic division. In Drosophila melanogaster, many SC components and their general positions within the complex have been dissected through a combination of genetic analyses, superresolution microscopy, and electron microscopy. Although these studies provide a 2D understanding of SC structure in Drosophila, the inability to optically resolve the minute distances between proteins in the complex has precluded its 3D characterization. A recently described technology termed expansion microscopy (ExM) uniformly increases the size of a biological sample, thereby circumventing the limits of optical resolution. By adapting the ExM protocol to render it compatible with structured illumination microscopy, we can examine the 3D organization of several known Drosophila SC components. These data provide evidence that two layers of SC are assembled. We further speculate that each SC layer may connect two nonsister chromatids, and present a 3D model of the Drosophila SC based on these findings.


Subject(s)
Drosophila melanogaster/ultrastructure , Imaging, Three-Dimensional/methods , Microscopy, Electron/methods , Synaptonemal Complex/ultrastructure , Animals , Female , Microscopy, Immunoelectron/methods
19.
PLoS Genet ; 13(3): e1006635, 2017 03.
Article in English | MEDLINE | ID: mdl-28301478

ABSTRACT

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are two incurable neurodegenerative disorders that exist on a symptomological spectrum and share both genetic underpinnings and pathophysiological hallmarks. Functional abnormality of TAR DNA-binding protein 43 (TDP-43), an aggregation-prone RNA and DNA binding protein, is observed in the vast majority of both familial and sporadic ALS cases and in ~40% of FTLD cases, but the cascade of events leading to cell death are not understood. We have expressed human TDP-43 (hTDP-43) in Drosophila neurons and glia, a model that recapitulates many of the characteristics of TDP-43-linked human disease including protein aggregation pathology, locomotor impairment, and premature death. We report that such expression of hTDP-43 impairs small interfering RNA (siRNA) silencing, which is the major post-transcriptional mechanism of retrotransposable element (RTE) control in somatic tissue. This is accompanied by de-repression of a panel of both LINE and LTR families of RTEs, with somewhat different elements being active in response to hTDP-43 expression in glia versus neurons. hTDP-43 expression in glia causes an early and severe loss of control of a specific RTE, the endogenous retrovirus (ERV) gypsy. We demonstrate that gypsy causes the degenerative phenotypes in these flies because we are able to rescue the toxicity of glial hTDP-43 either by genetically blocking expression of this RTE or by pharmacologically inhibiting RTE reverse transcriptase activity. Moreover, we provide evidence that activation of DNA damage-mediated programmed cell death underlies both neuronal and glial hTDP-43 toxicity, consistent with RTE-mediated effects in both cell types. Our findings suggest a novel mechanism in which RTE activity contributes to neurodegeneration in TDP-43-mediated diseases such as ALS and FTLD.


Subject(s)
DNA-Binding Proteins/genetics , Disease Models, Animal , Drosophila melanogaster/genetics , Neurodegenerative Diseases/genetics , Retroelements/genetics , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , Animals, Genetically Modified , DNA-Binding Proteins/metabolism , Drosophila melanogaster/metabolism , Drosophila melanogaster/ultrastructure , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , Gene Expression Profiling , Humans , Immunohistochemistry , Male , Microscopy, Confocal , Microscopy, Electron, Transmission , Neurodegenerative Diseases/metabolism , Neuroglia/metabolism , Neurons/metabolism , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction
20.
J Mol Cell Cardiol ; 127: 116-124, 2019 02.
Article in English | MEDLINE | ID: mdl-30571977

ABSTRACT

In yeast, the Atg2-Atg18 complex regulates Atg9 recycling from phagophore assembly site during autophagy; their function in higher eukaryotes remains largely unknown. In a targeted screening in Drosophila melanogaster, we show that Mef2-GAL4-RNAi-mediated knockdown of Atg2, Atg9 or Atg18 in the heart and indirect flight muscles led to shortened healthspan (declined locomotive function) and lifespan. These flies displayed an accelerated age-dependent loss of cardiac function along with cardiac hypertrophy (increased heart tube wall thickness) and structural abnormality (distortion of the lumen surface). Using the Mef2-GAL4-MitoTimer mitochondrial reporter system and transmission electron microscopy, we observed significant elongation of mitochondria and reduced number of lysosome-targeted autophagosomes containing mitochondria in the heart tube but exaggerated mitochondrial fragmentation and reduced mitochondrial density in indirect flight muscles. These findings provide the first direct evidence of the importance of Atg2-Atg18/Atg9 autophagy complex in the maintenance of mitochondrial integrity and, regulation of heart and muscle functions in Drosophila, raising the possibility of augmenting Atg2-Atg18/Atg9 activity in promoting mitochondrial health and, muscle and heart function.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Heart/physiology , Longevity/physiology , Mitochondria, Heart/metabolism , Animals , Autophagy-Related Proteins/metabolism , Cardiomegaly/genetics , Cardiomegaly/pathology , Drosophila melanogaster/ultrastructure , Female , Male , Membrane Proteins/metabolism , Mitochondria, Heart/ultrastructure , Muscles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL