Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.404
Filter
Add more filters

Publication year range
1.
Cell ; 186(2): 240-242, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36603580

ABSTRACT

The potent vasoconstrictor peptide endothelin-1 has long been recognized as a physiological regulator of vascular tone. However, pharmacological blockade of the endothelin-1 pathway has few proven indications thus far. A recent clinical trial for resistant hypertension published in The Lancet may yet herald a new era for endothelin receptor antagonists into the clinical mainstream.


Subject(s)
Endothelin-1 , Hypertension , Humans , Endothelin-1/physiology , Hypertension/drug therapy , Hypertension/metabolism , Endothelins/physiology , Endothelin Receptor Antagonists/therapeutic use
2.
Cell ; 170(3): 522-533.e15, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28753427

ABSTRACT

Genome-wide association studies (GWASs) implicate the PHACTR1 locus (6p24) in risk for five vascular diseases, including coronary artery disease, migraine headache, cervical artery dissection, fibromuscular dysplasia, and hypertension. Through genetic fine mapping, we prioritized rs9349379, a common SNP in the third intron of the PHACTR1 gene, as the putative causal variant. Epigenomic data from human tissue revealed an enhancer signature at rs9349379 exclusively in aorta, suggesting a regulatory function for this SNP in the vasculature. CRISPR-edited stem cell-derived endothelial cells demonstrate rs9349379 regulates expression of endothelin 1 (EDN1), a gene located 600 kb upstream of PHACTR1. The known physiologic effects of EDN1 on the vasculature may explain the pattern of risk for the five associated diseases. Overall, these data illustrate the integration of genetic, phenotypic, and epigenetic analysis to identify the biologic mechanism by which a common, non-coding variant can distally regulate a gene and contribute to the pathogenesis of multiple vascular diseases.


Subject(s)
Coronary Artery Disease/genetics , Endothelin-1/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Vascular Diseases/genetics , Acetylation , Cells, Cultured , Chromatin/metabolism , Chromosome Mapping , Chromosomes, Human, Pair 6 , Endothelial Cells/cytology , Endothelin-1/blood , Epigenomics , Gene Editing , Gene Expression , Genome-Wide Association Study , Histones/metabolism , Humans , Muscle, Smooth, Vascular/cytology
3.
Development ; 150(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38078652

ABSTRACT

Since the discovery of endothelin 1 (EDN1) in 1988, the role of endothelin ligands and their receptors in the regulation of blood pressure in normal and disease states has been extensively studied. However, endothelin signaling also plays crucial roles in the development of neural crest cell-derived tissues. Mechanisms of endothelin action during neural crest cell maturation have been deciphered using a variety of in vivo and in vitro approaches, with these studies elucidating the basis of human syndromes involving developmental differences resulting from altered endothelin signaling. In this Review, we describe the endothelin pathway and its functions during the development of neural crest-derived tissues. We also summarize how dysregulated endothelin signaling causes developmental differences and how this knowledge may lead to potential treatments for individuals with gene variants in the endothelin pathway.


Subject(s)
Endothelin-1 , Endothelins , Humans , Endothelins/metabolism , Endothelin-1/genetics , Endothelin-1/metabolism , Signal Transduction/physiology , Neural Crest/metabolism
4.
Hepatology ; 80(3): 566-577, 2024 09 01.
Article in English | MEDLINE | ID: mdl-38373106

ABSTRACT

BACKGROUND AND AIMS: Sustained inflammation and hepatocyte injury in chronic liver disease activate HSCs to transdifferentiate into fibrogenic, contractile myofibroblasts. We investigated the role of protocadherin 7 (PCDH7), a cadherin family member not previously characterized in the liver, whose expression is restricted to HSCs. APPROACH AND RESULTS: We created a PCDH7 fl/fl mouse line, which was crossed to lecithin retinol acyltransferase-Cre mice to generate HSC-specific PCDH7 knockout animals. HSC contraction in vivo was tested in response to the HSC-selective vasoconstrictor endothelin-1 using intravital multiphoton microscopy. To establish a PCDH7 null HSC line, cells were isolated from PCDH7 fl/fl mice and infected with adenovirus-expressing Cre. Hepatic expression of PCDH7 was strictly restricted to HSCs. Knockout of PCDH7 in vivo abrogated HSC-mediated sinusoidal contraction in response to endothelin-1. In cultured HSCs, loss of PCDH7 markedly attenuated contractility within collagen gels and led to altered gene expression in pathways governing adhesion and vasoregulation. Loss of contractility in PCDH7 knockout cells was impaired Rho-GTPase signaling, as demonstrated by altered gene expression, reduced assembly of F-actin fibers, and loss of focal adhesions. CONCLUSIONS: The stellate cell-specific cadherin, PCDH7, is a novel regulator of HSC contractility whose loss leads to cytoskeletal remodeling and sinusoidal relaxation.


Subject(s)
Cadherins , Hepatic Stellate Cells , Mice, Knockout , Animals , Mice , Cadherins/metabolism , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/physiology , Protocadherins , Endothelin-1/metabolism , Cells, Cultured
5.
FASEB J ; 38(4): e23476, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38334392

ABSTRACT

The prevalence of alopecia has increased recently. Hair loss is often accompanied by the resting phase of hair follicles (HFs). Dermal papilla (DP) plays a crucial role in HF development, growth, and regeneration. Activating DP can revive resting HFs. Augmenting WNT/ß-catenin signaling stimulates HF growth. However, the factors responsible for activating resting HFs effectively are unclear. In this study, we investigated epidermal cytokines that can activate resting HFs effectively. We overexpressed ß-catenin in both in vivo and in vitro models to observe its effects on resting HFs. Then, we screened potential epidermal cytokines from GEO DATASETs and assessed their functions using mice models and skin-derived precursors (SKPs). Finally, we explored the molecular mechanism underlying the action of the identified cytokine. The results showed that activation of WNT/ß-catenin in the epidermis prompted telogen-anagen transition. Keratinocytes infected with Ctnnb1-overexpressing lentivirus enhanced SKP expansion. Subsequently, we identified endothelin 1 (ET-1) expressed higher in hair-growing epidermis and induced the proliferation of DP cells and activates telogen-phase HFs in vivo. Moreover, ET-1 promotes the proliferation and stemness of SKPs. Western blot analysis and in vivo experiments revealed that ET-1 induces the transition from telogen-to-anagen phase by upregulating the PI3K/AKT pathway. These findings highlight the potential of ET-1 as a promising cytokine for HF activation and the treatment of hair loss.


Subject(s)
Hair Follicle , Proto-Oncogene Proteins c-akt , Animals , Mice , Hair Follicle/metabolism , Proto-Oncogene Proteins c-akt/metabolism , beta Catenin/genetics , beta Catenin/metabolism , Endothelin-1/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cells, Cultured , Cell Proliferation , Epidermis/metabolism , Alopecia/metabolism , Wnt Signaling Pathway , Dermis/metabolism , Cytokines/metabolism
6.
Nature ; 573(7772): 69-74, 2019 09.
Article in English | MEDLINE | ID: mdl-31435009

ABSTRACT

Direct recognition of invading pathogens by innate immune cells is a critical driver of the inflammatory response. However, cells of the innate immune system can also sense their local microenvironment and respond to physiological fluctuations in temperature, pH, oxygen and nutrient availability, which are altered during inflammation. Although cells of the immune system experience force and pressure throughout their life cycle, little is known about how these mechanical processes regulate the immune response. Here we show that cyclical hydrostatic pressure, similar to that experienced by immune cells in the lung, initiates an inflammatory response via the mechanically activated ion channel PIEZO1. Mice lacking PIEZO1 in innate immune cells showed ablated pulmonary inflammation in the context of bacterial infection or fibrotic autoinflammation. Our results reveal an environmental sensory axis that stimulates innate immune cells to mount an inflammatory response, and demonstrate a physiological role for PIEZO1 and mechanosensation in immunity.


Subject(s)
Hydrostatic Pressure , Immunity, Innate , Ion Channels/metabolism , Mechanotransduction, Cellular/immunology , Animals , Endothelin-1/metabolism , Female , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Inflammation/immunology , Inflammation/metabolism , Inflammation/microbiology , JNK Mitogen-Activated Protein Kinases/metabolism , Lung/immunology , Lung/metabolism , Lung/microbiology , Macrophages/immunology , Macrophages/metabolism , Male , Mice , Pseudomonas Infections/immunology , Pseudomonas aeruginosa/immunology , Signal Transduction
7.
J Mol Cell Cardiol ; 194: 105-117, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39019395

ABSTRACT

A better understanding of the underlying pathomechanisms of diastolic dysfunction is crucial for the development of targeted therapeutic options with the aim to increase the patients' quality of life. In order to shed light on the processes involved, suitable models are required. Here, effects of endothelin-1 (ET-1) treatment on cardiomyocytes derived from human induced pluripotent stem cells (hiPSCs) were investigated. While it is well established, that ET-1 treatment induces hypertrophy in cardiomyocytes, resulting changes in cell mechanics and contractile behavior with focus on relaxation have not been examined before. Cardiomyocytes were treated with 10 nM of ET-1 for 24 h and 48 h, respectively. Hypertrophy was confirmed by real-time deformability cytometry (RT-DC) which was also used to assess the mechanical properties of cardiomyocytes. For investigation of the contractile behavior, 24 h phase contrast video microscopy was applied. To get a deeper insight into changes on the molecular biological level, gene expression analysis was performed using the NanoString nCounter® cardiovascular disease panel. Besides an increased cell size, ET-1 treated cardiomyocytes are stiffer and show an impaired relaxation. Gene expression patterns in ET-1 treated hiPSC derived cardiomyocytes showed that pathways associated with cardiovascular diseases, cardiac hypertrophy and extracellular matrix were upregulated while those associated with fatty acid metabolism were downregulated. We conclude that alterations in cardiomyocytes after ET-1 treatment go far beyond hypertrophy and represent a useful model for diastolic dysfunction.


Subject(s)
Diastole , Endothelin-1 , Induced Pluripotent Stem Cells , Myocardial Contraction , Myocytes, Cardiac , Endothelin-1/metabolism , Endothelin-1/pharmacology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/cytology , Myocardial Contraction/drug effects , Diastole/drug effects , Gene Expression Regulation/drug effects , Biomechanical Phenomena , Cell Differentiation/drug effects
8.
Circulation ; 147(22): 1670-1683, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37039015

ABSTRACT

BACKGROUND: ET-1 (endothelin-1) is implicated in the pathophysiology of heart failure and renal disease. Its prognostic importance and relationship with kidney function in patients with heart failure with reduced ejection fraction receiving contemporary treatment are uncertain. We investigated these and the efficacy of dapagliflozin according to ET-1 level in the DAPA-HF trial (Dapagliflozin and Prevention of Adverse Outcomes in Heart Failure). METHODS: We investigated the incidence of the primary outcome (cardiovascular death or worsening heart failure), change in kidney function, and the effect of dapagliflozin according to baseline ET-1 concentration, adjusting in Cox models for other recognized prognostic variables in heart failure including NT-proBNP (N-terminal pro-B-type natriuretic peptide). We also examined the effect of dapagliflozin on ET-1 level. RESULTS: Overall, 3048 participants had baseline ET-1 measurements: tertile 1 (T1; ≤3.28 pg/mL; n=1016); T2 (>3.28-4.41 pg/mL; n=1022); and T3 (>4.41 pg/mL; n=1010). Patients with higher ET-1 were more likely male, more likely obese, and had lower left ventricular ejection fraction, lower estimated glomerular filtration rate, worse functional status, and higher NT-proBNP and hs-TnT (high-sensitivity troponin-T). In the adjusted Cox models, higher baseline ET-1 was independently associated with worse outcomes and steeper decline in kidney function (adjusted hazard ratio for primary outcome of 1.95 [95% CI, 1.53-2.50] for T3 and 1.36 [95% CI, 1.06-1.75] for T2; both versus T1; estimated glomerular filtration rate slope: T3, -3.19 [95% CI, -3.66 to -2.72] mL/min per 1.73 m2 per y, T2, -2.08 [95% CI, -2.52 to -1.63] and T1 -2.35 [95% CI, -2.79 to -1.91]; P=0.002). The benefit of dapagliflozin was consistent regardless of baseline ET-1, and the placebo-corrected decrease in ET-1 with dapagliflozin was 0.13 pg/mL (95% CI, 0.25-0.01; P=0.029). CONCLUSIONS: Higher baseline ET-1 concentration was independently associated with worse clinical outcomes and more rapid decline in kidney function. The benefit of dapagliflozin was consistent across the range of ET-1 concentrations measured, and treatment with dapagliflozin led to a small decrease in serum ET-1 concentration. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT03036124.


Subject(s)
Heart Failure , Ventricular Dysfunction, Left , Humans , Male , Stroke Volume , Ventricular Function, Left , Endothelin-1/pharmacology , Heart Failure/diagnosis , Heart Failure/drug therapy , Heart Failure/complications , Ventricular Dysfunction, Left/drug therapy , Benzhydryl Compounds/adverse effects
9.
Biol Reprod ; 110(1): 185-197, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-37823770

ABSTRACT

Obstructive sleep apnea is a recognized risk factor for gestational hypertension, yet the exact mechanism behind this association remains unclear. Here, we tested the hypothesis that intermittent hypoxia, a hallmark of obstructive sleep apnea, induces gestational hypertension through perturbed endothelin-1 signaling. Pregnant Sprague-Dawley rats were subjected to normoxia (control), mild intermittent hypoxia (10.5% O2), or severe intermittent hypoxia (6.5% O2) from gestational days 10-21. Blood pressure was monitored. Plasma was collected and mesenteric arteries were isolated for myograph and protein analyses. The mild and severe intermittent hypoxia groups demonstrated elevated blood pressure, reduced plasma nitrate/nitrite, and unchanged endothelin-1 levels compared to the control group. Western blot analysis revealed decreased expression of endothelin type B receptor and phosphorylated endothelial nitric oxide synthase, while the levels of endothelin type A receptor and total endothelial nitric oxide synthase remained unchanged following intermittent hypoxia exposure. The contractile responses to potassium chloride, phenylephrine, and endothelin-1 were unaffected in endothelium-denuded arteries from mild and severe intermittent hypoxia rats. However, mild and severe intermittent hypoxia rats exhibited impaired endothelium-dependent vasorelaxation responses to endothelin type B receptor agonist IRL-1620 and acetylcholine compared to controls. Endothelium denudation abolished IRL-1620-induced vasorelaxation, supporting the involvement of endothelium in endothelin type B receptor-mediated relaxation. Treatment with IRL-1620 during intermittent hypoxia exposure significantly attenuated intermittent hypoxia-induced hypertension in pregnant rats. This was associated with elevated circulating nitrate/nitrite levels, enhanced endothelin type B receptor expression, increased endothelial nitric oxide synthase activation, and improved vasodilation responses. Our data suggested that intermittent hypoxia exposure during gestation increases blood pressure in pregnant rats by suppressing endothelin type B receptor-mediated signaling, providing a molecular mechanism linking intermittent hypoxia and gestational hypertension.


Subject(s)
Hypertension, Pregnancy-Induced , Sleep Apnea, Obstructive , Humans , Pregnancy , Female , Rats , Animals , Nitric Oxide Synthase Type III/metabolism , Rats, Sprague-Dawley , Endothelin-1/metabolism , Endothelin-1/pharmacology , Hypertension, Pregnancy-Induced/etiology , Hypertension, Pregnancy-Induced/metabolism , Nitrates/metabolism , Nitrates/pharmacology , Nitrites/metabolism , Nitrites/pharmacology , Vasodilation , Endothelins/metabolism , Endothelins/pharmacology , Hypoxia/metabolism , Receptor, Endothelin A/metabolism , Mesenteric Arteries , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/metabolism , Nitric Oxide/metabolism , Nitric Oxide/pharmacology , Endothelium, Vascular
10.
J Transl Med ; 22(1): 727, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103918

ABSTRACT

BACKGROUND: Vascular dysregulation is one of the major risk factors of glaucoma, and endothelin-1 (ET-1) may have a role in the pathogenesis of vascular-related glaucoma. Fruit extract from Lycium Barbarum (LB) exhibits anti-ageing and multitarget mechanisms in protecting retinal ganglion cells (RGC) in various animal models. To investigate the therapeutic efficacy of LB glycoproteins (LbGP) in ET-1 induced RGC degeneration, LbGP was applied under pre- and posttreatment conditions to an ET-1 mouse model. Retina structural and functional outcomes were characterised using clinical-based techniques. METHODS: Adult C57BL/6 mice were randomly allocated into four experimental groups, namely vehicle control (n = 9), LbGP-Pretreatment (n = 8), LbGP-Posttreatment (day 1) (n = 8) and LbGP-Posttreatment (day 5) (n = 7). Oral administration of LbGP 1 mg/Kg or PBS for vehicle control was given once daily. Pre- and posttreatment (day 1 or 5) were commenced at 1 week before and 1 or 5 days after intravitreal injections, respectively, and were continued until postinjection day 28. Effects of treatment on retinal structure and functions were evaluated using optical coherence tomography (OCT), doppler OCT and electroretinogram measurements at baseline, post-injection days 10 and 28. RGC survival was evaluated by using RBPMS immunostaining on retinal wholemounts. RESULTS: ET-1 injection in vehicle control induced transient reductions in arterial flow and retinal functions, leading to significant RNFL thinning and RGC loss at day 28. Although ET-1 induced a transient loss in blood flow or retinal functions in all LbGP groups, LbGP treatments facilitated better restoration of retinal flow and retinal functions as compared with the vehicle control. Also, all three LbGP treatment groups (i.e. pre- and posttreatments from days 1 or 5) significantly preserved thRNFL thickness and RGC densities. No significant difference in protective effects was observed among the three LbGP treatment groups. CONCLUSION: LbGP demonstrated neuroprotective effects in a mouse model of ET-1 induced RGC degeneration, with treatment applied either as a pretreatment, immediate or delayed posttreatment. LbGP treatment promoted a better restoration of retinal blood flow, and protected the RNFL, RGC density and retinal functions. This study showed the translational potential of LB as complementary treatment for glaucoma management.


Subject(s)
Endothelin-1 , Mice, Inbred C57BL , Neuroprotection , Retinal Ganglion Cells , Animals , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/metabolism , Endothelin-1/metabolism , Neuroprotection/drug effects , Electroretinography , Lycium/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Retinal Degeneration/drug therapy , Retinal Degeneration/pathology , Tomography, Optical Coherence , Male , Mice , Nerve Degeneration/pathology , Nerve Degeneration/drug therapy
11.
J Card Fail ; 30(4): 580-591, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37625581

ABSTRACT

BACKGROUND: Venous congestion (VC) is a hallmark of symptomatic heart failure (HF) requiring hospitalization; however, its role in the pathogenesis of HF progression remains unclear. We investigated whether peripheral VC exacerbates inflammation, oxidative stress and neurohormonal and endothelial cell (EC) activation in patients with HF with reduced ejection fraction (HFrEF). METHODS AND RESULTS: Two matched groups of patients with HFrEF and with no peripheral VC vs without recent HF hospitalization were studied. We modeled peripheral VC by inflating a cuff around the dominant arm, targeting ∼ 30 mmHg increase in venous pressure (venous stress test [VST]). Blood and ECs were sampled before and after 90 minutes of VST. We studied 44 patients (age 53 ± 12 years, 32% female). Circulating endothelin-1, tumor necrosis factor-α, interleukin-6, isoprostane, angiotensin II (ang-2), angiopoietin-2, vascular cell adhesion molecule-1, and CD146 significantly increased after the VST. Enhanced endothelin-1 and angiopoietin-2 responses to the VST were present in patients with vs without recent hospitalization and were prospectively associated with incident HF-related events; 6698 messenger ribonucleic acid (mRNA probe sets were differentially expressed in ECs after VST. CONCLUSIONS: Experimental VC exacerbates inflammation, oxidative stress, neurohormonal and EC activation and promotes unfavorable transcriptome remodeling in ECs of patients with HFrEF. A distinct biological sensitivity to VC appears to be associated with high risk for HF progression.


Subject(s)
Heart Failure, Systolic , Heart Failure , Hyperemia , Humans , Female , Adult , Middle Aged , Aged , Male , Angiopoietin-2/metabolism , Endothelin-1 , Stroke Volume , Inflammation , Endothelial Cells , Oxidative Stress
12.
Exp Dermatol ; 33(1): e15004, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38284190

ABSTRACT

The study investigated the effectiveness of EDN1 and EDN3 cytokines in the differentiation of melanocytes from hESCs. The findings showed that 100 nM EDN1 was more effective in promoting hESC to CD117+/TYR+ melanoblasts compared to 100 nM EDN3. Additionally, maintaining melanoblasts is beneficial for preserving the ability to proliferate. The study found that 10 nM EDN1 helped maintain the proliferation of melanoblasts without over maturing them into melanocytes in the late stage of differentiation. Thus, using 100 nM EDN1 in the initial stage and 10 nM EDN1 in the late stage proved to be an efficient and cost-effective method for obtaining hESC-derived melanocytes. The preliminary results suggest that EDN1 promotes melanoblast formation during the initial differentiation stage through its binding to both the EDNRB receptor and EDNRA receptor. This study provides a valuable tool for studying the development of human melanocytes and modelling the biology of disease.


Subject(s)
Endothelin-1 , Human Embryonic Stem Cells , Humans , Endothelin-1/metabolism , Melanocytes/metabolism , Cell Differentiation
13.
Clin Sci (Lond) ; 138(21): 1329-1341, 2024 Nov 06.
Article in English | MEDLINE | ID: mdl-39356969

ABSTRACT

Endothelin-1 (ET-1), the most potent vasoconstrictor identified to date, contributes to cerebrovascular dysfunction. ET-1 levels in postmortem brain specimens from individuals diagnosed with Alzheimer's disease (AD) and related dementias (ADRD) were shown to be related to cerebral hypoxia and disease severity. ET-1-mediated vascular dysfunction and ensuing cognitive deficits have also been reported in experimental models of AD and ADRD. Moreover, studies also showed that ET-1 secreted from brain microvascular endothelial cells (BMVECs) can affect neurovascular unit integrity in an autocrine and paracrine manner. Vascular contributions to cognitive impairment and dementia (VCID) is a leading ADRD cause known to be free of neuronal tau pathology, a hallmark of AD. However, a recent study reported cytotoxic hyperphosphorylated tau (p-tau) accumulation, which fails to bind or stabilize microtubules in BMVECs in VCID. Thus, the study aimed to determine the impact of ET-1 on tau pathology, microtubule organization, and barrier function in BMVECs. Cells were stimulated with 1 µM ET-1 for 24 h in the presence/absence of ETA (BQ123; 20 µM) or ETB (BQ788; 20 µM) receptor antagonists. Cell lysates were assayed for an array of phosphorylation site-specific antibodies and microtubule organization/stabilization markers. ET-1 stimulation increased p-tau Thr231 but decreased p-tau Ser199, Ser262, Ser396, and Ser214 levels only in the presence of ETA or ETB antagonism. ET-1 also impaired barrier function in the presence of ETA antagonism. These novel findings suggest that (1) dysregulation of endothelial tau phosphorylation may contribute to cerebral microvascular dysfunction and (2) the ET system may be an early intervention target to prevent hyperphosphorylated tau-mediated disruption of BMVEC barrier function.


Subject(s)
Brain , Endothelial Cells , Endothelin-1 , tau Proteins , tau Proteins/metabolism , Phosphorylation , Endothelial Cells/metabolism , Endothelin-1/metabolism , Brain/metabolism , Brain/blood supply , Humans , Animals , Microvessels/metabolism , Blood-Brain Barrier/metabolism , Microtubules/metabolism , Cells, Cultured , Receptor, Endothelin B/metabolism
14.
Clin Sci (Lond) ; 138(16): 1009-1022, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39106080

ABSTRACT

Diabetes mediates endothelial dysfunction and increases the risk of Alzheimer's disease and related dementias. Diabetes also dysregulates the ET system. ET-1-mediated constriction of brain microvascular pericytes (BMVPCs) has been shown to contribute to brain hypoperfusion. Cellular senescence, a process that arrests the proliferation of harmful cells and instigates phenotypical changes and proinflammatory responses in endothelial cells that impact their survival and function. Thus, we hypothesized that ET-1 mediates BMVPC senescence and phenotypical changes in diabetes-like conditions. Human BMVPCs were incubated in diabetes-like conditions with or without ET-1 (1 µmol/L) for 3 and 7 days. Hydrogen peroxide (100 µmol/L H2O2) was used as a positive control for senescence and to mimic ischemic conditions. Cells were stained for senescence-associated ß-galactosidase or processed for immunoblotting and quantitative real-time PCR analyses. In additional experiments, cells were stimulated with ET-1 in the presence or absence of ETA receptor antagonist BQ-123 (20 µmol/L) or ETB receptor antagonist BQ-788 (20 µmol/L). ET-1 stimulation increased ß-galactosidase accumulation which was prevented by BQ-123. ET-1 also increased traditional senescence marker p16 protein and pericyte-specific senescence markers, TGFB1i1, PP1CA, and IGFBP7. Furthermore, ET-1 stimulated contractile protein α-SMA and microglial marker ostepontin in high glucose suggesting a shift toward an ensheathing or microglia-like phenotype. In conclusion, ET-1 triggers senescence, alters ETA and ETB receptors, and causes phenotypical changes in BMVPCs under diabetes-like conditions. These in vitro findings need to be further studied in vivo to establish the role of ETA receptors in the progression of pericyte senescence and phenotypical changes in VCID.


Subject(s)
Brain , Cellular Senescence , Endothelin-1 , Pericytes , Receptor, Endothelin A , Humans , Brain/metabolism , Brain/pathology , Cells, Cultured , Cellular Senescence/drug effects , Diabetes Mellitus/metabolism , Endothelin-1/metabolism , Endothelin-1/pharmacology , Pericytes/metabolism , Pericytes/drug effects , Pericytes/pathology , Phenotype , Receptor, Endothelin A/metabolism , Receptor, Endothelin A/genetics
15.
Clin Sci (Lond) ; 138(11): 687-697, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38835256

ABSTRACT

Endothelin A and B receptors, together with sodium-glucose cotransporter-2 (SGLT-2) channels are important targets in improving endothelial function and intervention with inhibitors has been the subject of multiple mechanistic and clinical outcome trials over recent years. Notable successes include the treatment of pulmonary hypertension with endothelin receptor antagonists, and the treatment of heart failure and chronic kidney disease with SGLT-2 inhibitors. With distinct and complementary mechanisms, in this review, we explore the logic of combination therapy for a number of diseases which have endothelial dysfunction at their heart.


Subject(s)
Endothelin-1 , Endothelium, Vascular , Sodium-Glucose Transporter 2 Inhibitors , Humans , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Endothelin-1/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Animals , Drug Therapy, Combination , Endothelin Receptor Antagonists/therapeutic use , Heart Failure/drug therapy , Heart Failure/physiopathology
16.
Clin Sci (Lond) ; 138(14): 851-862, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38884602

ABSTRACT

The high-grade serous ovarian cancer (HG-SOC) tumor microenvironment (TME) is constellated by cellular elements and a network of soluble constituents that contribute to tumor progression. In the multitude of the secreted molecules, the endothelin-1 (ET-1) has emerged to be implicated in the tumor/TME interplay; however, the molecular mechanisms induced by the ET-1-driven feed-forward loops (FFL) and associated with the HG-SOC metastatic potential need to be further investigated. The tracking of the patient-derived (PD) HG-SOC cell transcriptome by RNA-seq identified the vascular endothelial growth factor (VEGF) gene and its associated signature among those mostly up-regulated by ET-1 and down-modulated by the dual ET-1R antagonist macitentan. Within the ligand-receptor pairs concurrently expressed in PD-HG-SOC cells, endothelial cells and activated fibroblasts, we discovered two intertwined FFL, the ET-1/ET-1R and VEGF/VEGF receptors, concurrently activated by ET-1 and shutting-down by macitentan, or by the anti-VEGF antibody bevacizumab. In parallel, we observed that ET-1 fine-tuned the tumoral and stromal secretome toward a pro-invasive pattern. Into the fray of the HG-SOC/TME double and triple co-cultures, the secretion of ET-1 and VEGF, that share a common co-regulation, was inhibited upon the administration of macitentan. Functionally, macitentan, mimicking the effect of bevacizumab, interfered with the HG-SOC/TME FFL-driven communication that fuels the HG-SOC invasive behavior. The identification of ET-1 and VEGF FFL as tumor and TME actionable vulnerabilities, reveals how ET-1R blockade, targeting the HG-SOC cells and the TME simultaneously, may represent an effective therapeutic option for HG-SOC patients.


Subject(s)
Endothelin-1 , Ovarian Neoplasms , Tumor Microenvironment , Vascular Endothelial Growth Factor A , Female , Humans , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/drug therapy , Endothelin-1/metabolism , Vascular Endothelial Growth Factor A/metabolism , Sulfonamides/pharmacology , Pyrimidines/pharmacology , Cystadenocarcinoma, Serous/metabolism , Cystadenocarcinoma, Serous/pathology , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/drug therapy , Gene Expression Regulation, Neoplastic , Stromal Cells/metabolism , Stromal Cells/pathology , Cell Line, Tumor , Receptors, Vascular Endothelial Growth Factor/metabolism , Neoplasm Grading , Receptor, Endothelin A/metabolism , Receptor, Endothelin A/genetics
17.
Clin Sci (Lond) ; 138(12): 711-723, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38804865

ABSTRACT

Myopenia is a condition marked by progressive decline of muscle mass and strength and is associated with aging or obesity. It poses the risk of falling, with potential bone fractures, thereby also increasing the burden on family and society. Skeletal muscle wasting is characterized by a reduced number of myoblasts, impaired muscle regeneration and increased muscle atrophy markers (Atrogin-1, MuRF-1). Endothelin-1 (ET-1) is a potent vasoconstrictor peptide. Increased circulating levels of ET-1 is noted with aging and is associated with muscular fibrosis and decline of strength. However, the regulatory mechanism controlling its effect on myogenesis and atrophy remains unknown. In the present study, the effects of ET-1 on myoblast proliferation, differentiation and development were investigated in C2C12 cells and in ET-1-infused mice. The results show that ET-1, acting via ETB receptors, reduced insulin-stimulated cell proliferation, and also reduced MyoD, MyoG and MyHC expression in the differentiation processes of C2C12 myoblasts. ET-1 inhibited myoblast differentiation through ETB receptors and the p38 mitogen-activated protein kinase (MAPK)-dependent pathway. Additionally, ET-1 decreased MyHC expression in differentiated myotubes. Inhibition of proteasome activity by MG132 ameliorated the ET-1-stimulated protein degradation in differentiated C2C12 myotubes. Furthermore, chronic ET-1 infusion caused skeletal muscle atrophy and impaired exercise performance in mice. In conclusion, ET-1 inhibits insulin-induced cell proliferation, impairs myogenesis and induces muscle atrophy via ETB receptors and the p38 MAPK-dependent pathway.


Subject(s)
Cell Differentiation , Cell Proliferation , Endothelin-1 , Muscle Development , Muscle, Skeletal , p38 Mitogen-Activated Protein Kinases , Animals , Muscle Development/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism , Endothelin-1/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/drug effects , Cell Proliferation/drug effects , Cell Line , Mice , Male , Mice, Inbred C57BL , Myoblasts/metabolism , Myoblasts/drug effects , Signal Transduction , MAP Kinase Signaling System , Muscular Atrophy/metabolism , Muscular Atrophy/pathology
18.
Clin Sci (Lond) ; 138(17): 1071-1087, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39136472

ABSTRACT

Perivascular adipose tissue (PVAT) negatively regulates vascular muscle contraction. However, in the context of obesity, the PVAT releases vasoconstrictor substances that detrimentally affect vascular function. A pivotal player in this scenario is the peptide endothelin-1 (ET-1), which induces oxidative stress and disrupts vascular function. The present study postulates that obesity augments ET-1 production in the PVAT, decreases the function of the nuclear factor erythroid 2-related factor-2 (Nrf2) transcription factor, further increasing reactive oxygen species (ROS) generation, culminating in PVAT dysfunction. Male C57BL/6 mice were fed either a standard or a high-fat diet for 16 weeks. Mice were also treated with saline or a daily dose of 100 mg·kg-1 of the ETA and ETB receptor antagonist Bosentan, for 7 days. Vascular function was evaluated in thoracic aortic rings, with and without PVAT. Mechanistic studies utilized PVAT from all groups and cultured WT-1 mouse brown adipocytes. PVAT from obese mice exhibited increased ET-1 production, increased ECE1 and ETA gene expression, loss of the anticontractile effect, as well as increased ROS production, decreased Nrf2 activity, and downregulated expression of Nrf2-targeted antioxidant genes. PVAT of obese mice also exhibited increased expression of Tyr216-phosphorylated-GSK3ß and KEAP1, but not BACH1 - negative Nrf2 regulators. Bosentan treatment reversed all these effects. Similarly, ET-1 increased ROS generation and decreased Nrf2 activity in brown adipocytes, events mitigated by BQ123 (ETA receptor antagonist). These findings place ET-1 as a major contributor to PVAT dysfunction in obesity and highlight that pharmacological control of ET-1 effects restores PVAT's cardiovascular protective role.


Subject(s)
Adipose Tissue , Down-Regulation , Endothelin-1 , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Obesity , Reactive Oxygen Species , Animals , Endothelin-1/metabolism , Obesity/metabolism , Obesity/physiopathology , Male , Adipose Tissue/metabolism , NF-E2-Related Factor 2/metabolism , Reactive Oxygen Species/metabolism , Bosentan/pharmacology , Diet, High-Fat , Mice , Oxidative Stress , Receptor, Endothelin A/metabolism , Receptor, Endothelin A/genetics , Endothelin-Converting Enzymes/metabolism , Aorta, Thoracic/metabolism , Aorta, Thoracic/drug effects , Aorta, Thoracic/physiopathology
19.
FASEB J ; 37(8): e23092, 2023 08.
Article in English | MEDLINE | ID: mdl-37482902

ABSTRACT

Increased endothelin-1 (ET-1) levels in patients with sickle cell disease (SCD) and transgenic mouse models of SCD contribute to disordered hematological, vascular, and inflammatory responses. Mineralocorticoid receptor (MR) activation by aldosterone, a critical component of the Renin-Angiotensin-Aldosterone-System, modulates inflammation and vascular reactivity, partly through increased ET-1 expression. However, the role of MR in SCD remains unclear. We hypothesized that MR blockade in transgenic SCD mice would reduce ET-1 levels, improve hematological parameters, and reduce inflammation. Berkeley SCD (BERK) mice, a model of severe SCD, were randomized to either sickle standard chow or chow containing the MR antagonist (MRA), eplerenone (156 mg/Kg), for 14 days. We found that MRA treatment reduced ET-1 plasma levels (p = .04), improved red cell density gradient profile (D50 ; p < .002), and increased mean corpuscular volume in both erythrocytes (p < .02) and reticulocytes (p < .024). MRA treatment also reduced the activity of the erythroid intermediate-conductance Ca2+ -activated K+ channel - KCa 3.1 (Gardos channel, KCNN4), reduced cardiac levels of mRNAs encoding ET-1, Tumor Necrosis Factor Receptor-1, and protein disulfide isomerase (PDI) (p < .01), and decreased plasma PDI and myeloperoxidase activity. Aldosterone (10-8 M for 24 h in vitro) also increased PDI mRNA levels (p < .01) and activity (p < .003) in EA.hy926 human endothelial cells, in a manner blocked by pre-incubation with the MRA canrenoic acid (1 µM; p < .001). Our results suggest a novel role for MR activation in SCD that may exacerbate SCD pathophysiology and clinical complications.


Subject(s)
Anemia, Sickle Cell , Vascular Diseases , Humans , Mice , Animals , Receptors, Mineralocorticoid/genetics , Receptors, Mineralocorticoid/metabolism , Endothelial Cells/metabolism , Aldosterone/metabolism , Anemia, Sickle Cell/drug therapy , Anemia, Sickle Cell/genetics , Disease Models, Animal , Mice, Transgenic , Vascular Diseases/metabolism , Mineralocorticoid Receptor Antagonists/pharmacology , Endothelin-1/metabolism , Inflammation/metabolism
20.
Am J Obstet Gynecol ; 231(5): 550.e1-550.e22, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38494070

ABSTRACT

BACKGROUND: Preeclampsia is characterized by maternal endothelial activation and placental dysfunction. Imbalance in maternal angiogenic and vasoactive factors has been linked to the pathophysiology. The contribution of the placenta as a source of these factors remains unclear. Furthermore, little is known about fetal angiogenic and vasoactive proteins and the relation between maternal and fetal levels. OBJECTIVE: We describe placental growth factor, soluble Fms-like tyrosine kinase 1, soluble endoglin, and endothelin 1-3 in 5 vessels in healthy pregnancies, early- and late-onset preeclampsia. Specifically, we aimed to (1) compare protein abundance in vessels at the maternal-fetal interface between early- and late-onset preeclampsia, and healthy pregnancies, (2) describe placental uptake and release of proteins, and (3) describe protein abundance in the maternal vs fetal circulations. STUDY DESIGN: Samples were collected from the maternal radial artery, uterine vein and antecubital vein, and fetal umbilical vein and artery in 75 healthy and 37 preeclamptic mother-fetus pairs (including 19 early-onset preeclampsia and 18 late-onset preeclampsia), during scheduled cesarean delivery. This method allows estimation of placental release and uptake of proteins by calculation of venoarterial differences on each side of the placenta. The microarray-based SomaScan assay quantified the proteins. RESULTS: The abundance of soluble Fms-like tyrosine kinase 1 and endothelin 1 was higher in the maternal vessels in preeclampsia than in healthy pregnancies, with the highest abundance in early-onset preeclampsia. Placental growth factor was lower in the maternal vessels in early-onset preeclampsia than in both healthy and late-onset preeclampsia. Maternal endothelin 2 was higher in preeclampsia, with late-onset preeclampsia having the highest abundance. Our model confirmed placental release of placental growth factor and soluble Fms-like tyrosine kinase 1 to the maternal circulation in all groups. The placenta released soluble Fms-like tyrosine kinase 1 into the fetal circulation in healthy and late-onset preeclampsia pregnancies. Fetal endothelin 1 and soluble Fms-like tyrosine kinase 1 were higher in early-onset preeclampsia, whereas soluble endoglin and endothelin 3 were lower in both preeclampsia groups than healthy controls. Across groups, abundances of placental growth factor, soluble Fms-like tyrosine kinase 1, and endothelin 3 were higher in the maternal artery than the fetal umbilical vein, whereas endothelin 2 was lower. CONCLUSION: An increasing abundance of maternal soluble Fms-like tyrosine kinase 1 and endothelin 1 across the groups healthy, late-onset preeclampsia and early-onset combined with a positive correlation may suggest that these proteins are associated with the pathophysiology and severity of the disease. Elevated endothelin 1 in the fetal circulation in early-onset preeclampsia represents a novel finding. The long-term effects of altered protein abundance in preeclampsia on fetal development and health remain unknown. Further investigation of these proteins' involvement in the pathophysiology and as treatment targets is warranted.


Subject(s)
Endoglin , Placenta Growth Factor , Placenta , Pre-Eclampsia , Vascular Endothelial Growth Factor Receptor-1 , Humans , Female , Pregnancy , Pre-Eclampsia/metabolism , Pre-Eclampsia/blood , Adult , Placenta/metabolism , Placenta/blood supply , Vascular Endothelial Growth Factor Receptor-1/blood , Vascular Endothelial Growth Factor Receptor-1/metabolism , Endoglin/metabolism , Endoglin/blood , Placenta Growth Factor/blood , Placenta Growth Factor/metabolism , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/blood , Case-Control Studies , Endothelin-3/metabolism , Endothelin-1/blood , Endothelin-1/metabolism , Antigens, CD/metabolism , Antigens, CD/blood , Pregnancy Proteins/blood , Pregnancy Proteins/metabolism , Umbilical Veins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL