Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 533
Filter
Add more filters

Publication year range
1.
Microb Pathog ; 192: 106691, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759933

ABSTRACT

Necrotic enteritis (NE) is a potentially fatal poultry disease that causes enormous economic losses in the poultry industry worldwide. The study aimed to evaluate the effects of dietary organic yeast-derived selenium (Se) on immune protection against experimental necrotic enteritis (NE) in commercial broilers. Chickens were fed basal diets supplemented with different Se levels (0.25, 0.50, and 1.00 Se mg/kg). To induce NE, Clostridium perfringens (C. perfringens) was orally administered at 14 days of age post hatch. The results showed that birds fed 0.25 Se mg/kg exhibited significantly increased body weight gain compared with the non-supplemented/infected birds. There were no significant differences in gut lesions between the Se-supplemented groups and the non-supplemented group. The antibody levels against α-toxin and NetB toxin increased with the increase between 0.25 Se mg/kg and 0.50 Se mg/kg. In the jejunal scrapings and spleen, the Se-supplementation groups up-regulated the transcripts for pro-inflammatory cytokines IL-1ß, IL-6, IL-8, iNOS, and LITAF and avian ß-defensin 6, 8, and 13 (AvBD6, 8 and 13). In conclusion, supplementation with organic yeast-derived Se alleviates the negative consequences and provides beneficial protection against experimental NE.


Subject(s)
Animal Feed , Chickens , Clostridium Infections , Clostridium perfringens , Cytokines , Dietary Supplements , Enteritis , Poultry Diseases , Selenium , Animals , Enteritis/prevention & control , Enteritis/veterinary , Enteritis/immunology , Enteritis/microbiology , Selenium/pharmacology , Selenium/administration & dosage , Poultry Diseases/prevention & control , Poultry Diseases/immunology , Clostridium perfringens/immunology , Clostridium Infections/prevention & control , Clostridium Infections/veterinary , Clostridium Infections/immunology , Cytokines/metabolism , Bacterial Toxins/immunology , Necrosis , beta-Defensins/metabolism , Jejunum/drug effects , Jejunum/immunology , Jejunum/microbiology , Jejunum/pathology , Spleen/immunology , Yeasts , Nitric Oxide Synthase Type II/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Interleukin-1beta/metabolism , Antibodies, Bacterial/blood
2.
Fish Shellfish Immunol ; 153: 109852, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39173982

ABSTRACT

Cottonseed meal (CSM) and cottonseed protein concentrate (CPC) serve as protein alternatives to fish meal and soybean meal in the feed industry. However, the presence of gossypol residue in CSM and CPC can potentially trigger severe intestinal inflammation, thereby restricting the widespread utilization of these two protein sources. Probiotics are widely used to prevent or alleviate intestinal inflammation, but their efficacy in protecting fish against gossypol-induced enteritis remains uncertain. Here, the protective effect of Pediococcus pentosaceus, a strain isolated from the gut of Nile tilapia (Oreochromis niloticus), was evaluated. Three diets, control diet (CON), gossypol diet (GOS) and GOS supplemented with P. pentosaceus YC diet (GP), were used to feed Nile tilapia for 10 weeks. After the feeding trial, P. pentosaceus YC reduced the activity of myeloperoxidase (MPO) in the proximal intestine (PI) and distal intestine (DI). Following a 7-day exposure to Aeromonas hydrophila, the addition of P. pentosaceus YC was found to increase the survival rate of the fish. P. pentosaceus YC significantly inhibited the oxidative stress caused by gossypol, which was evidenced by lower reactive oxygen species (ROS) and malondialdehyde (MDA), as well as higher activities of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) in PI and DI. Addition of P. pentosaceus YC significantly inhibited enteritis, with the lower expression of pro-inflammatory cytokines (il-1ß, il-6, il-8) and higher expression of anti-inflammatory cytokines tgf-ß. RNA-seq analysis indicated that P. pentosaceus YC supplementation significantly inhibited nlrc3 and promoted nf-κb expression in PI and DI, and the siRNA interference experiment in vivo demonstrated that intestinal inflammation was mediated by NLRC3/NF-κB/IL-1ß signaling pathway. Fecal bacteria transplantation experiment demonstrated that gut microbiota mediated the protective effect of P. pentosaceus YC. These findings offer valuable insights into the application of P. pentosaceus YC for alleviating gossypol-induced intestinal inflammation in fish.


Subject(s)
Animal Feed , Cichlids , Fish Diseases , Gossypol , Pediococcus pentosaceus , Probiotics , Signal Transduction , Animals , Cichlids/immunology , Fish Diseases/immunology , Fish Diseases/chemically induced , Fish Diseases/prevention & control , Probiotics/pharmacology , Probiotics/administration & dosage , Animal Feed/analysis , Signal Transduction/drug effects , Gossypol/administration & dosage , Gossypol/pharmacology , Diet/veterinary , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Aeromonas hydrophila/physiology , NF-kappa B/metabolism , NF-kappa B/genetics , Gastrointestinal Microbiome/drug effects , Intestines/drug effects , Intestines/immunology , Inflammation/veterinary , Inflammation/chemically induced , Inflammation/immunology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/immunology , Fish Proteins/genetics , Fish Proteins/metabolism , Fish Proteins/immunology , Enteritis/veterinary , Enteritis/prevention & control , Enteritis/chemically induced , Enteritis/immunology , Enteritis/microbiology
3.
Avian Pathol ; 53(6): 451-466, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38776185

ABSTRACT

Probiotics can enhance broiler chicken health by improving intestinal microbiota, potentially replacing antibiotics. They protect against bacterial diseases like necrotic enteritis (NE) in poultry. Understanding their role is crucial for managing bacterial diseases, including NE. This study conducted a meta-analysis to assess the effects of Bacillus subtilis probiotic supplementation on feed conversion ratio (FCR), NE lesion score, and mortality. Additionally, a systematic review analysed gut microbiota changes in broilers challenged with Clostridium perfringens with or without the probiotic supplementation. Effect sizes from the studies were estimated in terms of standardized mean difference (SMD). Random effect models were fitted to estimate the pooled effect size and 95% confidence interval (CI) of the pooled effect size between the control [probiotic-free + C. perfringens] and the treatment [Bacillus subtilis supplemented + C. perfringens] groups. Overall variance was computed by heterogeneity (Q). The meta-analysis showed that Bacillus subtilis probiotic supplementation significantly improved FCR and reduced NE lesion score but had no effect on mortality rates. The estimated overall effects of probiotic supplementation on FCR, NE lesion score and mortality percentage in terms of SMD were -0.91 (CI = -1.34, -0.49; P < 0.001*); -0.67 (CI = -1.11, -0.22; P = 0.006*), and -0.32 (CI = -0.70, 0.06; P = 0.08), respectively. Heterogeneity analysis indicated significant variations across studies for FCR (Q = 69.66; P < 0.001*) and NE lesion score (Q = 42.35; P < 0.001*) while heterogeneity was not significant for mortality (Q = 2.72; P = 0.74). Bacillus subtilis probiotic supplementation enriched specific gut microbiota including Streptococcus, Butyricicoccus, Faecalibacterium, and Ruminococcus. These microbiotas were found to upregulate expression of various genes such as TJ proteins occluding, ZO-1, junctional adhesion 2 (JAM2), interferon gamma, IL12-ß and transforming growth factor-ß4. Moreover, downregulated mucin-2 expression was involved in restoring the intestinal physical barrier, reducing intestinal inflammation, and recovering the physiological functions of damaged intestines. These findings highlight the potential benefits of probiotic supplementation in poultry management, particularly in combating bacterial diseases and promoting intestinal health.


Subject(s)
Bacillus subtilis , Chickens , Clostridium Infections , Enteritis , Poultry Diseases , Probiotics , Animals , Animal Feed/analysis , Chickens/microbiology , Clostridium Infections/veterinary , Clostridium Infections/prevention & control , Clostridium Infections/microbiology , Clostridium perfringens/pathogenicity , Dietary Supplements , Enteritis/veterinary , Enteritis/prevention & control , Enteritis/microbiology , Gastrointestinal Microbiome/drug effects , Necrosis/veterinary , Poultry Diseases/prevention & control , Poultry Diseases/microbiology , Probiotics/administration & dosage
4.
Anaerobe ; 89: 102902, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39187174

ABSTRACT

INTRODUCTION: Chickens with Necrotic Enteritis (NE), caused by Clostridium perfringens, exhibit acute and chronic symptoms that are difficult to diagnose, leading to significant economic losses. Vaccination is the best method for controlling and preventing NE. However, only two vaccines based on the CPA and NetB toxins have been commercialized, offering partial protection, highlighting the urgent need for more effective vaccines. OBJECTIVE: This review aimed to identify promising antigens for NE vaccine formulation and discuss factors affecting their effectiveness. METHODS: A systematic review using five scientific databases identified 30 eligible studies through the Rayyan tool, which were included for quality review. RESULTS: We identified 25 promising antigens, including CPA, NetB, FBA, ZMP, CnaA, FimA, and FimB, categorized by their role in disease pathogenesis. This review discusses the biochemical, physiological, and genetic traits of recombinant antigens used in vaccine prototypes, their expression systems, and immunization potential in chickens challenged with virulent C. perfringens strains. Market supply challenges, immunogenic potential, vaccine platforms, adjuvants, and factors related to vaccination schedules-such as administration routes, dosing intervals, and age at immunization-are also addressed. Additionally, the study notes that vaccine formulations tested under mild challenges may not offer adequate field-level protection due to issues replicating aggressive conditions, strain virulence loss, and varied methodologies. CONCLUSIONS: An ideal NE vaccine should incorporate multiple antigens, molecular adjuvants, and delivery systems via in ovo and oral routes. The review underscores the challenges in developing and validating NE vaccines and the urgent need for a standardized protocol to replicate aggressive challenges accurately.


Subject(s)
Bacterial Vaccines , Chickens , Clostridium Infections , Clostridium perfringens , Enteritis , Poultry Diseases , Animals , Antigens, Bacterial/immunology , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Chickens/immunology , Chickens/microbiology , Clostridium Infections/prevention & control , Clostridium Infections/veterinary , Clostridium Infections/immunology , Clostridium perfringens/immunology , Clostridium perfringens/genetics , Enteritis/prevention & control , Enteritis/veterinary , Enteritis/microbiology , Enteritis/immunology , Necrosis/veterinary , Poultry Diseases/prevention & control , Poultry Diseases/microbiology , Vaccination/veterinary , Vaccination/methods , Vaccine Development/methods
5.
J Dairy Sci ; 106(1): 733-742, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36333142

ABSTRACT

Necro-hemorrhagic enteritis in calves, caused by Clostridium perfringens type A, is a fatal disease, mostly affecting calves in intensive rearing systems. The lack of development of active immunity against α toxin, an essential virulence factor in the pathogenesis, has been proposed as a main trigger. In this experimental study, the effect of a set of milk replacer components on α toxin production, and the effect of lactose on in vivo antibody production, were investigated. For the latter, Holstein-Friesian bull calves (n = 18) were fed an all liquid diet that contained either a milk replacer with high-lactose content (45% DM) or the same milk replacer that was lactase treated, resulting in a lactose-free equivalent. Antibody levels against α toxin were monitored from 2 to 12 wk of age. In the in vitro part of the study, a concentration-dependent inhibitory effect of lactose on in vitro C. perfringens α toxin activity was observed, whereas protein did not influence α toxin activity. The in vivo experiment then showed from the age of 10 wk onwards, that anti-α toxin antibody levels of high-lactose animals declined, whereas antibody levels of the animals consuming lactose-free milk replacer remained the same throughout the trial. This points to a natural decline in maternal immunity of lactose-consuming animals, that is not compensated by the development of an active immunity, resulting in inferior protection. This study suggests that dietary lactose reduces C. perfringens α toxin production in vivo, which may lead to a decreased antigen presentation and thus lower serum antibody levels against the toxin. Consequently, any event causing massive α toxin production puts lactose-consuming calves at higher risk of developing necro-hemorrhagic enteritis.


Subject(s)
Enteritis , Lactose , Cattle , Animals , Male , Lactose/metabolism , Antibody Formation , Type C Phospholipases , Clostridium perfringens/metabolism , Enteritis/prevention & control , Enteritis/veterinary , Animal Feed/analysis
6.
J Sci Food Agric ; 103(14): 6958-6965, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37309567

ABSTRACT

BACKGROUND: Bacillus licheniformis is a gram-positive bacterium that has strong environmental adaptability and can improve the growth performance, immunity, and antioxidant function of broilers. The current study aimed to elucidate the protective capability of B. licheniformis against inflammatory responses and intestinal barrier damage in broilers with necrotic enteritis (NE) induced by Clostridium perfringens (CP). RESULTS: The results showed that B. licheniformis enhanced the final body weight in broilers compared with that of broilers in the CP group after the stress of infection (P < 0.05). Bacillus licheniformis reversed the decreased levels of serum and jejunum mucosa immunoglobulins and anti-inflammatory cytokines, reduced the values of villus height and the ratio of villus height to crypt depth, and mitigated the increased levels of serum d-lactic acid and diamine oxidase in CP-challenged broilers (P < 0.05). Moreover, B. licheniformis modulated the expression levels of genes involved in the TLR4/NF-κB signalling pathway, the NLRP3 inflammasome activation pathway, and the sirt 1/Parkin signalling pathway in CP-challenged broilers. Compared with the CP challenge group, the B. licheniformis-treated group exhibited reduced abundance values of Shuttleworthia and Alistipes and enhanced abundance values of Parabacteroides in the caecal contents (P < 0.05). CONCLUSION: Bacillus licheniformis improved the final body weight and alleviated the inflammatory response and intestinal barrier function damage in birds with NE induced by CP by maintaining intestinal physiological function, enhancing immunity, regulating inflammatory cytokine secretion, modulating the mitophagy response, and increasing the abundance of beneficial intestinal flora. © 2023 Society of Chemical Industry.


Subject(s)
Bacillus licheniformis , Clostridium Infections , Enteritis , Poultry Diseases , Animals , Clostridium perfringens/physiology , Chickens , Bacillus licheniformis/genetics , Clostridium Infections/prevention & control , Clostridium Infections/veterinary , Clostridium Infections/microbiology , Enteritis/prevention & control , Enteritis/veterinary , Enteritis/microbiology , Body Weight , Poultry Diseases/genetics , Poultry Diseases/prevention & control
7.
Immunity ; 38(1): 153-65, 2013 Jan 24.
Article in English | MEDLINE | ID: mdl-23246312

ABSTRACT

Circulatory antigens transit through the small intestine via the fenestrated capillaries in the lamina propria prior to entering into the draining lymphatics. But whether or how this process controls mucosal immune responses remains unknown. Here we demonstrate that dendritic cells (DCs) of the lamina propria can sample and process both circulatory and luminal antigens. Surprisingly, antigen cross-presentation by resident CX3CR1(+) DCs induced differentiation of precursor cells into CD8(+) T cells that expressed interleukin-10 (IL-10), IL-13, and IL-9 and could migrate into adjacent compartments. We conclude that lamina propria CX3CR1(+) DCs facilitate the surveillance of circulatory antigens and act as a conduit for the processing of self- and intestinally absorbed antigens, leading to the induction of CD8(+) T cells, that partake in the control of T cell activation during mucosal immune responses.


Subject(s)
Antigen Presentation/immunology , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Intestinal Mucosa/immunology , Lymphocyte Activation/immunology , Animals , Antigens/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/cytology , CX3C Chemokine Receptor 1 , Cell Differentiation/immunology , Cross-Priming/immunology , Dendritic Cells/metabolism , Enteritis/immunology , Enteritis/prevention & control , Epitopes, T-Lymphocyte/immunology , Intestinal Mucosa/cytology , Intestine, Small/immunology , Mice , Receptors, Chemokine/immunology , Receptors, Chemokine/metabolism
8.
J Appl Microbiol ; 132(1): 113-125, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34101942

ABSTRACT

AIMS: In this study, we attempted to design a recombinant vaccine harbouring domain with a key role in enterocyte attachment and cell invasion in necrotic enteritis (NE) and coccidiosis. METHODS AND RESULTS: In this study, we investigated whether a recombinant protein consisting of necrotic enteritis B-like toxin, C-terminal domain of alpha-toxin, apical membrane antigen 1 (AMA1), and Rhoptry neck protein 2 (RON2) which we call "NeCoVac" hereafter, can improve protection against both diseases compared to vaccination with each antigen in previous studies. Birds intestinal lesion scores and specific antibody levels were measured to determine protection after oral gavage challenges with virulent Clostridium perfringens and LIVACOX® T. Birds immunized with NeCoVac were protected up to 84% against NE and coccidiosis compared to unimmunized and even positive groups (groups treated with LIVACOX® T [coccidiosis live vaccine] and tylosin as routine veterinary interventions) (p < 0.05). CONCLUSIONS: Our findings suggest that vaccination with NeCoVac is highly efficient in protecting birds from NE, coccidiosis and a combination of both diseases. SIGNIFICANCE AND IMPACT OF THE STUDY: The present study is the first one to describe the combinatorial use of AMA1 and RON2 against coccidiosis, and the first report using NeCoVac against NE and coccidiosis together.


Subject(s)
Clostridium Infections , Coccidiosis , Enteritis , Poultry Diseases , Animals , Chickens , Clostridium Infections/prevention & control , Clostridium Infections/veterinary , Clostridium perfringens , Coccidiosis/prevention & control , Coccidiosis/veterinary , Enteritis/prevention & control , Enteritis/veterinary , Necrosis , Poultry Diseases/prevention & control , Vaccines, Combined
9.
Appl Microbiol Biotechnol ; 106(19-20): 6441-6453, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36063180

ABSTRACT

Necrotic enteritis is a serious economical disease of poultry caused by Clostridium perfringens. NetB toxin of Clostridium perfringens is considered the causative agent of necrotic enteritis. Following the withdrawal of in-feed antibiotic growth promoters, there has been an urgent need to develop alternative approaches such as vaccination. Currently, there are no commercially available vaccines to control necrotic enteritis especially in broiler chickens as the target population. In the present study, we constructed a recombinant Lactobacillus casei strain expressing NetB protein of C. perfringens on the cell surface and used this probiotic-based vaccine strain to immunize broiler chickens orally against experimental induction of necrotic enteritis. The birds immunized with the oral vaccine strain were significantly protected against necrotic enteritis challenge and developed strong serum anti-NetB antibody responses to NetB protein. Furthermore, the immunized birds showed higher body weight gains during the challenge experiment compared with control birds. This study showed, for the first time, that a probiotic-based vector vaccine could be a promising vaccine candidate to provide protection against necrotic enteritis in broiler chickens. KEYPOINTS: • The probiotic L. casei carrying pT1NX-netB plasmid displayed NetB antigen on the cell surface. • The LC-NetB vaccine strain induced high anti-toxin antibody response in broiler chickens. • The LC-NetB vector vaccine provided significant protection against experimental NE challenge.


Subject(s)
Bacterial Toxins , Clostridium Infections , Enteritis , Lacticaseibacillus casei , Poultry Diseases , Animals , Anti-Bacterial Agents , Antibodies, Bacterial , Antigens, Bacterial/genetics , Bacterial Toxins/genetics , Chickens , Clostridium Infections/prevention & control , Clostridium Infections/veterinary , Clostridium perfringens/genetics , Enteritis/prevention & control , Enteritis/veterinary , Lacticaseibacillus casei/genetics , Poultry Diseases/prevention & control
10.
J Dairy Sci ; 105(6): 4791-4803, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35379462

ABSTRACT

Infant intestinal development is immature and, thus, is vulnerable to bacterial and viral infections, which damage intestinal development and even induce acute enteritis. Numerous studies have investigated that lactoferrin (LF) has protective effects on the intestine and may play a role in preventing intestinal inflammation in infants. Lactoferrin is divided into 2 types, namely apo-LF and holo-LF, depending on the degree of iron saturation, which may affect its bioactivities. However, the role of LF iron saturation in protecting infant intestinal inflammation has not been clearly clarified. Therefore, in this study, young mice models with intestinal damage induced by lipopolysaccharides (LPS) in vivo and primary intestinal epithelial cells in vitro were constructed to enteritis injury in infants for investigation. The apo-LF and holo-LF were subsequently applied to the mouse models to investigate and compare their levels of protection in the intestinal inflammatory injury, as well as to identify which LF was most active. Moreover, the specific mechanism of the LF with optimal iron saturation was further investigated through Western blot assay. Results demonstrated that disease activity index, shortened length of colon tissue, and histopathological score were significantly decreased in the apo-LF group compared with those of the LPS group and the holo-LF group. In the apo-LF group, the concentration of LPS in the intestinal tract and the number of gram-negative bacteria colonies decreased significantly and the expression levels of proinflammatory factors in the colon tissue were downregulated, in comparison with those in the LPS group. The findings of this study thus verify that apo-LF can significantly alleviate enteritis injury caused by LPS, through regulating the PPAR-γ/PFKFB3/NF-κB inflammatory pathway.


Subject(s)
Enteritis , Iron , Lactoferrin , Animals , Enteritis/prevention & control , Enteritis/veterinary , Inflammation/veterinary , Iron/metabolism , Lactoferrin/pharmacology , Lipopolysaccharides , Mice , Recombinant Proteins/pharmacology
11.
Biochem Biophys Res Commun ; 554: 199-205, 2021 05 21.
Article in English | MEDLINE | ID: mdl-33812084

ABSTRACT

Radiation enteritis (RE) is the most common radiotherapy complication, and effective RE treatments are lacking. Resveratrol exerts beneficial effects on radiation injury. However, the effect of resveratrol in radiation-induced intestinal injury and the underlying mechanism remain unclear. Here, a C57BL/6 mouse model of RE was established and an intestinal epithelial cell line was used to evaluate the protective effects of resveratrol against radiation-induced intestinal injury and the underlying mechanisms. Resveratrol improved radiation-induced oxidative stress and cell apoptosis via upregulating antioxidant enzymes and downregulating p53 acetylation. In vivo, resveratrol-treated mice exhibited longer survival; longer villi; more intestinal crypt cells; upregulated expression of Ki67, catalase, and superoxide dismutase 2; and fewer inflammatory proteins and apoptotic cells. These protective effects were suppressed by inhibition of SIRT1. These results demonstrate that resveratrol can reduce radiation-induced intestinal injury by inhibiting oxidative stress and apoptosis via the SIRT1/FOXO3a and PI3K/AKT pathways.


Subject(s)
Enteritis/prevention & control , Forkhead Box Protein O3/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Radiation Injuries, Experimental/prevention & control , Resveratrol/pharmacology , Sirtuin 1/metabolism , Animals , Antioxidants/pharmacology , Apoptosis , Cell Line , Disease Models, Animal , Enteritis/etiology , Enteritis/metabolism , Enteritis/pathology , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestinal Mucosa/radiation effects , Male , Mice , Mice, Inbred C57BL , Oxidative Stress , Phosphatidylinositol 3-Kinases/metabolism , Radiation Injuries, Experimental/etiology , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/pathology , Radiation, Ionizing , Rats , Signal Transduction
12.
Fish Shellfish Immunol ; 114: 49-57, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33887442

ABSTRACT

Soy saponins, as thermo-stable anti-nutrients in soybean meal (SBM), are the primary causal agents of SBM-induced enteritis, which represents a well-documented pathologic alternation involving the distal intestines of various farmed fish. Our previous work showed that soy saponins might lead to SBM-induced enteritis, destroy tight junction structure and induce oxidative damage in juvenile turbot. Glutamine, as a conditionally essential amino acid, is an important substrate utilized for the growth of intestinal epithelial cells. An 8-week feeding trial was carried out to determine whether glutamine can attenuate the detrimental effects of soy saponins. Three isonitrogenous-isolipidic experimental diets were formulated as follows: (i) fish meal-based diet (FM), considered as control; (ii) FM + 10 g/kg soy saponins, SAP; and (iii) SAP + 15 g/kg glutamine, GLN. The results showed that dietary soy saponins significantly increased the gene expression levels of inflammatory markers (IL-1ß, IL-8 and TNF-α) and related signaling factors (NF-кB, AP-1, p38, JNK and ERK), which were remarkably attenuated by dietary glutamine. Compared to SAP group, GLN-fed fish exhibited significantly higher expression levels of tight junction genes (CLDN3, CLDN4, OCLN, Tricellulin and ZO-1). Glutamine supplementation in SAP diet markedly suppressed the production of reactive oxygen species, malondialdehyde and protein carbonyl, and enhanced the activities of antioxidant enzymes as well as the mRNA levels of HO-1, SOD, GPX and Nrf2. Furthermore, GLN-fed fish had a remarkably lower number of autophagosomes compared to SAP-fed fish. In conclusion, our study indicated that glutamine could reverse the harmful effects of soy saponins on intestinal inflammation, tight junction disruption and oxidative damage, via attenuation of NF-кB, AP-1 and MAPK pathways and activation of Nrf2 pathway. Glutamine may have the function of controlling autophaghic process within an appropriate level of encountering inflammation.


Subject(s)
Enteritis/chemically induced , Fish Diseases/chemically induced , Flatfishes/physiology , Glutamine/pharmacology , Glycine max/chemistry , Saponins/toxicity , Animal Feed/analysis , Animals , Autophagy/drug effects , Diet/veterinary , Enteritis/prevention & control , Fish Diseases/prevention & control , Oxidative Stress/drug effects
13.
Fish Shellfish Immunol ; 109: 116-124, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33352339

ABSTRACT

Black solider fly larvae (BSFL) and their oils (BSFLO) are receiving increasing attention as sustainable ingredients in fish feeds, but mostly as replacements to marine sources. There were two aims to this study; in exp. 1, soybean meal (SBM)-based diets were formulated to contain BSFL as supplements at 0 (SBM), 8 (SBM + BSFLlow) or 16% (SBM + BSFLhigh) with a control diet being fishmeal-based (FM). In exp. 2, diets included only fish oil (FO), soybean oil (SBO), BSFLO or BSFLO + bile acid (BA), and all lipid sources were added at 16%. Both experiments were run at the same time and fed to rainbow trout (32 g) with each treatment being triplicated. After 10 weeks the fish were sampled for liver and distal intestine histology, expression of genes responsible for inflammation in the intestine and kidneys, and serum peroxidase and lysozyme activities. In exp. 1, supplementations of BSFL effectively prevented SBM-induced intestinal enteritis, down-regulated intestinal prostaglandin and interferon regulatory factor 1 (IRF-1), while the SBM + BSFLhigh diet significantly increased serum lysozyme activity. In exp. 2, BSFLO caused no histomorphological change to the liver or intestine, but kidney interluekin-8, tumor necrosis factor and IRF-1 were significantly upregulated along with significantly higher serum peroxidase activity. The inclusion of BA in the BSFLO diets significantly upregulated intestinal prostaglandin gene expression. Overall, BSFL supplementations of 8 or 16% prevented SBM-induced intestinal enteritis based on histological observations, which was supported by a down-regulation in pro-inflammatory genes and enhanced innate immunity. Meanwhile, the use of BSFLO showed some immunological benefits. Therefore, these sustainable resources are recommended in the diets of rainbow trout, especially when using elevated levels of plant-based proteins.


Subject(s)
Dietary Supplements/analysis , Diptera/chemistry , Enteritis/veterinary , Fish Diseases/prevention & control , Glycine max/adverse effects , Oncorhynchus mykiss/immunology , Animal Feed/analysis , Animals , Diet/veterinary , Diptera/growth & development , Dose-Response Relationship, Drug , Enteritis/chemically induced , Enteritis/prevention & control , Fish Diseases/chemically induced , Intestines/physiopathology , Larva/chemistry , Larva/growth & development
14.
Anaerobe ; 70: 102377, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33957249

ABSTRACT

OBJECTIVE: Keeping in view, the constraints faced by the Indian broiler industry with lack of a suitable vaccine against Necrotic Enteritis (NE), a study has been proposed to explore the prevalence and detail characterization of C. perfringens type G in NE suspected broiler chicken in the process of suitable vaccine development. METHODS: Intestinal scrapings/faecal contents of NE suspected broiler chickens were screened to establish the prevalence of C.perfringens type G in broiler birds. A most pathogenic, highly resistant type G isolate of C. perfringens, bearing both tpeL and gapC gene was selected for preparation of three different vaccine formulations, and to evaluate their immunogenic potential in broiler birds. RESULTS: Screening of clinical samples of NE suspected broiler birds revealed C. perfringens type G, bearing gapC gene in 51.22% samples, of which 47.62% revealed tpeL gene. Seven of the tpeLpos type G isolates were comparatively more pathogenic for mice, of which, one exhibited multidrug resistance towards ciprofloxacin, norfloxacin, tetracycline and levofloxacin. The sonicated supernatant (SS) prepared from the selected tpeL and gapC positive isolate could maintain a significantly higher protective IgG response than toxoid and bacterin preparation from the 21st to 28thday of age in immunized birds. CONCLUSION: The additional TpeL toxin in C. perfringens type G has been proved to be an additional key biological factor in the pathogenesis of NE in broiler chickens. Considering the release of more immunogenic proteins, the SS proved to be a better immunogenic preparation against NE with a multiple immunization dose.


Subject(s)
Bacterial Proteins/immunology , Bacterial Vaccines/immunology , Clostridium Infections/veterinary , Clostridium perfringens/immunology , Enteritis/veterinary , Poultry Diseases/prevention & control , Animals , Bacterial Proteins/administration & dosage , Bacterial Proteins/genetics , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/genetics , Chickens , Clostridium Infections/microbiology , Clostridium Infections/prevention & control , Clostridium perfringens/classification , Clostridium perfringens/genetics , Enteritis/microbiology , Enteritis/prevention & control , Poultry Diseases/microbiology
15.
Curr Opin Gastroenterol ; 36(3): 208-214, 2020 05.
Article in English | MEDLINE | ID: mdl-32141897

ABSTRACT

PURPOSE OF REVIEW: As cancer treatments improve more patients than ever are living for longer with the side effects of these treatments. Radiation enteritis is a heterogenous condition with significant morbidity. The present review aims to provide a broad overview of the condition with particular attention to the diagnosis and management of the condition. RECENT FINDINGS: Radiation enteritis appears to be more prevalent than originally thought because of patient underreporting and a lack of clinician awareness. Patient-related and treatment-related risk factors have now been identified and should be modified where possible. Medical and surgical factors have been explored, but manipulation of the gut microbiota offers one of the most exciting recent developments in disease prevention. Diagnosis and treatment are best approached in a systematic fashion with particular attention to the exclusion of recurrent malignancy and other gastrointestinal conditions. Surgery and endoscopy both offer opportunities for management of the complications of radiation enteritis. Experimental therapies offer hope for future management of radiation enteritis but large-scale human trials are needed. SUMMARY: Radiation enteritis is an important clinical problem, but awareness is lacking amongst patients and physicians. Clinical guidelines would allow standardised management which may improve the burden of the disease for patients.


Subject(s)
Enteritis , Radiation Injuries , Cost of Illness , Enteritis/diagnosis , Enteritis/etiology , Enteritis/prevention & control , Enteritis/therapy , Humans , Radiation Injuries/complications , Radiation Injuries/diagnosis , Radiation Injuries/prevention & control , Radiation Injuries/therapy , Risk Factors
16.
Fish Shellfish Immunol ; 97: 204-215, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31843701

ABSTRACT

Foodborne enteritis has become a limiting factor in aquaculture. Plant protein sources have already caused enteritic inflammation and inhibition in growth performance. Attempts have been made to find an effective solution to foodborne enteritis. Based on the previously suggested fish cholinergic anti-inflammatory pathway, galantamine, a typical cholinesterase inhibitor, was tested for the repression of pro-inflammatory cytokines for soybean meal induced enteritis by injection into grass carp. Both the phylogenetic analysis of cholinesterase, AchR and bioinformatic prediction, indicated galantamine's potential use as an enteritis drug. The result highlighted galantamine's potential effect for anti-enteritis in fish, especially in carps. Subsequently, a 4-week feeding trail using galantamine as an additive, in a zebrafish soybean meal induced enteritis model, demonstrated the prevention of enteritis. The results demonstrated that galantamine could prevent intestinal pathology, both histologically and molecularly, and also maintain growth performance. Reflected by gene expressional analysis, all mechanical, chemical and immune functions of the intestinal barrier could be protected by galantamine supplementation, which aided molecularly in the control of fish foodborne enteritis, through down-regulating Th17 type proinflammatory factors, meanwhile resuming the level of Treg type anti-inflammatory factors. Therefore, the current results shed light on fish intestinal acetylcholine anti-inflammation, by the dietary addition of galantamine, which could give rise to protection from foodborne enteritis.


Subject(s)
Acetylcholine/physiology , Carps , Cholinesterase Inhibitors/pharmacology , Enteritis/veterinary , Fish Diseases/prevention & control , Foodborne Diseases/veterinary , Galantamine/pharmacology , Glycine max/adverse effects , Animal Feed/analysis , Animals , Cholinesterase Inhibitors/administration & dosage , Diet/veterinary , Dietary Supplements/analysis , Enteritis/chemically induced , Enteritis/immunology , Enteritis/prevention & control , Fish Diseases/chemically induced , Fish Diseases/immunology , Foodborne Diseases/etiology , Foodborne Diseases/immunology , Foodborne Diseases/prevention & control , Galantamine/administration & dosage
17.
Microb Pathog ; 132: 201-207, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31077753

ABSTRACT

Subclinical necrotic enteritis (SNE) broadly occurs in boilers, which reduces the growth performance by causing serious economic and social problems. The following study was conducted to better understand the molecular mechanism of the SNE on liver inflammation and to examine the innovative prevention of Lactobacillus johnsonii BS15 upon SNE. The research was based on the regulatory molecular mechanism of Lactobacillus johnsonii BS15, and its effect on liver inflammatory pathways in the broiler with SNE infection. Day old one hundred and eighty (Cobb 500) broiler chickens were distributed into 3 groups (control, SNE and BS15 group) and reared for 28 days. RNA sequencing was used for the analysis of gene expression extracted from liver samples. Gene expression was detected with the help of quantitative real-time PCR (qRT-PCR). RNA-Seq analysis revealed altered expressions of genes involved in liver inflammatory pathway. A total number of 385 genes were found as differentially expressed (DEGs) in the liver samples that belonged to SNE group as compared with the control liver samples (p < 0.05). Out of those 385 genes, 117 were down-regulated and 268 were up-regulated. The DEGs related to liver inflammation between control group and SNE group or SNE and BS15 groups, included cluster of differentiation 80 (CD80), Interleukin 1 beta (IL1B), Phosphoinositide 3- Kinase regulatory subunit 5 (PIK3R5), Toll-like receptor 4 (TLR4), Toll-like receptor 2 A (TLR2A), and proto-oncogene protein (FOS). The RNA-Seq analysis provided DEGs expression and this result was validated by qRT-PCR. Results confirmed that these genes are essential in the regulation of liver inflammation in the SNE infected chickens. Findings of current research indicated that the hepatic inflammation could be induced by SNE in broilers. Simultaneously, effects of SNE infection on liver could be subsided by improved TLRs signaling pathway with the naturally present prophylactic strategy as BS15.


Subject(s)
Enteritis/metabolism , Gene Expression Profiling/methods , Inflammation/genetics , Lactobacillus johnsonii/physiology , Liver/metabolism , Probiotics/pharmacology , Animals , B7-1 Antigen , Chickens , Clostridium perfringens , Down-Regulation , Enteritis/prevention & control , Gene Expression Regulation/drug effects , Genes, Regulator , Inflammation/drug therapy , Interleukin-1beta , Liver/drug effects , Liver/pathology , Poultry Diseases/prevention & control , Proto-Oncogene Mas , Sequence Analysis, RNA , Signal Transduction , Transcriptome , Up-Regulation
18.
Pediatr Res ; 86(6): 749-757, 2019 12.
Article in English | MEDLINE | ID: mdl-31443102

ABSTRACT

BACKGROUND: Infant gut dysbiosis, often associated with low abundance of bifidobacteria, is linked to impaired immune development and inflammation-a risk factor for increased incidence of several childhood diseases. We investigated the impact of B. infantis EVC001 colonization on enteric inflammation in a subset of exclusively breastfed term infants from a larger clinical study. METHODS: Stool samples (n = 120) were collected from infants randomly selected to receive either 1.8 × 1010 CFU B. infantis EVC001 daily for 21 days (EVC001) or breast milk alone (controls), starting at day 7 postnatal. The fecal microbiome was analyzed using 16S ribosomal RNA, proinflammatory cytokines using multiplexed immunoassay, and fecal calprotectin using ELISA at three time points: days 6 (Baseline), 40, and 60 postnatal. RESULTS: Fecal calprotectin concentration negatively correlated with Bifidobacterium abundance (P < 0.0001; ρ = -0.72), and proinflammatory cytokines correlated with Clostridiaceae and Enterobacteriaceae, yet negatively correlated with Bifidobacteriaceae abundance. Proinflammatory cytokines were significantly lower in EVC001-fed infants on days 40 and 60 postnatally compared to baseline and compared to control infants. CONCLUSION: Our findings indicate that gut dysbiosis (absence of B. infantis) is associated with increased intestinal inflammation. Early addition of EVC001 to diet represents a novel strategy to prevent enteric inflammation during a critical developmental phase.


Subject(s)
Bifidobacterium longum subspecies infantis/growth & development , Breast Feeding , Enteritis/prevention & control , Cytokines/metabolism , Enteritis/metabolism , Enteritis/microbiology , Feces/chemistry , Feces/microbiology , Female , Gastrointestinal Microbiome , Humans , Infant, Newborn , Inflammation Mediators/metabolism , Leukocyte L1 Antigen Complex/analysis , Male , Prospective Studies
19.
BMC Infect Dis ; 19(1): 1066, 2019 Dec 19.
Article in English | MEDLINE | ID: mdl-31856747

ABSTRACT

BACKGROUND: Symptomatic and asymptomatic enteric infections in early childhood are associated with negative effects on childhood growth and development, especially in low and middle-income countries, and food may be an important transmission route. Although basic food hygiene practices might reduce exposure to faecal pathogens and resulting infections, there have been few rigorous interventions studies to assess this, and no studies in low income urban settings where risks are plausibly very high. The aim of this study is to evaluate the impact of a novel infant food hygiene intervention on infant enteric infections and diarrhoea in peri-urban settlements of Kisumu, Kenya. METHODS: This is a cluster randomized control trial with 50 clusters, representing the catchment areas of Community Health Volunteers (CHVs), randomly assigned to intervention or control, and a total of 750 infants recruited on a rolling basis at 22 weeks of age and then followed for 15 weeks. The intervention targeted four key caregiver behaviours related to food hygiene: 1) hand washing with soap before infant food preparation and feeding; 2) bringing all infant food to the boil before feeding, including when reheating or reserving; 3) storing all infant food in sealed containers; and, 4) using only specific utensils for infant feeding which are kept separate and clean. RESULTS: The primary outcome of interest is the prevalence of one or more of 23 pre-specified enteric infections, determined using quantitative real-time polymerase chain reaction for enteric pathogen gene targets. In addition, infant food samples were collected at 33 weeks, and faecal indicator bacteria (Enterococcus) isolated and enumerated to assess the impact of the intervention on infant food contamination. CONCLUSION: To our knowledge this is the first randomized controlled trial to assess the effect of an infant food hygiene intervention on enteric infections in a high burden, low income urban setting. Our trial responds to growing evidence that food may be a key pathway for early childhood enteric infection and disease and that basic food hygiene behaviours may be able to mitigate these risks. The Safe Start trial seeks to provide new evidence as to whether a locally appropriate infant food hygiene intervention delivered through the local health extension system can improve the health of young children. TRIAL REGISTRATION: The trial was registered at clinicaltrial.gov on March 16th 2018 before enrolment of any participants (https://clinicaltrials.gov/ct2/show/NCT03468114).


Subject(s)
Diarrhea/epidemiology , Diarrhea/microbiology , Enteritis/epidemiology , Enteritis/microbiology , Hand Disinfection/methods , Infections/epidemiology , Poverty , Caregivers , Cooking , Diarrhea/prevention & control , Enteritis/prevention & control , Enterococcus/isolation & purification , Feces/microbiology , Female , Food Contamination/prevention & control , Food Storage , Foodborne Diseases/microbiology , Foodborne Diseases/prevention & control , Humans , Infant , Infection Control , Infections/microbiology , Kenya/epidemiology , Male , Public Health , Soaps , Urban Health
20.
Crit Care ; 22(1): 239, 2018 09 27.
Article in English | MEDLINE | ID: mdl-30261905

ABSTRACT

BACKGROUND: Commensal microbiota deteriorate in critically ill patients. The preventive effects of probiotic/synbiotic therapy on microbiota and septic complications have not been thoroughly clarified in patients with sepsis. The objective of this study was to evaluate whether synbiotics have effects on gut microbiota and reduce complications in mechanically ventilated patients with sepsis. METHODS: Sepsis patients who were mechanically ventilated in the intensive care unit (ICU) were included in this randomized controlled study. Patients receiving daily synbiotics (Bifidobacterium breve strain Yakult, Lactobacillus casei strain Shirota, and galactooligosaccharides) initiated within 3 days after admission (the Synbiotics group) were compared with patients who did not receive synbiotics (the No-Synbiotics group). The primary outcome was infectious complications including enteritis, ventilator-associated pneumonia (VAP), and bacteremia within 4 weeks from admission. The secondary outcomes included mortality within 4 weeks, fecal bacterial counts, and organic acid concentration. Enteritis was defined as the acute onset of continuous liquid stools for more than 12 h. RESULTS: Seventy-two patients completed this trial; 35 patients received synbiotics and 37 patients did not receive synbiotics. The incidence of enteritis was significantly lower in the Synbiotics than the No-Synbiotics group (6.3% vs. 27.0%; p < 0.05). The incidence of VAP was also significantly lower in the Synbiotics than the No-Synbiotics group (14.3% vs. 48.6%; p < 0.05). The incidence of bacteremia and mortality did not differ significantly between the two groups. In the analysis of fecal bacteria, the number of Bifidobacterium and Lactobacillus in the Synbiotics group was significantly higher than that in the No-Synbiotics group. In the analysis of fecal organic acids, total organic acid concentration, especially the amounts of acetate, were significantly greater in the Synbiotics group than in the No-Synbiotics group at the first week (p < 0.05). CONCLUSIONS: Prophylactic synbiotics could modulate the gut microbiota and environment and may have preventive effects on the incidence of enteritis and VAP in patients with sepsis. TRIAL REGISTRATION: UMIN, R000007633 . Registered on 29 September 2011.


Subject(s)
Enteritis/prevention & control , Gastrointestinal Microbiome/drug effects , Pneumonia, Ventilator-Associated/prevention & control , Synbiotics/administration & dosage , APACHE , Aged , Aged, 80 and over , Bifidobacterium bifidum , Critical Illness/therapy , Enteritis/drug therapy , Female , Gastrointestinal Microbiome/physiology , Humans , Incidence , Lacticaseibacillus casei , Male , Middle Aged , Pneumonia, Ventilator-Associated/drug therapy , Probiotics/pharmacology , Probiotics/therapeutic use , Proportional Hazards Models , Prospective Studies , Sepsis/complications , Sepsis/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL