Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.214
Filter
Add more filters

Publication year range
1.
Nature ; 626(7998): 419-426, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38052229

ABSTRACT

Determining the structure and phenotypic context of molecules detected in untargeted metabolomics experiments remains challenging. Here we present reverse metabolomics as a discovery strategy, whereby tandem mass spectrometry spectra acquired from newly synthesized compounds are searched for in public metabolomics datasets to uncover phenotypic associations. To demonstrate the concept, we broadly synthesized and explored multiple classes of metabolites in humans, including N-acyl amides, fatty acid esters of hydroxy fatty acids, bile acid esters and conjugated bile acids. Using repository-scale analysis1,2, we discovered that some conjugated bile acids are associated with inflammatory bowel disease (IBD). Validation using four distinct human IBD cohorts showed that cholic acids conjugated to Glu, Ile/Leu, Phe, Thr, Trp or Tyr are increased in Crohn's disease. Several of these compounds and related structures affected pathways associated with IBD, such as interferon-γ production in CD4+ T cells3 and agonism of the pregnane X receptor4. Culture of bacteria belonging to the Bifidobacterium, Clostridium and Enterococcus genera produced these bile amidates. Because searching repositories with tandem mass spectrometry spectra has only recently become possible, this reverse metabolomics approach can now be used as a general strategy to discover other molecules from human and animal ecosystems.


Subject(s)
Amides , Bile Acids and Salts , Esters , Fatty Acids , Metabolomics , Animals , Humans , Bifidobacterium/metabolism , Bile Acids and Salts/chemistry , Bile Acids and Salts/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Clostridium/metabolism , Cohort Studies , Crohn Disease/metabolism , Enterococcus/metabolism , Esters/chemistry , Esters/metabolism , Fatty Acids/chemistry , Fatty Acids/metabolism , Inflammatory Bowel Diseases/metabolism , Metabolomics/methods , Phenotype , Pregnane X Receptor/metabolism , Reproducibility of Results , Tandem Mass Spectrometry , Amides/chemistry , Amides/metabolism
2.
Nature ; 606(7913): 313-318, 2022 06.
Article in English | MEDLINE | ID: mdl-35381598

ABSTRACT

Cross-coupling between two similar or identical functional groups to form a new C-C bond is a powerful tool to rapidly assemble complex molecules from readily available building units, as seen with olefin cross-metathesis or various types of cross-electrophile coupling1,2. The Kolbe electrolysis involves the oxidative electrochemical decarboxylation of alkyl carboxylic acids to their corresponding radical species followed by recombination to generate a new C-C bond3-12. As one of the oldest known Csp3-Csp3 bond-forming reactions, it holds incredible promise for organic synthesis, yet its use has been almost non-existent. From the perspective of synthesis design, this transformation could allow one to agnostically execute syntheses without regard to polarity or neighbouring functionality just by coupling ubiquitous carboxylates13. In practice, this promise is undermined by the strongly oxidative electrolytic protocol used traditionally since the nineteenth century5, thereby severely limiting its scope. Here, we show how a mildly reductive Ni-electrocatalytic system can couple two different carboxylates by means of in situ generated redox-active esters, termed doubly decarboxylative cross-coupling. This operationally simple method can be used to heterocouple primary, secondary and even certain tertiary redox-active esters, thereby opening up a powerful new approach for synthesis. The reaction, which cannot be mimicked using stoichiometric metal reductants or photochemical conditions, tolerates a range of functional groups, is scalable and is used for the synthesis of 32 known compounds, reducing overall step counts by 73%.


Subject(s)
Carboxylic Acids , Chemistry Techniques, Synthetic , Nickel , Carboxylic Acids/chemistry , Catalysis , Decarboxylation , Electrochemistry , Esters/chemistry , Molecular Structure , Nickel/chemistry , Oxidation-Reduction
3.
Nature ; 606(7916): 968-975, 2022 06.
Article in English | MEDLINE | ID: mdl-35676490

ABSTRACT

Branched fatty acid (FA) esters of hydroxy FAs (HFAs; FAHFAs) are recently discovered lipids that are conserved from yeast to mammals1,2. A subfamily, palmitic acid esters of hydroxy stearic acids (PAHSAs), are anti-inflammatory and anti-diabetic1,3. Humans and mice with insulin resistance have lower PAHSA levels in subcutaneous adipose tissue and serum1. PAHSA administration improves glucose tolerance and insulin sensitivity and reduces inflammation in obesity, diabetes and immune-mediated diseases1,4-7. The enzyme(s) responsible for FAHFA biosynthesis in vivo remains unknown. Here we identified adipose triglyceride lipase (ATGL, also known as patatin-like phospholipase domain containing 2 (PNPLA2)) as a candidate biosynthetic enzyme for FAHFAs using chemical biology and proteomics. We discovered that recombinant ATGL uses a transacylation reaction that esterifies an HFA with a FA from triglyceride (TG) or diglyceride to produce FAHFAs. Overexpression of wild-type, but not catalytically dead, ATGL increases FAHFA biosynthesis. Chemical inhibition of ATGL or genetic deletion of Atgl inhibits FAHFA biosynthesis and reduces the levels of FAHFA and FAHFA-TG. Levels of endogenous and nascent FAHFAs and FAHFA-TGs are 80-90 per cent lower in adipose tissue of mice in which Atgl is knocked out specifically in the adipose tissue. Increasing TG levels by upregulating diacylglycerol acyltransferase (DGAT) activity promotes FAHFA biosynthesis, and decreasing DGAT activity inhibits it, reinforcing TGs as FAHFA precursors. ATGL biosynthetic transacylase activity is present in human adipose tissue underscoring its potential clinical relevance. In summary, we discovered the first, to our knowledge, biosynthetic enzyme that catalyses the formation of the FAHFA ester bond in mammals. Whereas ATGL lipase activity is well known, our data establish a paradigm shift demonstrating that ATGL transacylase activity is biologically important.


Subject(s)
Acyltransferases , Esters , Fatty Acids , Hydroxy Acids , Acyltransferases/genetics , Acyltransferases/metabolism , Adipose Tissue/chemistry , Adipose Tissue/metabolism , Animals , Diglycerides , Esterification , Esters/chemistry , Esters/metabolism , Fatty Acids/biosynthesis , Fatty Acids/chemistry , Humans , Hydroxy Acids/chemistry , Hydroxy Acids/metabolism , Insulin Resistance , Mice , Triglycerides
4.
Nature ; 609(7926): 293-298, 2022 09.
Article in English | MEDLINE | ID: mdl-35793710

ABSTRACT

Biological systems mainly utilize chemical energy to fuel autonomous molecular motors, enabling the system to be driven out of equilibrium1. Taking inspiration from rotary motors such as the bacterial flagellar motor2 and adenosine triphosphate synthase3, and building on the success of light-powered unidirectional rotary molecular motors4-6, scientists have pursued the design of synthetic molecular motors solely driven by chemical energy7-13. However, designing artificial rotary molecular motors operating autonomously using a chemical fuel and simultaneously featuring the intrinsic structural design elements to allow full 360° unidirectional rotary motion like adenosine triphosphate synthase remains challenging. Here we show that a homochiral biaryl Motor-3, with three distinct stereochemical elements, is a rotary motor that undergoes repetitive and unidirectional 360° rotation of the two aryl groups around a single-bond axle driven by a chemical fuel. It undergoes sequential ester cyclization, helix inversion and ring opening, and up to 99% unidirectionality is realized over the autonomous rotary cycle. The molecular rotary motor can be operated in two modes: synchronized motion with pulses of a chemical fuel and acid-base oscillations; and autonomous motion in the presence of a chemical fuel under slightly basic aqueous conditions. This rotary motor design with intrinsic control over the direction of rotation, simple chemical fuelling for autonomous motion and near-perfect unidirectionality illustrates the potential for future generations of multicomponent machines to perform mechanical functions.


Subject(s)
Adenosine Triphosphate , Molecular Motor Proteins , Adenosine Triphosphate/metabolism , Cyclization , Esters/chemistry , Models, Molecular , Molecular Motor Proteins/chemistry , Molecular Motor Proteins/metabolism , Proton-Translocating ATPases/chemistry , Proton-Translocating ATPases/metabolism , Rotation
5.
Nature ; 585(7826): 530-537, 2020 09.
Article in English | MEDLINE | ID: mdl-32968259

ABSTRACT

Post-translational modifications (PTMs) greatly expand the structures and functions of proteins in nature1,2. Although synthetic protein functionalization strategies allow mimicry of PTMs3,4, as well as formation of unnatural protein variants with diverse potential functions, including drug carrying5, tracking, imaging6 and partner crosslinking7, the range of functional groups that can be introduced remains limited. Here we describe the visible-light-driven installation of side chains at dehydroalanine residues in proteins through the formation of carbon-centred radicals that allow C-C bond formation in water. Control of the reaction redox allows site-selective modification with good conversions and reduced protein damage. In situ generation of boronic acid catechol ester derivatives generates RH2C• radicals that form the native (ß-CH2-γ-CH2) linkage of natural residues and PTMs, whereas in situ potentiation of pyridylsulfonyl derivatives by Fe(II) generates RF2C• radicals that form equivalent ß-CH2-γ-CF2 linkages bearing difluoromethylene labels. These reactions are chemically tolerant and incorporate a wide range of functionalities (more than 50 unique residues/side chains) into diverse protein scaffolds and sites. Initiation can be applied chemoselectively in the presence of sensitive groups in the radical precursors, enabling installation of previously incompatible side chains. The resulting protein function and reactivity are used to install radical precursors for homolytic on-protein radical generation; to study enzyme function with natural, unnatural and CF2-labelled post-translationally modified protein substrates via simultaneous sensing of both chemo- and stereoselectivity; and to create generalized 'alkylator proteins' with a spectrum of heterolytic covalent-bond-forming activity (that is, reacting diversely with small molecules at one extreme or selectively with protein targets through good mimicry at the other). Post-translational access to such reactions and chemical groups on proteins could be useful in both revealing and creating protein function.


Subject(s)
Light , Protein Processing, Post-Translational/radiation effects , Proteins/chemistry , Proteins/metabolism , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/metabolism , Binding Sites , Carbon/chemistry , Carbon/metabolism , Enzymes/chemistry , Enzymes/metabolism , Esters/chemical synthesis , Esters/chemistry , HeLa Cells , Humans , Hydrocarbons, Fluorinated/chemistry , Hydrocarbons, Fluorinated/metabolism , Indicators and Reagents/chemistry , Oxidation-Reduction , Photochemical Processes/radiation effects , Protein Interaction Domains and Motifs
6.
J Biol Chem ; 300(1): 105517, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38042487

ABSTRACT

Amide-to-ester substitutions are used to study the role of the amide bonds of the protein backbone in protein structure, function, and folding. An amber suppressor tRNA/synthetase pair has been reported for incorporation of p-hydroxy-phenyl-L-lactic acid (HPLA), thereby introducing ester substitution at tyrosine residues. However, the application of this approach was limited due to the low yields of the modified proteins and the high cost of HPLA. Here we report the in vivo generation of HPLA from the significantly cheaper phenyl-L-lactic acid. We also construct an optimized plasmid with the HPLA suppressor tRNA/synthetase pair that provides higher yields of the modified proteins. The combination of the new plasmid and the in-situ generation of HPLA provides a facile and economical approach for introducing tyrosine ester substitutions. We demonstrate the utility of this approach by introducing tyrosine ester substitutions into the K+ channel KcsA and the integral membrane enzyme GlpG. We introduce the tyrosine ester in the selectivity filter of the M96V mutant of the KcsA to probe the role of the second ion binding site in the conformation of the selectivity filter and the process of inactivation. We use tyrosine ester substitutions in GlpG to perturb backbone H-bonds to investigate the contribution of these H-bonds to membrane protein stability. We anticipate that the approach developed in this study will facilitate further investigations using tyrosine ester substitutions.


Subject(s)
Esters , Phenylpropionates , Tyrosine , Esters/chemistry , Hydrogen Bonding , Proteins/chemistry , Binding Sites , RNA, Transfer , Amides/chemistry , Lactic Acid , Ligases
7.
Immunology ; 173(1): 76-92, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38720202

ABSTRACT

Our newly developed menthyl esters of valine and isoleucine exhibit anti-inflammatory properties beyond those of the well-known menthol in macrophages stimulated by lipopolysaccharide (LPS) and in a mouse model of colitis induced by sodium dextran sulfate. Unlike menthol, which acts primarily through the cold-sensitive TRPM8 channel, these menthyl esters displayed unique mechanisms that operate independently of this receptor. They readily penetrated target cells and efficiently suppressed LPS-stimulated tumour necrosis factor-alpha (Tnf) expression mediated by liver X receptor (LXR), a key nuclear receptor that regulates intracellular cholesterol and lipid balance. The menthyl esters showed affinity for LXR and enhanced the transcriptional activity through their non-competitive and potentially synergistic agonistic effect. This effect can be attributed to the crucial involvement of SCD1, an enzyme regulated by LXR, which is central to lipid metabolism and plays a key role in the anti-inflammatory response. In addition, we discovered that the menthyl esters showed remarkable efficacy in suppressing adipogenesis in 3T3-L1 adipocytes at the mitotic clonal expansion stage in an LXR-independent manner as well as in mice subjected to diet-induced obesity. These multiple capabilities of our compounds establish them as formidable allies in the fight against inflammation and obesity, paving the way for a range of potential therapeutic applications.


Subject(s)
Anti-Inflammatory Agents , Anti-Obesity Agents , Liver X Receptors , Obesity , Animals , Mice , Obesity/drug therapy , Obesity/metabolism , Liver X Receptors/metabolism , Liver X Receptors/agonists , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/therapeutic use , Adipogenesis/drug effects , Esters/chemistry , Colitis/drug therapy , Colitis/chemically induced , Colitis/metabolism , Humans , Menthol/pharmacology , Mice, Inbred C57BL , Lipopolysaccharides , Tumor Necrosis Factor-alpha/metabolism , 3T3-L1 Cells , Dextran Sulfate , Adipocytes/metabolism , Adipocytes/drug effects , Macrophages/immunology , Macrophages/metabolism , Macrophages/drug effects , TRPM Cation Channels/metabolism
8.
Anal Chem ; 96(8): 3389-3401, 2024 02 27.
Article in English | MEDLINE | ID: mdl-38353412

ABSTRACT

Methyl branching on the carbon chains of fatty acids and fatty esters is among the structural variations encountered with fatty acids and fatty esters. Branching in fatty acid/ester chains is particularly prominent in bacterial species and, for example, in vernix caseosa and sebum. The distinction of branched chains from isomeric straight-chain species and the localization of branching can be challenging to determine by mass spectrometry (MS). Condensed-phase derivatization strategies, often used in conjunction with separations, are most commonly used to address the identification and characterization of branched fatty acids. In this work, a gas-phase ion/ion strategy is presented that obviates condensed-phase derivatization and introduces a radical site into fatty acid ions to facilitate radical-directed dissociation (RDD). The gas-phase approach is also directly amenable to fatty acid anions generated via collision-induced dissociation from lipid classes that contain fatty esters. Specifically, divalent magnesium complexes bound to two terpyridine ligands that each incorporate a ((2,2,6,6-tetramethyl-1-piperidine-1-yl)oxy) (TEMPO) moiety are used to charge-invert fatty acid anions. Following the facile loss of one of the ligands and the TEMPO group of the remaining ligand, a radical site is introduced into the complex. Subsequent collision-induced dissociation (CID) of the complex exhibits preferred cleavages that localize the site(s) of branching. The approach is illustrated with iso-, anteiso-, and isoprenoid branched-chain fatty acids and an intact glycerophospholipid and is applied to a mixture of branched- and straight-chain fatty acids derived from Bacillus subtilis.


Subject(s)
Fatty Acids , Lipids , Humans , Fatty Acids/analysis , Mass Spectrometry , Esters/chemistry , Ions/chemistry , Anions
9.
Chembiochem ; 25(6): e202300722, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38235523

ABSTRACT

We report the first biocatalytic modification of sesquiterpene lactones (STLs) found in the chicory plants, specifically lactucin (Lc), 11ß,13-dihydrolactucin (DHLc), lactucopicrin (Lp), and 11ß,13-dihydrolactucopicrin (DHLp). The selective O-acylation of their primary alcohol group was carried out by the lipase B from Candida antarctica (CAL-B) using various aliphatic vinyl esters as acyl donors. Perillyl alcohol, a simpler monoterpenoid, served as a model to set up the desired O-acetylation reaction by comparing the use of acetic acid and vinyl acetate as acyl donors. Similar conditions were then applied to DHLc, where five novel ester chains were selectively introduced onto the primary alcohol group, with conversions going from >99 % (acetate and propionate) to 69 % (octanoate). The synthesis of the corresponding O-acetyl esters of Lc, Lp, and DHLp was also successfully achieved with near-quantitative conversion. Molecular docking simulations were then performed to elucidate the preferred enzyme-substrate binding modes in the acylation reactions with STLs, as well as to understand their interactions with crucial amino acid residues at the active site. Our methodology enables the selective O-acylation of the primary alcohol group in four different STLs, offering possibilities for synthesizing novel derivatives with significant potential applications in pharmaceuticals or as biocontrol agents.


Subject(s)
Cichorium intybus , Sesquiterpenes , Esters/chemistry , Molecular Docking Simulation , Acylation , Lactones
10.
Bioconjug Chem ; 35(7): 963-970, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38874002

ABSTRACT

DNA-encoded libraries (DELs) can be considered as one of the most powerful tools for the discovery of small molecules of biological interest. However, the ability to access large DELs is contingent upon having chemical transformations that work in aqueous phase and generate minimal DNA alterations and the availability of building blocks compatible with on-DNA chemistry. In addition, accessing scaffolds of interest to medicinal chemists can be challenging in a DEL setting because of inherent limitations of DNA-supported chemistry. In this context, a squaramide formation reaction was developed by using a two-step process. The mild and high-yielding reaction tolerates a wide array of functional groups and was shown to be safe for DNA, thereby making this methodology ideal for DELs.


Subject(s)
DNA , Small Molecule Libraries , DNA/chemistry , Small Molecule Libraries/chemistry , Small Molecule Libraries/chemical synthesis , Gene Library , Esters/chemistry , Quinine/analogs & derivatives
11.
Toxicol Appl Pharmacol ; 482: 116785, 2024 01.
Article in English | MEDLINE | ID: mdl-38070751

ABSTRACT

Phthalate esters (PAEs), accompanied by phthalate monoesters as hydrolysis metabolites in humans, have been widely used as plasticizers and exhibited disruptive effects on the endocrine and metabolic systems. The present study aims to investigate the inhibition behavior of PAEs and phthalate monoesters on the activity of the important hydrolytic enzymes, carboxylesterases (CESs), to elucidate the toxicity mechanism from a new perspective. The results showed significant inhibition on CES1 and CES2 by most PAEs, but not by phthalate monoesters, above which the activity of CES1 was strongly inhibited by DCHP, DEHP, DiOP, DiPP, DNP, DPP and BBZP, with inhibition ratios exceeding 80%. Kinetic analyses and in vitro-in vivo extrapolation were conducted, revealing that PAEs have the potential to disrupt the metabolism of endogenous substances catalyzed by CES1 in vivo. Molecular docking results revealed that hydrogen bonds and hydrophobic contacts formed by ester bonds contributed to the interaction of PAEs towards CES1. These findings will be beneficial for understanding the adverse effect of PAEs and phthalate monoesters.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Humans , Carboxylic Ester Hydrolases , Molecular Docking Simulation , Phthalic Acids/toxicity , Plasticizers/toxicity , Esters/chemistry , Dibutyl Phthalate , Diethylhexyl Phthalate/toxicity , Diethylhexyl Phthalate/chemistry , China
12.
Biomacromolecules ; 25(3): 1923-1932, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38394470

ABSTRACT

Fatty acid cellulose esters (FACE) are common cellulose-based thermoplastics, and their thermoplasticity is determined by both the contents and the lengths of the side chains. Herein, various FACE were synthesized by the ball-milling esterification of cellulose and fatty acyl chlorides containing 10-18 carbons, and their structures and thermoplasticity were thoroughly studied. The results showed that FACE with high degrees of substitution (DS) and low melting flow temperatures (Tf) were achieved as the chain lengths of the fatty acyl chlorides were reduced. In particular, a cellulose decanoate with a DS of 1.85 and a Tf of 186 °C was achieved by feeding 3 mol of decanoyl chloride per mole anhydroglucose units of cellulose. However, cellulose stearate (DS = 1.53) synthesized by the same protocols cannot melt even at 250 °C. More interestingly, the fatty acyl chlorides with 10 and 12 carbons resulted in FACE with superior toughness (elongation at break up to 94.4%). In contrast, due to their potential crystallization of the fatty acyl groups with 14-18 carbons, the corresponding FACE showed higher tensile strength and Young's modulus than the others. This study provides some theoretical basis for the mechanochemical synthesis of thermoplastic FACE with designated properties.


Subject(s)
Chlorides , Esters , Esters/chemistry , Feasibility Studies , Esterification , Cellulose/chemistry
13.
Biomacromolecules ; 25(7): 4215-4232, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38845149

ABSTRACT

Boron neutron capture therapy (BNCT) targets invasive, radioresistant cancers but requires a selective and high B-10 loading boron drug. This manuscript investigates boron-rich poly(ethylene glycol)-block-(poly(4-vinylphenyl boronate ester)) polymer micelles synthesized via atom transfer radical polymerization for their potential application in BNCT. Transmission electron microscopy (TEM) revealed spherical micelles with a uniform size of 43 ± 10 nm, ideal for drug delivery. Additionally, probe sonication proved effective in maintaining the micelles' size and morphology postlyophilization and reconstitution. In vitro studies with B16-F10 melanoma cells demonstrated a 38-fold increase in boron accumulation compared to the borophenylalanine drug for BNCT. In vivo studies in a B16-F10 tumor-bearing mouse model confirmed enhanced tumor selectivity and accumulation, with a tumor-to-blood (T/B) ratio of 2.5, surpassing BPA's T/B ratio of 1.8. As a result, mice treated with these micelles experienced a significant delay in tumor growth, highlighting their potential for BNCT and warranting further research.


Subject(s)
Boron Neutron Capture Therapy , Micelles , Boron Neutron Capture Therapy/methods , Animals , Mice , Melanoma, Experimental/pathology , Melanoma, Experimental/drug therapy , Boronic Acids/chemistry , Cell Line, Tumor , Polyethylene Glycols/chemistry , Polymers/chemistry , Mice, Inbred C57BL , Esters/chemistry , Esters/pharmacology , Boron Compounds/chemistry , Boron Compounds/pharmacology
14.
Biomacromolecules ; 25(8): 5110-5120, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39009036

ABSTRACT

The development of a green and facile method for the controlled synthesis of functional polypeptides is desired for sustainable material applications. In this study, the regioselective synthesis of poly(l-lysine) (polyLys) via enzyme-catalyzed aminolysis was achieved by bulk polymerization of l-lysine ethyl ester (Lys-OEt) using immobilized Candida antarctica lipase Novozym 435 (IM-lipase) or trypsin (IM-trypsin). Structural characterization of the obtained polyLys revealed that IM-lipase resulted solely in ε-linked amide bond formation, whereas IM-trypsin predominantly provided α-linked polyLys. Optimization of the conditions for the bulk polymerization using immobilized enzymes resulted in high monomer conversion and a high degree of polymerization, with excellent regioselectivity. Molecular docking simulations revealed different binding conformations of Lys-OEt to the catalytic pockets of lipase and trypsin, which putatively resulted in different amino moieties being used for amide bond formation. The immobilized enzymes were recovered and recycled for bulk polymerization, and the initial activity was maintained in the case of IM-trypsin. The obtained α- and ε-linked polyLys products exhibited different degradability against proteolysis, demonstrating the possibility of versatile applications as sustainable materials. This enzymatic regioregular control enabled the synthesis of well-defined polypeptide-based materials with a diverging structural variety.


Subject(s)
Enzymes, Immobilized , Fungal Proteins , Lipase , Polymerization , Trypsin , Lipase/chemistry , Lipase/metabolism , Enzymes, Immobilized/chemistry , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Trypsin/chemistry , Trypsin/metabolism , Polylysine/chemistry , Lysine/chemistry , Molecular Docking Simulation , Biocatalysis , Esters/chemistry , Basidiomycota
15.
J Org Chem ; 89(2): 1035-1044, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38156819

ABSTRACT

Fatty acid esters of hydroxy fatty acids (FAHFAs), a newly discovered class of human endogenous complex lipids showing great promise for treating diabetes and inflammatory diseases, exist naturally in extremely low concentrations. This work reports a chemo-enzymatic approach for the comprehensive synthesis of phospholipids containing FAHFAs via sequential steps: hydratase-catalyzed hydration of unsaturated fatty acids to generate structurally diverse hydroxy fatty acids (HFAs), followed by the selective esterification of these HFAs with fatty acids mediated by secondary alcohol-specific Candida antarctica lipase A (CALA), resulting in the formation of a series of diverse FAHFA analogs. The final synthesis is completed through carbodiimide-based coupling of FAHFAs with glycerophosphatidylcholine. Optimal reaction conditions are identified for each step, and the substrate affinity of CALA, responsible for the catalytic mechanisms during FAHFA production, is evaluated through molecular docking. Compared to multistep lab-tedious chemical synthesis, this route, relying on natural building blocks and natural biocatalysts, is significantly facile, scalable, and highly selective, affording high yields (74-98 mol %) in each step for the construction of higher FAHFA-PC series (10/12/13-FAHFAs). The developed strategy aims to increase the availability of naturally occurring FAHFA species and provide the tools for the construction of versatile and novel analogs of FAHFA conjugates.


Subject(s)
Esters , Phosphatidylcholines , Humans , Molecular Docking Simulation , Esters/chemistry , Fatty Acids/chemistry , Phospholipids , Lipase
16.
Bioorg Med Chem Lett ; 100: 129614, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38199329

ABSTRACT

Electrochemical transformations are a subject of increasing interest in early drug discovery due to its ability to assemble complex scaffolds under rather mild reaction conditions. In this context, we became interested in electrochemical decarboxylative cross-coupling (DCC) protocols of redox-active esters (RAEs) and halo(hetero)arenes. Starting with the one-step electrochemical synthesis of novel methylamino-substituted heterocycles we recognized the potential of this methodology to deliver a novel approach to ß- and γ- amino acids by starting from the corresponding RAEs. Our work finally resulted in the delivery of novel and highly valuable trifunctional building blocks based on ß- and γ-amino-acid scaffolds.


Subject(s)
Amino Acids , Esters , Electrochemistry , Molecular Structure , Amino Acids/chemistry , Esters/chemistry , Oxidation-Reduction
17.
Bioorg Med Chem Lett ; 109: 129850, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38879090

ABSTRACT

For small-molecule drugs, lipidation via a cleavable linkage can extend half-life in circulation through interaction with albumin. Here we modified the cysteinylprolyl ester (CPE) system used in peptide thioester synthesis, which normally requires basic conditions, for use as an self-immolative linker and release device for a lipid-gemcitabine conjugate. To improve release under physiological conditions for medical application, a methyl group at the α-position of cysteine on the CPE unit was incorporated in anticipation of the Thorpe-Ingold effect. As a result, Ac-Gly-(α-Me)Cys(SH)-Pro-gemcitabine 11 drastically promoted the release of gemcitabine in comparison with Ac-Gly-Cys(SH)-Pro-gemcitabine 10. Furthermore, in the presence of bovine serum albumin and/or 2-mercaptoethanesulfonic acid, the gentle and continuous release of gemcitabine from the lipid-gemcitabine conjugate 16 was achieved. In addition to gemcitabine, this method could allow high clearance drugs, including nucleic acid and prostacyclin derivatives, to maintain their biological activity long enough to become effective.


Subject(s)
Deoxycytidine , Esters , Gemcitabine , Lipids , Deoxycytidine/chemistry , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Lipids/chemistry , Esters/chemistry , Esters/pharmacology , Esters/chemical synthesis , Drug Liberation , Cysteine/chemistry , Humans , Molecular Structure , Serum Albumin, Bovine/chemistry , Animals
18.
Org Biomol Chem ; 22(16): 3273-3278, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38572769

ABSTRACT

Arylsulfonyl group-bearing α,ß-unsaturated enol esters were readily assembled via the Cs2CO3-mediated union of 2-bromoallyl sulfones and cinnamic acids. The overall transformation is equivalent to an sp2 carbon-oxygen coupling reaction, and therefore constitutes a formal vinylic substitution. Several of the products display promising levels of antiproliferative activities higher than that of the anticancer drug carboplatin. Thiophenol reacted with 2-bromoallyl sulfones under identical conditions to afford α-thiophenyl-α'-tosyl acetone via an apparent aerial oxidation.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Esters , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Esters/chemistry , Esters/pharmacology , Esters/chemical synthesis , Humans , Cell Proliferation/drug effects , Cell Line, Tumor , Drug Screening Assays, Antitumor , Molecular Structure , Sulfones/chemistry , Sulfones/pharmacology , Sulfones/chemical synthesis , Structure-Activity Relationship , Vinyl Compounds/chemistry , Vinyl Compounds/pharmacology , Vinyl Compounds/chemical synthesis
19.
Bioorg Med Chem ; 110: 117836, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39029437

ABSTRACT

Liver cancer is a complex disease that involves various oncoproteins and the inactivation of tumor suppressor proteins (TSPs). Gankyrin is one such oncoprotein, first identified in human hepatocellular carcinoma, that is known to inactivate multiple TSPs, leading to proliferation and metastasis of tumor cells. Despite this, there has been limited development of small molecule gankyrin binders for the treatment of liver cancer. In this study, we are reporting the structure-based design of gankyrin-binding small molecules which inhibit the proliferation of HuH6 and HepG2 cells while also increasing the levels of certain TSPs, such as Rb and p53. Interestingly the first molecule to exhibit inhibition by 3D structure stabilization is seen. These results suggest a possible mechanism for small-molecule inhibition of gankyrin and demonstrate that gankyrin is a viable therapeutic target for the treatment of liver cancer.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Proto-Oncogene Proteins , Triazoles , Humans , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Structure-Activity Relationship , Molecular Structure , Drug Screening Assays, Antitumor , Sulfonic Acids/chemistry , Sulfonic Acids/pharmacology , Sulfonic Acids/antagonists & inhibitors , Cell Line, Tumor , Esters/chemistry , Esters/pharmacology , Esters/chemical synthesis , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/chemistry , Dose-Response Relationship, Drug , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Benzenesulfonates
20.
Anal Bioanal Chem ; 416(18): 4111-4122, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772972

ABSTRACT

Branched fatty acid esters of hydroxy fatty acids (FAHFAs) represent trace lipids with significant natural biological functions. While exogenous FAHFAs have been extensively studied, research on FAHFAs in milk remains limited, constraining our grasp of their nutritional roles. This study introduces a non-targeted mass spectrometry approach combined with chemical networking of spectral fragmentation patterns to uncover FAHFAs. Through meticulous sample handling and comparisons of various data acquisition and processing modes, we validate the method's superiority, identifying twice as many FAHFAs compared to alternative techniques. This validated method was then applied to different milk samples, revealing 45 chemical signals associated with known and potential FAHFAs, alongside findings of 66 ceramide/hexosylceramide (Cer/HexCer), 48 phosphatidyl ethanolamine/lyso phosphatidyl ethanolamine (PE/LPE), 21 phosphatidylcholine/lysophosphatidylcholine (PC/LPC), 16 phosphatidylinositol (PI), 7 phosphatidylserine (PS), and 11 sphingomyelin (SM) compounds. This study expands our understanding of the FAHFA family in milk and provides a fast and convenient method for identifying FAHFAs.


Subject(s)
Esters , Fatty Acids , Mass Spectrometry , Milk , Animals , Milk/chemistry , Fatty Acids/analysis , Fatty Acids/chemistry , Esters/analysis , Esters/chemistry , Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL