Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
PLoS Pathog ; 15(7): e1007950, 2019 07.
Article in English | MEDLINE | ID: mdl-31356622

ABSTRACT

Equine arteritis virus (EAV) has the unique ability to establish long-term persistent infection in the reproductive tract of stallions and be sexually transmitted. Previous studies showed that long-term persistent infection is associated with a specific allele of the CXCL16 gene (CXCL16S) and that persistence is maintained despite the presence of local inflammatory and humoral and mucosal antibody responses. Here, we performed transcriptomic analysis of the ampullae, the primary site of EAV persistence in long-term EAV carrier stallions, to understand the molecular signatures of viral persistence. We demonstrated that the local CD8+ T lymphocyte response is predominantly orchestrated by the transcription factors eomesodermin (EOMES) and nuclear factor of activated T-cells cytoplasmic 2 (NFATC2), which is likely modulated by the upregulation of inhibitory receptors. Most importantly, EAV persistence is associated with an enhanced expression of CXCL16 and CXCR6 by infiltrating lymphocytes, providing evidence of the implication of this chemokine axis in the pathogenesis of persistent EAV infection in the stallion reproductive tract. Furthermore, we have established a link between the CXCL16 genotype and the gene expression profile in the ampullae of the stallion reproductive tract. Specifically, CXCL16 acts as a "hub" gene likely driving a specific transcriptional network. The findings herein are novel and strongly suggest that RNA viruses such as EAV could exploit the CXCL16/CXCR6 axis in order to modulate local inflammatory and immune responses in the male reproductive tract by inducing a dysfunctional CD8+ T lymphocyte response and unique lymphocyte homing in the reproductive tract.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Equartevirus/immunology , Equartevirus/pathogenicity , Animals , Arterivirus Infections/genetics , Arterivirus Infections/immunology , Arterivirus Infections/veterinary , Carrier State/immunology , Carrier State/veterinary , Carrier State/virology , Chemokine CXCL16/genetics , Chemokine CXCL16/immunology , Gene Expression Profiling , Genitalia, Male/immunology , Genitalia, Male/pathology , Genitalia, Male/virology , Horse Diseases/genetics , Horse Diseases/immunology , Horse Diseases/virology , Horses , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Male , Receptors, CXCR6/genetics , Receptors, CXCR6/immunology , Receptors, Virus/immunology , Transcription Factors/immunology , Virus Shedding/genetics , Virus Shedding/immunology
2.
J Virol ; 93(12)2019 06 15.
Article in English | MEDLINE | ID: mdl-30918077

ABSTRACT

Equine arteritis virus (EAV) is the causative agent of equine viral arteritis (EVA), a reproductive and respiratory disease of horses. Following natural infection, 10 to 70% of infected stallions can become carriers of EAV and continue to shed virus in the semen. In this study, sequential viruses isolated from nasal secretions, buffy coat cells, and semen of seven experimentally infected and two naturally infected EAV carrier stallions were deep sequenced to elucidate the intrahost microevolutionary process after a single transmission event. Analysis of variants from nasal secretions and buffy coat cells lacked extensive positive selection; however, characteristics of the mutant spectra were different in the two sample types. In contrast, the initial semen virus populations during acute infection have undergone a selective bottleneck, as reflected by the reduction in population size and diversifying selection at multiple sites in the viral genome. Furthermore, during persistent infection, extensive genome-wide purifying selection shaped variant diversity in the stallion reproductive tract. Overall, the nonstochastic nature of EAV evolution during persistent infection was driven by active intrahost selection pressure. Among the open reading frames within the viral genome, ORF3, ORF5, and the nsp2-coding region of ORF1a accumulated the majority of nucleotide substitutions during persistence, with ORF3 and ORF5 having the highest intrahost evolutionary rates. The findings presented here provide a novel insight into the evolutionary mechanisms of EAV and identified critical regions of the viral genome likely associated with the establishment and maintenance of persistent infection in the stallion reproductive tract.IMPORTANCE EAV can persist in the reproductive tract of infected stallions, and consequently, long-term carrier stallions constitute its sole natural reservoir. Previous studies demonstrated that the ampullae of the vas deferens are the primary site of viral persistence in the stallion reproductive tract and the persistence is associated with a significant inflammatory response that is unable to clear the infection. This is the first study that describes EAV full-length genomic evolution during acute and long-term persistent infection in the stallion reproductive tract using next-generation sequencing and contemporary sequence analysis techniques. The data provide novel insight into the intrahost evolution of EAV during acute and persistent infection and demonstrate that persistent infection is characterized by extensive genome-wide purifying selection and a nonstochastic evolutionary pattern mediated by intrahost selective pressure, with important nucleotide substitutions occurring in ORF1a (region encoding nsp2), ORF3, and ORF5.


Subject(s)
Arterivirus Infections/genetics , Equartevirus/genetics , Host-Pathogen Interactions/genetics , Amino Acid Sequence/genetics , Animals , Arterivirus Infections/virology , Base Sequence/genetics , Carrier State/virology , Equartevirus/metabolism , Equartevirus/pathogenicity , Evolution, Molecular , Genome, Viral/genetics , Horse Diseases/virology , Horses/genetics , Male , Open Reading Frames/genetics , Phylogeny , Semen/virology , Sequence Analysis/methods
3.
PLoS Genet ; 12(12): e1006467, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27930647

ABSTRACT

Equine arteritis virus (EAV) is the causative agent of equine viral arteritis (EVA), a respiratory, systemic, and reproductive disease of horses and other equid species. Following natural infection, 10-70% of the infected stallions can become persistently infected and continue to shed EAV in their semen for periods ranging from several months to life. Recently, we reported that some stallions possess a subpopulation(s) of CD3+ T lymphocytes that are susceptible to in vitro EAV infection and that this phenotypic trait is associated with long-term carrier status following exposure to the virus. In contrast, stallions not possessing the CD3+ T lymphocyte susceptible phenotype are at less risk of becoming long-term virus carriers. A genome wide association study (GWAS) using the Illumina Equine SNP50 chip revealed that the ability of EAV to infect CD3+ T lymphocytes and establish long-term carrier status in stallions correlated with a region within equine chromosome 11. Here we identified the gene and mutations responsible for these phenotypes. Specifically, the work implicated three allelic variants of the equine orthologue of CXCL16 (EqCXCL16) that differ by four non-synonymous nucleotide substitutions (XM_00154756; c.715 A → T, c.801 G → C, c.804 T → A/G, c.810 G → A) within exon 1. This resulted in four amino acid changes with EqCXCL16S (XP_001504806.1) having Phe, His, Ile and Lys as compared to EqCXL16R having Tyr, Asp, Phe, and Glu at 40, 49, 50, and 52, respectively. Two alleles (EqCXCL16Sa, EqCXCL16Sb) encoded identical protein products that correlated strongly with long-term EAV persistence in stallions (P<0.000001) and are required for in vitro CD3+ T lymphocyte susceptibility to EAV infection. The third (EqCXCL16R) was associated with in vitro CD3+ T lymphocyte resistance to EAV infection and a significantly lower probability for establishment of the long-term carrier state (viral persistence) in the male reproductive tract. EqCXCL16Sa and EqCXCL16Sb exert a dominant mode of inheritance. Most importantly, the protein isoform EqCXCL16S but not EqCXCL16R can function as an EAV cellular receptor. Although both molecules have equal chemoattractant potential, EqCXCL16S has significantly higher scavenger receptor and adhesion properties compared to EqCXCL16R.


Subject(s)
Arterivirus Infections/genetics , Chemokines, CXC/genetics , Equartevirus/genetics , Horse Diseases/genetics , Alleles , Amino Acid Sequence/genetics , Animals , Arterivirus Infections/veterinary , Arterivirus Infections/virology , CD3 Complex/genetics , CD3 Complex/immunology , Equartevirus/pathogenicity , Genetic Predisposition to Disease , Genome-Wide Association Study , Horse Diseases/virology , Horses/genetics , Horses/virology , Male , Phylogeny , Semen/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/pathology
4.
Arch Virol ; 161(4): 821-32, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26711457

ABSTRACT

Strains of equine arteritis virus (EAV) differ in their virulence phenotypes, causing anywhere from subclinical infections to severe disease in horses. Here, we describe the in silico design and de novo synthesis of a full-length infectious cDNA clone of the horse-adapted virulent Bucyrus strain (VBS) of EAV encoding mCherry along with in vitro characterization of the progeny virions (EAV sVBSmCherry) in terms of host-cell tropism, replicative capacity and stability of the mCherry coding sequences following sequential passage in cell culture. The relative stability of the mCherry sequence during sequential cell culture passage coupled with a comparable host-cell range phenotype (equine endothelial cells, CD3(+) T cells and CD14(+) monocytes) to parental EAV VBS suggest that EAV-sVBSmCherry-derived virus could become a valuable research tool for identification of host-cell tropism determinants and for characterization of the viral proteins involved in virus attachment and entry into different subpopulations of peripheral blood mononuclear cells. Furthermore, this study demonstrates that advances in nucleic acid synthesis technology permit synthesis of complex viral genomes with overlapping genes like those of arteriviruses, thereby circumventing the need for complicated molecular cloning techniques. In summary, de novo nucleic acid synthesis technology facilitates innovative viral vector design without the tedium and risks posed by more-conventional laboratory techniques.


Subject(s)
DNA, Complementary/genetics , Equartevirus/genetics , Equartevirus/pathogenicity , Luminescent Proteins/metabolism , Animals , Antibodies, Monoclonal , Antigens, Viral , Cell Line , Cloning, Molecular , Cricetinae , Flow Cytometry , Gene Expression Regulation, Viral/physiology , Horses , Luminescent Proteins/genetics , Microscopy, Fluorescence , Rabbits , Virulence , Red Fluorescent Protein
5.
J Virol ; 85(24): 13174-84, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21994447

ABSTRACT

Previously, we have shown that horses could be divided into susceptible and resistant groups based on an in vitro assay using dual-color flow cytometric analysis of CD3+ T cells infected with equine arteritis virus (EAV). Here, we demonstrate that the differences in in vitro susceptibility of equine CD3+ T lymphocytes to EAV infection have a genetic basis. To investigate the possible hereditary basis for this trait, we conducted a genome-wide association study (GWAS) to compare susceptible and resistant phenotypes. Testing of 267 DNA samples from four horse breeds that had a susceptible or a resistant CD3+ T lymphocyte phenotype using both Illumina Equine SNP50 BeadChip and Sequenom's MassARRAY system identified a common, genetically dominant haplotype associated with the susceptible phenotype in a region of equine chromosome 11 (ECA11), positions 49572804 to 49643932. The presence of a common haplotype indicates that the trait occurred in a common ancestor of all four breeds, suggesting that it may be segregated among other modern horse breeds. Biological pathway analysis revealed several cellular genes within this region of ECA11 encoding proteins associated with virus attachment and entry, cytoskeletal organization, and NF-κB pathways that may be associated with the trait responsible for the in vitro susceptibility/resistance of CD3+ T lymphocytes to EAV infection. The data presented in this study demonstrated a strong association of genetic markers with the trait, representing de facto proof that the trait is under genetic control. To our knowledge, this is the first GWAS of an equine infectious disease and the first GWAS of equine viral arteritis.


Subject(s)
Arterivirus Infections/veterinary , Equartevirus/immunology , Genetic Predisposition to Disease , Genome-Wide Association Study , Horse Diseases/genetics , Horse Diseases/immunology , T-Lymphocyte Subsets/immunology , Animals , Arterivirus Infections/genetics , Arterivirus Infections/immunology , Arterivirus Infections/virology , CD3 Complex/analysis , Equartevirus/pathogenicity , Genetic Markers , Haplotypes , Horse Diseases/virology , Horses , T-Lymphocyte Subsets/chemistry , T-Lymphocyte Subsets/virology
6.
J Gen Virol ; 90(Pt 11): 2704-2712, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19656967

ABSTRACT

The envelope of equine arteritis virus (EAV) contains two glycoprotein complexes (GP2b/GP3/GP4 and GP5/M) and the small, non-glycosylated E protein. As E is essential for the production of infectious progeny but dispensable for assembly and release of virus-like particles, it probably mediates virus entry into cells, putatively in concert with the GP2b/GP3/GP4 complex. The E protein contains a central hydrophobic domain and a conserved potential site for N-terminal myristoylation, a hydrophobic modification usually pivotal for membrane targeting of the modified protein. Here, it was shown by radiolabelling that E is myristoylated at glycine-2, both in transfected cells as a fusion protein with yellow fluorescent protein (YFP) and in virus particles. Biochemical fractionation revealed that E-YFP with an inactivated acylation site was still completely membrane-bound, indicating that the putative transmembrane domain of E mediates membrane targeting. Confocal microscopy showed that both myristoylated and non-myristoylated E-YFP were localized to the endoplasmic reticulum and Golgi complex, the membranes from which EAV buds. The presence of a myristoylation inhibitor during replication of EAV, whilst completely blocking E acylation, reduced virus titres by 1.5 log(10). Similarly, a mutant EAV with non-myristoylatable E grew to a titre five- to sevenfold lower than that of the wild-type virus and exhibited a reduced plaque size. Western blotting of cell-culture supernatants showed that N and M, the major structural proteins of EAV, are released in similar amounts by cells transfected with wild-type and mutant genomes. Thus, E myristoylation is not required for budding of particles and probably has a function during virus entry.


Subject(s)
Equartevirus/pathogenicity , Fatty Acids/metabolism , Viral Structural Proteins/metabolism , Virus Internalization , Animals , CHO Cells , Cricetinae , Cricetulus , Endoplasmic Reticulum/virology , Golgi Apparatus/virology , Intracellular Membranes/virology , Protein Processing, Post-Translational
7.
Biotech Histochem ; 94(2): 115-125, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30350720

ABSTRACT

Equine arteritis virus (EAV) induces apoptosis in infected cells. Cell death caused by EAV has been studied mainly using three cell lines, BHK-21, RK-13 and Vero cells. The mechanism of apoptosis varies among cell lines and results cannot be correlated owing to differences in EAV strains used. We evaluated different markers for apoptosis in BHK-21, RK-13 and Vero cell lines using the Bucyrus EAV reference strain. Acridine orange/ethidium bromide staining revealed morphological changes in infected cells, while flow cytometry indicated the extent of apoptosis. We also observed DNA fragmentation, but the DNA ladder was detected at different times post-infection depending on the cell line, i.e., 48, 72 and 96 h post-infection in RK-13, Vero and BHK-21 cells, respectively. Measurement of viral titers obtained with each cell line indicated that apoptosis causes interference with viral replication and therefore decreased viral titers. As an unequivocal marker of apoptosis, we measured the expression of caspase-3 and caspases-8 and -9 as extrinsic and intrinsic markers of apoptosis pathways, respectively. Caspase-8 in BHK-21 cells was the only protease that was not detected at any of the times assayed. We found that Bucyrus EAV strain exhibited a distinctive apoptosis pathway depending on the cell line.


Subject(s)
Apoptosis/physiology , Equartevirus/pathogenicity , Vero Cells , Virus Replication/physiology , Animals , Cell Line/virology , Chlorocebus aethiops/virology , Cricetinae , Haplorhini
8.
Curr Opin Virol ; 27: 57-70, 2017 12.
Article in English | MEDLINE | ID: mdl-29172072

ABSTRACT

Equine arteritis virus (EAV) and porcine reproductive and respiratory syndrome virus (PRRSV) are the most economically important members of the family Arteriviridae. EAV and PRRSV cause reproductive and respiratory disease in equids and swine, respectively and constitute a significant economic burden to equine and swine industries around the world. Furthermore, they both cause abortion in pregnant animals and establish persistent infection in their natural hosts, which fosters viral shedding in semen leading to sexual transmission. The primary focus of this article is to provide an update on the effects of these two viruses on the reproductive tract of their natural hosts and provide a comparative analysis of clinical signs, virus-host interactions, mechanisms of viral pathogenesis and viral persistence.


Subject(s)
Arterivirus Infections/veterinary , Equartevirus/pathogenicity , Host-Pathogen Interactions , Porcine Reproductive and Respiratory Syndrome/transmission , Porcine respiratory and reproductive syndrome virus/pathogenicity , Pregnancy Complications, Infectious/veterinary , Animals , Arterivirus Infections/transmission , Arterivirus Infections/virology , Equartevirus/physiology , Female , Horse Diseases/economics , Horse Diseases/transmission , Horse Diseases/virology , Horses , Male , Porcine Reproductive and Respiratory Syndrome/virology , Pregnancy , Pregnancy Complications, Infectious/virology , Swine , Swine Diseases/economics , Swine Diseases/transmission , Swine Diseases/virology
9.
Virus Res ; 220: 104-11, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27117322

ABSTRACT

Equine herpesvirus 1 (EHV-1) and equine arteritis virus (EAV) induce respiratory problems and abortion in horses and are considered as two serious threats to equine industry. Both EHV-1 and EAV misuse patrolling leukocytes in the upper respiratory tract to breach the basement membrane (BM) and to migrate to blood vessels. So far, the behavior and impact of a double infection in the respiratory mucosa of a horse are unknown. In the present study, the outcome of double infections with EHV-1 and the low virulent EAV strain 08P187 (superinfection with an interval of 12h or co-infection) were compared with single infections in fully susceptible RK-13 cells and equine upper respiratory mucosa explants. When RK-13 cells were inoculated with either EHV-1 or EAV 12h prior to the subsequent EAV or EHV-1 inoculation, the latter EAV or EHV-1 infection was clearly suppressed at 24hpi or 36hpi, respectively, without EHV-1 and EAV co-infecting the same RK-13 cells. After simultaneous infection with EHV-1 and EAV, higher numbers of EAV infected cells but similar numbers of EHV-1 infected cells were found compared to the single infections, with a low number of EHV-1 and EAV co-infected RK-13 cells at 48hpi and 72hpi. In the upper respiratory mucosa exposed to EAV 12h prior to EHV-1, the number and size of the EHV-1-induced plaques were similar to those of the EHV-1 single infected mucosa explants. In nasal and nasopharyngeal mucosae, EAV and EHV-1 pre-infections slightly reduced the number of EHV-1 and EAV infected leukocytes compared to the single infections and co-infection. In double EAV and EHV-1 infected explants, no co-infected leukocytes were detected. From these results, it can be concluded that EAV and EHV-1 are only slightly influencing each other's infection and that they do not infect the same mucosal leukocytes.


Subject(s)
Arterivirus Infections/veterinary , Equartevirus/physiology , Herpesviridae Infections/veterinary , Herpesvirus 1, Equid/physiology , Horse Diseases/virology , Respiratory Mucosa/virology , Animals , Arterivirus Infections/virology , Cell Line , Coinfection , Epithelial Cells/virology , Equartevirus/pathogenicity , Herpesviridae Infections/virology , Herpesvirus 1, Equid/pathogenicity , Horses , Leukocytes/virology , Tissue Culture Techniques , Viral Load , Virus Replication
10.
Vet Microbiol ; 36(3-4): 379-83, 1993 Sep.
Article in English | MEDLINE | ID: mdl-8273282

ABSTRACT

Virulent and avirulent strains of Bucyrus equine arteritis virus (EAV) were used to raise antiserum in horses. Serum neutralization (SN) tests were performed with and without the addition of guinea pig complement. The inclusion of ten percent guinea pig serum in the virus suspension was sufficient for optimal enhancement of SN titres at any immune stages after immunization. Immune serum prepared against avirulent virus reacted only with homologous virus and there was no complement enhancement. Immune sera raised against live or inactivated virulent virus neutralized both virulent and avirulent virus. The reaction with virulent virus demonstrated complement enhancement. There was also moderate potentiation in the presence of complement when serum raised against inactivated virulent virus reacted with avirulent virus.


Subject(s)
Antibodies, Viral/biosynthesis , Complement System Proteins/immunology , Equartevirus/immunology , Animals , Cross Reactions , Equartevirus/pathogenicity , Guinea Pigs , Horses , Immune Sera/immunology , Neutralization Tests/veterinary , Virulence
11.
J Comp Pathol ; 112(2): 207-11, 1995 Feb.
Article in English | MEDLINE | ID: mdl-7769149

ABSTRACT

The clinical, virological and serological responses of seven female donkeys (Equus asinus) to inoculation with the KY-84 strain of equine arteritis virus (EAV), a strain that causes moderate to severe clinical signs in horses, was investigated. In the donkeys, the only clinical signs observed were fever (mainly 3-9 days after inoculation), mild depression in four animals, and a slight nasal or ocular discharge in three. All of the donkeys became infected with EAV as shown by recovery of the virus for periods of up to 14 days from the nasopharynx and buffy coat and, in three out of four donkeys sampled, from the cervix or vagina. Virus replication in the donkey appeared to mirror that previously described for the horse. The donkeys had "sero-converted" to EAV by the 10th day after inoculation. Additional studies are needed to obtain a better understanding of the pathogenesis of EAV in donkeys.


Subject(s)
Equartevirus/pathogenicity , Equidae , Administration, Intranasal , Animals , Antibodies, Viral/blood , Arterivirus Infections/veterinary , Arterivirus Infections/virology , Equartevirus/immunology , Equartevirus/isolation & purification , Female , Species Specificity
12.
Equine Vet J ; 35(6): 596-600, 2003 Sep.
Article in English | MEDLINE | ID: mdl-14515961

ABSTRACT

REASONS FOR PERFORMING STUDY: A serological study conducted in 1995 revealed that 7 stallions at the Lipizzaner Centre, Gauteng, South Africa, were seropositive for antibody to equine arteritis virus (EAV). A Lipizzaner stallion imported into South Africa from Yugoslavia in 1981 had previously (1988) been confirmed to be an EAV carrier. Despite being placed under life-long breeding quarantine, EAV had been transmitted between stallions at the Lipizzaner Centre. OBJECTIVES: To investigate the phylogenetic relationships between the strain of EAV shed in the semen of the original carrier stallion and strains recovered from the semen of 5 other stallions; and to investigate the means whereby lateral transmission of EAV occurred among 7 in-contact, nonbreeding stallions at the Centre. METHODS: EAV was isolated from semen collected from the seropositive stallions using RK-13 cells. Viral RNA was reverse transcribed and amplified by polymerase chain reaction using ORF 5-specific primers, subjected to sequence and phylogenetic analysis. RESULTS: Phylogenetic analysis of strains of EAV recovered from the semen of 6 persistently infected stallions confirmed that all viruses were closely related and probably derived from a common ancestor, i.e. the stallion imported from Yugoslavia. Lateral transmission subsequently occurred among 7 in-contact, nonbreeding stallions at the Centre. It is speculated that these stallions may have been exposed to virus from bedding or fomites contaminated with semen. CONCLUSIONS: These data confirm that lateral transmission of EAV can occur from shedding stallions to susceptible, in-contact horses, including other stallions, which may become persistently infected with the virus. POTENTIAL RELEVANCE: The findings are consistent with lateral spread of a single, unique strain of EAV among a group; and suggest that transmission of EAV may be initiated by infection of one or more stallions with virus on bedding or other fomites contaminated with EAV- infected semen.


Subject(s)
Arterivirus Infections/veterinary , Disease Transmission, Infectious/veterinary , Equartevirus/classification , Horse Diseases/transmission , Animals , Arterivirus Infections/epidemiology , Arterivirus Infections/transmission , Base Sequence , Equartevirus/genetics , Equartevirus/pathogenicity , Horse Diseases/epidemiology , Horses , Male , Phylogeny , Quarantine/veterinary , RNA, Viral/analysis , Semen/virology , Seroepidemiologic Studies , South Africa/epidemiology , Yugoslavia/epidemiology
13.
Am J Vet Res ; 64(6): 779-84, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12828265

ABSTRACT

OBJECTIVE: To compare growth characteristics of strains of equine arteritis virus (EAV) of differing virulence to horses in rabbit kidney (RK)-13 cells and equine endothelial cells (EECs) cultured from the pulmonary artery of a foal. SAMPLE POPULATION: 13 strains of EAV, including 11 field isolates of differing virulence to horses; the highly virulent, horse-adapted Bucyrus strain; and the modified-live virus (MLV) vaccine derived from it. PROCEDURE: The growth characteristics of the 13 strains were compared in EECs and RK-13 cells. Viral nucleoprotein expression, cytopathogenicity, and plaque size were compared to determine whether growth characteristics of the 13 strains were predictive of their virulence to horses. RESULTS: Cytopathogenicity, viral nucleoprotein expression, and plaque size induced by all 13 viruses were similar in RK-13 cells, whereas virulent strains of EAV caused significantly larger plaques in EECs than did the avirulent strains of EAV. Paradoxically, the highly attenuated MLV vaccine and 1 field isolate of EAV caused plaques in EECs that were larger than those caused by any of the other viruses, and sequence analysis confirmed the field isolate of EAV to be indistinguishable from the MLV vaccine. CONCLUSIONS AND CLINICAL RELEVANCE: With the notable exception of the MLV vaccine, growth of the various strains of EAV in EECs was predictive of their individual virulence to horses. Thus, EECs provide a relevant and useful model to further characterize determinants of virulence and attenuation amongst strains of EAV.


Subject(s)
Endothelium/cytology , Endothelium/virology , Equartevirus/classification , Equartevirus/pathogenicity , Horses/virology , Animals , Cell Death , Cells, Cultured , Equartevirus/genetics , Equartevirus/growth & development , Molecular Sequence Data , Phylogeny , Pulmonary Artery , Virulence
14.
Onderstepoort J Vet Res ; 64(2): 147-52, 1997 Jun.
Article in English | MEDLINE | ID: mdl-9352564

ABSTRACT

Clinical, virological and serological responses were investigated in five pregnant donkey mares after experimental exposure to the South African asinine-94 strain of equine arteritis virus (EAV), and the duration of maternal immunity to EAV was studied in their foals. In four intranasally inoculated mares, fever with maximum rectal temperatures of 39.1-40.7 degrees C was recorded 2-11 d after challenge. All the inoculated mares developed mild depression, and a serous ocular and nasal discharge; in three mares mild conjuctivitis was observed. The virus was recovered from the nasopharynx and from buffy-coat samples of all the mares 3-10 d, and 2-18 d post inoculation (p.i.), respectively. Seroconversion to EAV was detected on days 8-10 p.i. Peak serum-virus-neutralizing antibody titres of log10 1.8-2.4, and IgG ELISA OD values of 0.85-2.15 were recorded 2-3 weeks p.i. The in-contact (p.c.) control mare developed fever on days 15-19 post exposure, and showed mild clinical signs of equine viral arteritis similar to those observed in the inoculated mares. Seroconversion to EAV was detected in the p.c. mare on day 20 post exposure, and virus was isolated from nasal swabs and blood samples collected at the time of the febrile response and 1-3 d afterwards. None of the mares aborted. After they had given normal birth 45-128 d p.i. or after p.c. exposure, no virus could be isolated from their placentas. The concentration of EAV-neutralizing antibody in colostrum was two to eight times higher than in serum samples collected at the time of parturition. All the foals born to infected mares were clinically normal at the time of birth and throughout the subsequent 1-2 months of observation. No EAV was recovered from the buffy-coat fraction of blood samples collected at birth nor from those collected on days 1, 2 and 7 after birth. Also, no virus-serum-neutralizing or IgG ELISA antibody to EAV was detected in sera collected immediately after birth before the foals started nursing. The colostrum-derived maternal antibodies against EAV gradually declined and could not be detected by either the VN test or ELISA for 2-3 months after birth. This study demonstrates that the asinine-94 strain of EAV does not cause abortion in pregnant donkey mares. Furthermore, no carrier state could be demonstrated in foals born to mares infected at the time of pregnancy.


Subject(s)
Abortion, Veterinary , Arterivirus Infections/veterinary , Equartevirus/pathogenicity , Equidae/virology , Immunity, Maternally-Acquired , Pregnancy Complications, Infectious/veterinary , Administration, Intranasal , Animals , Antibodies, Viral/blood , Arterivirus Infections/virology , Colostrum/virology , Enzyme-Linked Immunosorbent Assay/veterinary , Equartevirus/immunology , Equartevirus/isolation & purification , Female , Milk/virology , Placenta/virology , Pregnancy , Pregnancy Complications, Infectious/virology , South Africa , Time Factors
15.
Vet Rec ; 136(15): 381-5, 1995 Apr 15.
Article in English | MEDLINE | ID: mdl-7604517

ABSTRACT

Equine viral arteritis was diagnosed for the first time in the United Kingdom in 1993. The outbreak began on a non-thoroughbred stud in south Nottinghamshire and spread to five other premises through chilled semen used for artificial insemination and from acutely and subclinically infected mares returning home. The outbreak was contained on these six premises by means of voluntary movement restrictions. The most commonly observed clinical signs were typical: pyrexia with depression, and conjunctivitis with periorbital oedema; nasal discharge, and oedema of the distal limbs, prepuce and mammary glands were less common. The first mare to be covered by a recently imported stallion was the first animal to be affected. The mare was resident and no new mares had arrived on the stud during the previous five months. About 100 animals became infected during the outbreak, including three indigenous stallions. Equine arteritis virus was isolated from semen and heparinised blood samples and seroconversions were demonstrated by using the equine arteritis virus neutralisation test. Although the outbreak was contained, the free movement of animals within the European Union increases the possibility of infected stallions being introduced into the UK.


Subject(s)
Arterivirus Infections/veterinary , Disease Outbreaks/veterinary , Horse Diseases/epidemiology , Horse Diseases/virology , Animals , Arterivirus Infections/epidemiology , Equartevirus/isolation & purification , Equartevirus/pathogenicity , Female , Horse Diseases/prevention & control , Horses , Male , Neutralization Tests/veterinary , Semen/virology , United Kingdom/epidemiology
16.
Virology ; 462-463: 388-403, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24913633

ABSTRACT

The advent of recombinant DNA technology, development of infectious cDNA clones of RNA viruses, and reverse genetic technologies have revolutionized how viruses are studied. Genetic manipulation of full-length cDNA clones has become an especially important and widely used tool to study the biology, pathogenesis, and virulence determinants of both positive and negative stranded RNA viruses. The first full-length infectious cDNA clone of equine arteritis virus (EAV) was developed in 1996 and was also the first full-length infectious cDNA clone constructed from a member of the order Nidovirales. This clone was extensively used to characterize the molecular biology of EAV and other Nidoviruses. The objective of this review is to summarize the characterization of the virulence (or attenuation) phenotype of the recombinant viruses derived from several infectious cDNA clones of EAV in horses, as well as their application for characterization of the molecular basis of viral neutralization, persistence, and cellular tropism.


Subject(s)
Cloning, Molecular , DNA, Complementary/genetics , Equartevirus/genetics , Equartevirus/physiology , Animals , Equartevirus/pathogenicity , Horses , Reverse Genetics , Virulence
17.
Virus Res ; 183: 81-4, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24518298

ABSTRACT

Equine Arteritis Virus (EAV) has been shown to induce apoptosis in vitro but the induction of this mechanism has not been previously associated with any viral gene product. In this work, we found a cytotoxicity effect of the EAV gP5 protein on baculovirus-insect cells and a low yield of protein recovery. Besides, different morphological features by electron transmission microscopy, DNA fragmentation in agarose gel, TUNEL analysis and caspase 3 activity were found. All these findings indicate that the EAV gP5 protein induces apoptosis in insect cells.


Subject(s)
Antigens, Viral/metabolism , Apoptosis , Equartevirus/physiology , Viral Envelope Proteins/metabolism , Virulence Factors/metabolism , Animals , Antigens, Viral/genetics , Baculoviridae/genetics , Equartevirus/pathogenicity , Gene Expression , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sf9 Cells , Spodoptera , Viral Envelope Proteins/genetics , Virulence Factors/genetics
18.
Vet Microbiol ; 157(3-4): 333-44, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22306037

ABSTRACT

Equine viral arteritis (EVA) is an infectious disease with variable clinical outcome. Outbreaks, causing important economic losses, are becoming more frequent. Currently, there is a shortage of pathogenesis studies performed with European strains. In the present study, eight seronegative ponies were experimentally inoculated with the Belgian strain of equine arteritis virus (EAV) 08P178 (EU-1 clade) and monitored daily for clinical signs of EVA. Nasopharyngeal swabs, ocular swabs, bronchoalveolar cells and blood were collected for virological and serological testing. Two ponies were euthanized at 3, 7, 14, and 28 days post infection (DPI). After necropsy, specimens were collected for virus titration and immunofluorescence. EVA symptoms such as fever and lymphadenomegaly were evident from 3 to 10 DPI. Virus was isolated in nasal secretions from 2 to 9 DPI and in bronchoalveolar cells from 3 to 7 DPI. A cell-associated viraemia was detected from 3 to 10 DPI. After replication in the respiratory tract and draining lymph nodes, EAV reached secondary target organs (high virus titers in internal organs sampled at 7 DPI). At 14 DPI, virus titers dropped drastically and, at 28 DPI, only tonsils were positive. Immunofluorescence revealed both individual and clustered EAV-infected cells. Antibodies were detected starting from 7 DPI. It can be concluded that the Belgian strain 08P178 is a European mildly virulent subtype. At present, most European EAV strain infections were thought to run a subclinical course. This study is a proof that mildly virulent European EAV strains do exist in the field.


Subject(s)
Arterivirus Infections/veterinary , Equartevirus/pathogenicity , Horse Diseases/pathology , Horses/virology , Animals , Arterivirus Infections/pathology , Arterivirus Infections/virology , Belgium , Equartevirus/isolation & purification , Female , Horse Diseases/virology , Horses/immunology , Immunity, Humoral , Male , Virus Shedding
19.
Vet Microbiol ; 157(1-2): 220-5, 2012 May 25.
Article in English | MEDLINE | ID: mdl-22177968

ABSTRACT

In a recent study, we demonstrated that the virulent Bucyrus strain (VBS) of EAV could infect in vitro a small population of CD3(+) T lymphocytes from some but not all horses. Furthermore, we have shown that a common haplotype is associated with this in vitro CD3(+) T cell susceptibility/resistance phenotype to EAV infection. In this study, we investigated whether the differences in the susceptibility or resistance of CD3(+) T cells in vitro correlate with the outcome and severity of clinical signs in vivo. Thus, horses were divided into two groups based on their CD3(+) T cell susceptible or resistant phenotype. Following experimental inoculation with the recombinant VBS of EAV, horses were assessed for presence and severity of clinical signs, duration and magnitude of virus shedding, as well as production of proinflammatory and immunomodulatory cytokines in peripheral blood mononuclear cells using real-time quantitative RT-PCR. The data showed that there was a significant difference between the two groups of horses in terms of cytokine mRNA expression and evidence of increased clinical signs in horses possessing the in vitro CD3(+) T cell resistant phenotype. This is the first study to provide direct evidence for a correlation between variation in host genotype and phenotypic differences in terms of the extent of viral replication, presence and severity of clinical signs and cytokine gene expression caused by infection with virulent EAV.


Subject(s)
Arterivirus Infections/veterinary , Equartevirus/pathogenicity , Horse Diseases/immunology , Horses/immunology , T-Lymphocytes/immunology , Animals , Arterivirus Infections/genetics , Arterivirus Infections/immunology , CD3 Complex/genetics , CD3 Complex/immunology , Cytokines/genetics , Cytokines/immunology , Disease Susceptibility , Equartevirus/immunology , Female , Haplotypes , Horse Diseases/genetics , Horse Diseases/virology , Horses/virology , Immunity, Innate/genetics , Leukocytes, Mononuclear/immunology , Lymphocyte Count , Phenotype , Virus Shedding
SELECTION OF CITATIONS
SEARCH DETAIL