Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.501
Filter
Add more filters

Publication year range
1.
FASEB J ; 37(9): e23139, 2023 09.
Article in English | MEDLINE | ID: mdl-37584631

ABSTRACT

Mutations in POLG, the gene encoding the catalytic subunit of the mitochondrial DNA (mtDNA) polymerase gamma (Pol-γ), lead to diseases driven by defective mtDNA maintenance. Despite being the most prevalent cause of mitochondrial disease, treatments for POLG-related disorders remain elusive. In this study, we used POLG patient-induced pluripotent stem cell (iPSC)-derived neural stem cells (iNSCs), one homozygous for the POLG mutation c.2243G>C and one compound heterozygous with c.2243G>C and c.1399G>A, and treated these iNSCs with ethidium bromide (EtBr) to study the rate of depletion and repopulation of mtDNA. In addition, we investigated the effect of deoxyribonucleoside (dNs) supplementation on mtDNA maintenance during EtBr treatment and post-treatment repopulation in the same cells. EtBr-induced mtDNA depletion occurred at a similar rate in both patient and control iNSCs, however, restoration of mtDNA levels was significantly delayed in iNSCs carrying the compound heterozygous POLG mutations. In contrast, iNSC with the homozygous POLG mutation recovered their mtDNA at a rate similar to controls. When we treated cells with dNs, we found that this reduced EtBr-induced mtDNA depletion and significantly increased repopulation rates in both patient iNSCs. These observations are consistent with the hypothesis that mutations in POLG impair mtDNA repopulation also within intact neural lineage cells and suggest that those with compound heterozygous mutation have a more severe defect of mtDNA synthesis. Our findings further highlight the potential for dNs to improve mtDNA replication in the presence of POLG mutations, suggesting that this may offer a new therapeutic modality for mitochondrial diseases caused by disturbed mtDNA homeostasis.


Subject(s)
Induced Pluripotent Stem Cells , Mitochondrial Diseases , Neural Stem Cells , Humans , DNA-Directed DNA Polymerase/genetics , DNA Polymerase gamma/genetics , Ethidium/pharmacology , Mutation , DNA, Mitochondrial/genetics , Mitochondrial Diseases/genetics , Mitochondrial Diseases/therapy , Deoxyribonucleosides
2.
Microb Pathog ; 185: 106397, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37852553

ABSTRACT

The escalating prevalence of carbapenem-resistant Pseudomonas aeruginosa (CRPA) poses a significant threat to global public health through the spread of its 'high-risk' clones. Immediate and decisive research into antimicrobial agents against CRPA is crucial for the development of effective measures and interventions. Overexpression of the MexAB-OprM efflux pump is one of the major mechanisms of CRPA. Since the active efflux of antibacterial agents plays a significant role in mediating drug resistance in CRPA, the inhibition of efflux pumps has become a promising strategy to restore antibacterial potency. Piperine (PIP) has been proven to be a promising efflux pump inhibitor in some bacteria. However, there are no studies on whether PIP can act as a potential efflux pump inhibitor in CRPA. The present study aimed to identify the antibacterial activity of PIP against CRPA and to evaluate the effect on the MexAB-OprM efflux pump. Molecular docking was used to analyze the possible interaction of PIP with the proteins of the MexAB-OprM efflux pump in CRPA. The effect of PIP on the expression of the MexAB-OprM efflux pump was investigated by real-time quantitative PCR (qPCR) and ethidium bromide accumulation efflux assay. The effect of PIP on CRPA imipenem (IPM) resistance was investigated by the checkerboard dilution method. The results demonstrated that PIP exhibited the lowest binding affinity of -9.1 kcal towards efflux pump proteins. A synergistic effect between PIP and IPM on CRPA was observed. More importantly, PIP effectively hindered the efflux of ethidium bromide and IPM by up-regulating MexR gene expression while down-regulating MexA, MexB, and OprM gene expressions. In conclusion, PIP could enhance the antibacterial activity of IPM by inhibiting the MexAB-OprM efflux pump. Our work proved that PIP had the potential to be an efflux pump inhibitor of CRPA.


Subject(s)
Imipenem , Pseudomonas aeruginosa , Imipenem/pharmacology , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Ethidium/pharmacology , Molecular Docking Simulation , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Microbial Sensitivity Tests
3.
Molecules ; 28(22)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38005371

ABSTRACT

The efflux systems are considered important mechanisms of bacterial resistance due to their ability to extrude various antibiotics. Several naturally occurring compounds, such as sesquiterpenes, have demonstrated antibacterial activity and the ability to inhibit efflux pumps in resistant strains. Therefore, the objective of this research was to analyze the antibacterial and inhibitory activity of the efflux systems NorA, Tet(K), MsrA, and MepA by sesquiterpenes nerolidol, farnesol, and α-bisabolol, used either individually or in liposomal nanoformulation, against multi-resistant Staphylococcus aureus strains. The methodology consisted of in vitro testing of the ability of sesquiterpenes to reduce the Minimum Inhibitory Concentration (MIC) and enhance the action of antibiotics and ethidium bromide (EtBr) in broth microdilution assays. The following strains were used: S. aureus 1199B carrying the NorA efflux pump, resistant to norfloxacin; IS-58 strain carrying Tet(K), resistant to tetracyclines; RN4220 carrying MsrA, conferring resistance to erythromycin. For the EtBr fluorescence measurement test, K2068 carrying MepA was used. It was observed the individual sesquiterpenes exhibited better antibacterial activity as well as efflux pump inhibition. Farnesol showed the lowest MIC of 16.5 µg/mL against the S. aureus RN4220 strain. Isolated nerolidol stood out for reducing the MIC of EtBr to 5 µg/mL in the 1199B strain, yielding better results than the positive control CCCP, indicating strong evidence of NorA inhibition. The liposome formulations did not show promising results, except for liposome/farnesol, which reduced the MIC of EtBr against 1199B and RN4220. Further research is needed to evaluate the mechanisms of action involved in the inhibition of resistance mechanisms by the tested compounds.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Sesquiterpenes , Farnesol/pharmacology , Staphylococcus aureus/metabolism , Methicillin-Resistant Staphylococcus aureus/metabolism , Liposomes , Multidrug Resistance-Associated Proteins , Anti-Bacterial Agents/pharmacology , Sesquiterpenes/pharmacology , Ethidium/pharmacology , Microbial Sensitivity Tests , Bacterial Proteins/metabolism
4.
J Neuroinflammation ; 19(1): 244, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36195881

ABSTRACT

BACKGROUND: Neuropathic pain is still a challenge for clinical treatment as a result of the comprehensive pathogenesis. Although emerging evidence demonstrates the pivotal role of glial cells in regulating neuropathic pain, the role of Schwann cells and their underlying mechanisms still need to be uncovered. Pannexin 1 (Panx 1), an important membrane channel for the release of ATP and inflammatory cytokines, as well as its activation in central glial cells, contributes to pain development. Here, we hypothesized that Schwann cell Panx 1 participates in the regulation of neuroinflammation and contributes to neuropathic pain. METHODS: A mouse model of chronic constriction injury (CCI) in CD1 adult mice or P0-Cre transgenic mice, and in vitro cultured Schwann cells were used. Intrasciatic injection with Panx 1 blockers or the desired virus was used to knock down the expression of Panx 1. Mechanical and thermal sensitivity was assessed using Von Frey and a hot plate assay. The expression of Panx 1 was measured using qPCR, western blotting, and immunofluorescence. The production of cytokines was monitored through qPCR and enzyme-linked immunosorbent assay (ELISA). Panx1 channel activity was detected by ethidium bromide (EB) uptake. RESULTS: CCI induced persistent neuroinflammatory responses and upregulation of Panx 1 in Schwann cells. Intrasciatic injection of Panx 1 blockers, carbenoxolone (CBX), probenecid, and Panx 1 mimetic peptide (10Panx) effectively reduced mechanical and heat hyperalgesia. Probenecid treatment of CCI-induced mice significantly reduced Panx 1 expression in Schwann cells, but not in dorsal root ganglion (DRG). In addition, Panx 1 knockdown in Schwann cells with Panx 1 shRNA-AAV in P0-Cre mice significantly reduced CCI-induced neuropathic pain. To determine whether Schwann cell Panx 1 participates in the regulation of neuroinflammation and contributes to neuropathic pain, we evaluated its effect in LPS-treated Schwann cells. We found that inhibition of Panx 1 via CBX and Panx 1-siRNA effectively attenuated the production of selective cytokines, as well as its mechanism of action being dependent on both Panx 1 channel activity and its expression. CONCLUSION: In this study, we found that CCI-related neuroinflammation correlates with Panx 1 activation in Schwann cells, indicating that inhibition of Panx 1 channels in Schwann cells reduces neuropathic pain through the suppression of neuroinflammatory responses.


Subject(s)
Carbenoxolone , Neuralgia , Adenosine Triphosphate/pharmacology , Animals , Carbenoxolone/pharmacology , Carbenoxolone/therapeutic use , Connexins/genetics , Connexins/metabolism , Cytokines/metabolism , Ethidium/metabolism , Ethidium/pharmacology , Ethidium/therapeutic use , Hyperalgesia/metabolism , Lipopolysaccharides/pharmacology , Mice , Nerve Tissue Proteins/metabolism , Neuralgia/metabolism , Probenecid/metabolism , Probenecid/pharmacology , Probenecid/therapeutic use , RNA, Small Interfering/metabolism , Schwann Cells
5.
J Bioenerg Biomembr ; 54(2): 109-117, 2022 04.
Article in English | MEDLINE | ID: mdl-35260987

ABSTRACT

Lysophosphatidic acid (LPA) signaling via LPA receptors (LPA1 to LPA6) exhibits a variety of malignant properties in cancer cells. Intracellular ATP depletion leads to the development of necrosis and apoptosis. The present study aimed to evaluate the effects of LPA receptor-mediated signaling on the regulation of cancer cell functions associated with ATP reduction. Long-term ethidium bromide (EtBr) treated (MG63-EtBr) cells were established from osteosarcoma MG-63 cells. The intracellular ATP levels of MG63-EtBr cells were significantly lower than that of MG-63 cells. LPAR2, LPAR3, LPAR4 and LPAR6 gene expressions were elevated in MG63-EtBr cells. The cell motile and invasive activities of MG63-EtBr cells were markedly higher than those of MG-63 cells. The cell motile activity of MG-63 cells was increased by LPA4 and LPA6 knockdowns. In cell survival assay, cells were treated with cisplatin (CDDP) every 24 h for 3 days. The cell survival to CDDP of MG63-EtBr cells was lower than that of MG-63 cells. LPA2 knockdown decreased the cell survival to CDDP of MG-63 cells. The cell survival to CDDP of MG-63 cells was inhibited by (2 S)-OMPT (LPA3 agonist). Moreover, the cell survival to CDDP of MG-63 cells was enhanced by LPA4 and LPA6 knockdowns. These results indicate that LPA signaling via LPA receptors is involved in the regulation of cellular functions associated with ATP reduction in MG-63 cells treated with EtBr.


Subject(s)
Bone Neoplasms , Osteosarcoma , Adenosine Triphosphate/pharmacology , Bone Neoplasms/drug therapy , Bone Neoplasms/genetics , Cell Movement , Ethidium/pharmacology , Gene Expression Regulation, Neoplastic , Humans , Lysophospholipids/metabolism , Osteosarcoma/drug therapy , Osteosarcoma/genetics , Receptors, Lysophosphatidic Acid/genetics , Receptors, Lysophosphatidic Acid/metabolism
6.
J Biochem Mol Toxicol ; 35(10): e22864, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34309121

ABSTRACT

The retrograde signaling pathway is well conserved from yeast to humans, which regulates cell adaptation during stress conditions and prevents cell death. One of its components, RTG1 encoded Rtg1p in association with Rtg3p communicates between mitochondria, nucleus, and peroxisome during stress for adaptation, by regulation of transcription. The F-box motif protein encoded by YDR131C  constitutes a part of SCF Ydr131c -E3 ligase complex, with unknown function; however, it is known that retrograde signaling is modulated by the E3 ligase complex. This study reports epistasis interaction between YDR131C and RTG1, which regulates cell growth, response to genotoxic stress, decreased apoptosis, resistance to petite mutation, and cell wall integrity. The cells of ydr131cΔrtg1Δ genetic background exhibits growth rate improvement however, sensitivity to hydroxyurea, itraconazole antifungal agent and synthetic indoloquinazoline-based alkaloid (8-fluorotryptanthrin, RK64), which disrupts the cell wall integrity in Saccharomyces cerevisiae. The epistatic interaction between YDR131C and RTG1 indicates a link between protein degradation and retrograde signaling pathways.


Subject(s)
Apoptosis/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , DNA Damage/genetics , Epistasis, Genetic , F-Box Motifs/genetics , Gene Expression Regulation, Fungal , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Signal Transduction/genetics , Acetic Acid/pharmacology , Antifungal Agents/pharmacology , Apoptosis/drug effects , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cell Enlargement/drug effects , Cell Size/drug effects , DNA Damage/drug effects , Ethidium/pharmacology , Gene Deletion , Hydrogen Peroxide/pharmacology , Hydroxyurea/pharmacology , Itraconazole/pharmacology , Microorganisms, Genetically-Modified , Mutation/drug effects , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Sulfinic Acids/pharmacology
7.
Int J Mol Sci ; 22(2)2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33445795

ABSTRACT

3-Bromopyruvic acid (3-BP) is a promising anticancer compound. Two ovary cancer (OC) cell lines, PEO1 and SKOV3, showed relatively high sensitivity to 3-BP (half maximal inhibitory concentration (IC50) of 18.7 and 40.5 µM, respectively). However, the further sensitization of OC cells to 3-BP would be desirable. Delphinidin (D) has been reported to be cytotoxic for cancer cell lines. We found that D was the most toxic for PEO1 and SKOV3 cells from among several flavonoids tested. The combined action of 3-BP and D was mostly synergistic in PEO1 cells and mostly weakly antagonistic in SKOV3 cells. The viability of MRC-5 fibroblasts was not affected by both compounds at concentrations of up to 100 µM. The combined action of 3-BP and D decreased the level of ATP and of dihydroethidium (DHE)-detectable reactive oxygen species (ROS), cellular mobility and cell staining with phalloidin and Mitotracker Red in both cell lines but increased the 2',7'-dichlorofluorescein (DCFDA)-detectable ROS level and decreased the mitochondrial membrane potential and mitochondrial mass only in PEO1 cells. The glutathione level was increased by 3-BP+D only in SKOV3 cells. These differences may contribute to the lower sensitivity of SKOV3 cells to 3-BP+D. Our results point to the possibility of sensitization of at least some OC cells to 3-BP by D.


Subject(s)
Anthocyanins/pharmacology , Antineoplastic Agents/pharmacology , Ovarian Neoplasms/drug therapy , Pyruvates/pharmacology , Adenosine Triphosphate/metabolism , Cell Line , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Drug Synergism , Ethidium/analogs & derivatives , Ethidium/pharmacology , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Flavonoids/pharmacology , Glutathione/metabolism , Humans , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Ovarian Neoplasms/metabolism , Reactive Oxygen Species/metabolism
8.
Int J Mol Sci ; 22(11)2021 Jun 05.
Article in English | MEDLINE | ID: mdl-34198827

ABSTRACT

The objective of this study was to investigate molecular mechanisms underlying the ability of carnosic acid to attenuate an early increase in reactive oxygen species (ROS) levels during MDI-induced adipocyte differentiation. The levels of superoxide anion and ROS were determined using dihydroethidium (DHE) and 2'-7'-dichlorofluorescin diacetate (DCFH-DA), respectively. Both superoxide anion and ROS levels peaked on the second day of differentiation. They were suppressed by carnosic acid. Carnosic acid attenuates the translation of NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 4 (Nox4), p47phox, and p22phox, and the phosphorylation of nuclear factor-kappa B (NF-κB) and NF-κB inhibitor (IkBa). The translocation of NF-κB into the nucleus was also decreased by carnosic acid. In addition, carnosic acid increased the translation of heme oxygenase-1 (HO-1), γ-glutamylcysteine synthetase (γ-GCSc), and glutathione S-transferase (GST) and both the translation and nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2). Taken together, these results indicate that carnosic acid could down-regulate ROS level in an early stage of MPI-induced adipocyte differentiation by attenuating ROS generation through suppression of NF-κB-mediated translation of Nox4 enzyme and increasing ROS neutralization through induction of Nrf2-mediated translation of phase II antioxidant enzymes such as HO-1, γ-GCS, and GST, leading to its anti-adipogenetic effect.


Subject(s)
ATPases Associated with Diverse Cellular Activities/genetics , Abietanes/pharmacology , DNA Helicases/genetics , Heme Oxygenase-1/genetics , Membrane Proteins/genetics , NADPH Oxidase 4/genetics , NF-KappaB Inhibitor alpha/genetics , 3T3-L1 Cells , Adipocytes/drug effects , Adipocytes/metabolism , Animals , Antioxidants/pharmacology , Cell Differentiation/drug effects , Cytochrome b Group/genetics , Ethidium/analogs & derivatives , Ethidium/pharmacology , Fluoresceins/pharmacology , Glutathione Transferase/genetics , Mice , NADPH Oxidases/genetics , Protein Biosynthesis/drug effects , Reactive Oxygen Species/metabolism
9.
Microb Pathog ; 140: 103935, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31857236

ABSTRACT

Arrabidaea brachypoda is a native shrub of the Brazilian Cerrado widely used in the folk medicine for treatment of renal diseases and articular pains. This study aimed to, first, evaluate the antimicrobial activity of both extracts and isolated molecules Brachydins BR-A and BR-B obtained from the flowers of A. brachypoda against Staphylococcus aureus, Escherchia coli and Candida albicans species. A second objective was to investigate if these natural products were able to potentiate the Norfloxacin activity against the strain Staphylococcus aureus SA1199-B that overexpress the norA gene encoding the NorA efflux pump. Extracts and isolated compounds were analyzed by HPLC-PDA and LC-ESI-MS respectively. Minimal inhibitory concentrations of Norfloxacin or Ethidium Bromide (EtBr) were determined in the presence or absence of ethanolic extract, dichloromethane fraction, as well as BR-A or BR-B by microdilution method. Only BR-B showed activity against Candida albicans. Addition of ethanolic extract, dichloromethane fraction or BR-B to the growth media at sub-inhibitory concentrations enhanced the activity of both Norfloxacin and EtBr against S. aureus SA1199-B, indicating that these natural products and its isolated compound BR-B were able to modulate the fluoroquinolone-resistance possibly by inhibition of NorA. Moreover, BR-B inhibited the EtBr efflux in the SA1199-B strain confirming that it is a NorA inhibitor. Isolated BR-B was able to inhibit an important mechanism of multidrug-resistance very prevalent in S. aureus strains, thus its use in combination with Norfloxacin could be considered as an alternative for the treatment of infections caused by S. aureus strains overexpressing norA.


Subject(s)
Bacterial Proteins/drug effects , Bignoniaceae/metabolism , Flavonoids/pharmacology , Multidrug Resistance-Associated Proteins/drug effects , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Candida albicans/drug effects , Ciprofloxacin/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Ethidium/pharmacology , Flavonoids/isolation & purification , Fluoroquinolones/pharmacology , Multidrug Resistance-Associated Proteins/metabolism , Plant Extracts/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/metabolism
10.
FASEB J ; 33(6): 7168-7179, 2019 06.
Article in English | MEDLINE | ID: mdl-30848931

ABSTRACT

Polymerase γ catalytic subunit (POLG) gene encodes the enzyme responsible for mitochondrial DNA (mtDNA) synthesis. Mutations affecting POLG are the most prevalent cause of mitochondrial disease because of defective mtDNA replication and lead to a wide spectrum of clinical phenotypes characterized by mtDNA deletions or depletion. Enhancing mitochondrial deoxyribonucleoside triphosphate (dNTP) synthesis effectively rescues mtDNA depletion in different models of defective mtDNA maintenance due to dNTP insufficiency. In this study, we studied mtDNA copy number recovery rates following ethidium bromide-forced depletion in quiescent fibroblasts from patients harboring mutations in different domains of POLG. Whereas control cells spontaneously recovered initial mtDNA levels, POLG-deficient cells experienced a more severe depletion and could not repopulate mtDNA. However, activation of deoxyribonucleoside (dN) salvage by supplementation with dNs plus erythro-9-(2-hydroxy-3-nonyl) adenine (inhibitor of deoxyadenosine degradation) led to increased mitochondrial dNTP pools and promoted mtDNA repopulation in all tested POLG-mutant cells independently of their specific genetic defect. The treatment did not compromise POLG fidelity because no increase in multiple deletions or point mutations was detected. Our study suggests that physiologic dNTP concentration limits the mtDNA replication rate. We thus propose that increasing mitochondrial dNTP availability could be of therapeutic interest for POLG deficiency and other conditions in which mtDNA maintenance is challenged.-Blázquez-Bermejo, C., Carreño-Gago, L., Molina-Granada, D., Aguirre, J., Ramón, J., Torres-Torronteras, J., Cabrera-Pérez, R., Martín, M. Á., Domínguez-González, C., de la Cruz, X., Lombès, A., García-Arumí, E., Martí, R., Cámara, Y. Increased dNTP pools rescue mtDNA depletion in human POLG-deficient fibroblasts.


Subject(s)
DNA Polymerase gamma/deficiency , DNA, Mitochondrial/metabolism , Deoxyribonucleotides/pharmacology , Fibroblasts/metabolism , Adenine/analogs & derivatives , Adenine/pharmacology , Adult , Catalytic Domain/genetics , Cells, Cultured , DNA Polymerase gamma/genetics , DNA Replication/drug effects , DNA, Mitochondrial/genetics , Deoxyribonucleotides/metabolism , Ethidium/pharmacology , Female , Fibroblasts/drug effects , Genotype , Humans , Male , Mitochondria, Muscle/genetics , Models, Molecular , Mutation, Missense , Phenotype , Point Mutation , Protein Conformation , Real-Time Polymerase Chain Reaction , Sequence Deletion
11.
Nucleic Acids Res ; 46(10): 5209-5226, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29518244

ABSTRACT

RNA 3' polyadenylation is known to serve diverse purposes in biology, in particular, regulating mRNA stability and translation. Here we determined that, upon exposure to high levels of the intercalating agent ethidium bromide (EtBr), greater than those required to suppress mitochondrial transcription, mitochondrial tRNAs in human cells became polyadenylated. Relaxation of the inducing stress led to rapid turnover of the polyadenylated tRNAs. The extent, kinetics and duration of tRNA polyadenylation were EtBr dose-dependent, with mitochondrial tRNAs differentially sensitive to the stress. RNA interference and inhibitor studies indicated that ongoing mitochondrial ATP synthesis, plus the mitochondrial poly(A) polymerase and SUV3 helicase were required for tRNA polyadenylation, while polynucleotide phosphorylase counteracted the process and was needed, along with SUV3, for degradation of the polyadenylated tRNAs. Doxycycline treatment inhibited both tRNA polyadenylation and turnover, suggesting a possible involvement of the mitoribosome, although other translational inhibitors had only minor effects. The dysfunctional tRNALeu(UUR) bearing the pathological A3243G mutation was constitutively polyadenylated at a low level, but this was markedly enhanced after doxycycline treatment. We propose that polyadenylation of structurally and functionally abnormal mitochondrial tRNAs entrains their PNPase/SUV3-mediated destruction, and that this pathway could play an important role in mitochondrial diseases associated with tRNA mutations.


Subject(s)
Mitochondria/genetics , RNA, Transfer/metabolism , Cell Line, Tumor , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Ethidium/pharmacology , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Poly A/metabolism , Polyadenylation , RNA, Transfer/chemistry , RNA, Transfer, Leu/chemistry , RNA, Transfer, Leu/metabolism
12.
Microb Pathog ; 130: 242-246, 2019 May.
Article in English | MEDLINE | ID: mdl-30876871

ABSTRACT

The aim of this study was to evaluate the antimicrobial activity of ethanoic extract of P. amarus (PAEE) and its compound Phyllanthin, as well as, investigate if these natural products could modulate the fluoroquinolone-resistance in S. aureus SA1199-B by way of overexpression of the NorA efflux pump. Microdilution tests were carried out to determine the minimal inhibitory concentration (MIC) of the PAEE or Phyllanthin against several bacterial and yeast strains. To evaluate if PAEE or Phyllanthin were able to act as modulators of the fluoroquinolone-resistance, MICs for Norfloxacin and ethidium bromide were determined in the presence or absence of PAEE or Phyllanthin against S. aureus SA1199-B. PAEE showed antimicrobial activity against Gram-negative strains, meanwhile Phyllanthin was inactive against all strains tested. Addition of PAEE or Phyllanthin, to the growth media at sub-inhibitory concentrations enhanced the activity of the Norfloxacin as well as, Ethidium Bromide, against S. aureus SA1199-B. These results indicate that Phyllanthin is able to modulate the fluoroquinolone-resistance possibly by inhibition of NorA. This hypothesis was supported by in silico docking analysis which confirmed that Phyllantin is a NorA ligand. Thus, this compound could be used as a potentiating agent of the Norfloxacin activity in the treatment of infections caused by fluoroquinolone-resistant S. aureus.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Lignans/pharmacology , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Phyllanthus/chemistry , Plant Extracts/pharmacology , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/isolation & purification , Drug Resistance, Bacterial/drug effects , Drug Synergism , Enzyme Inhibitors/isolation & purification , Ethidium/pharmacology , Lignans/isolation & purification , Microbial Sensitivity Tests , Norfloxacin/pharmacology , Plant Extracts/isolation & purification , Staphylococcus aureus/enzymology
13.
Platelets ; 30(2): 181-189, 2019.
Article in English | MEDLINE | ID: mdl-29206074

ABSTRACT

Reactive oxygen species (ROS) generation is critical in the regulation of platelets, which has important implications in the modulation of hemostasis and thrombosis. Nonetheless, despite several assays have been described and successfully utilized in the past, the analysis of ROS generation in human platelets remains challenging. Here we show that dihydroethidium (DHE) allows the characterization of redox responses upon platelet activation by physiological and pathological stimuli. In particular, the flow cytometry assay that we describe here allowed us to confirm that thrombin, collagen-related peptide (CRP) and arachidonic acid but not adenosine diphosphate (ADP) stimulate superoxide anion formation in a concentration-dependent manner. 0.1unit/ml thrombin, 3 µg/ml CRP and 30 µM arachidonic acid are commonly used to stimulate platelets in vitro and here were shown to stimulate a significant increase in superoxide anion formation. The ROS scavenger N-acetylcysteine (NAC) abolished superoxide anion generation in response to all tested stimuli, but the pan-NADPH oxidase (NOX) inhibitor VAS2870 only inhibited superoxide anion formation in response to thrombin and CRP. The involvement of NOXs in thrombin and CRP-dependent responses was confirmed by the inhibition of platelet aggregation induced by these stimuli by VAS2870, while platelet aggregation in response to arachidonic acid was insensitive to this inhibitor. In addition, the pathological platelet stimulus amyloid ß (Aß) 1-42 peptide induced superoxide anion formation in a concentration-dependent manner. Aß peptide stimulated superoxide anion formation in a NOX-dependent manner, as proved by the use of VAS2870. Aß 1-42 peptide displayed only moderate activity as an aggregation stimulus, but was able to significantly potentiate platelet aggregation in response to submaximal agonists concentrations, such as 0.03 unit/ml thrombin and 10 µM arachidonic acid. The inhibition of NOXs by 10 µM VAS2870 abolished Aß-dependent potentiation of platelet aggregation in response to 10 µM arachidonic acid, suggesting that the pro-thrombotic activity of Aß peptides depends on NOX activity. Similar experiments could not be performed with thrombin or collagen, as NOXs are required for the signaling induced by these stimuli. These findings shed some new light on the pro-thrombotic activity of Aß peptides. In summary, here we describe a novel and reliable assay for the detection of superoxide anion in human platelets. This is particularly important for the investigation of the pathophysiological role of redox stress in platelets, a field of research of increasing importance, but hindered by the absence of a reliable and easily accessible ROS detection methodology applicable to platelets.


Subject(s)
Amyloid beta-Peptides/metabolism , Ethidium/analogs & derivatives , Flow Cytometry/methods , NADPH Oxidases/metabolism , Superoxides/metabolism , Blood Platelets , Ethidium/pharmacology , Ethidium/therapeutic use , Humans , Reactive Oxygen Species
14.
Lett Appl Microbiol ; 69(1): 57-63, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31002429

ABSTRACT

This study aimed to evaluate the antimicrobial activity of the dichloromethane fraction (DCMF) from the stem bark of Mimosa caesalpiniifolia and its effect on the activity of conventional antibiotics against Staphylococcus aureus strains overexpressing specific efflux pump genes. DCMF showed activity against S. aureus, Staphylococcus epidermidis and Candida albicans. Addition of DCMF at subinhibitory concentrations to the growth media enhanced the activity of norfloxacin, ciprofloxacin and ethidium bromide against S. aureus strains overexpressing norA suggesting the presence of efflux pump inhibitors in its composition. Similar results were verified for tetracycline against S. aureus overexpressing tetK, as well as, for ethidium bromide against S. aureus overexpressing qacC. These results indicate that M. caesalpiniifolia is a source of molecules able to modulate the fluoroquinolone- and tetracycline-resistance in S. aureus probably by inhibition of NorA, TetK and QacC respectively. SIGNIFICANCE AND IMPACT OF THE STUDY: Drug resistance is a common problem in patients with infectious diseases. Dichloromethane fraction from the stem bark of Mimosa caesalpiniifolia showed antimicrobial activity against Gram-positive bacterium Staphylococcus aureus and against Candida albicans, but did not show activity against Gram-negative specie Escherichia coli. Moreover, this fraction was able to potentiate the action of norfloxacin, ciprofloxacin and tetracycline against S. aureus strains overexpressing different efflux pump genes. Thus, Mimosa caesalpiniifolia is a source of efflux pump inhibitors which could be used in combination with fluoroquinolones or tetracycline in the treatment of infectious diseases caused by S. aureus strains overexpressing efflux pump genes.


Subject(s)
Anti-Bacterial Agents/pharmacology , Candida albicans/drug effects , Mimosa/chemistry , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Staphylococcus epidermidis/drug effects , Antiporters/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Ciprofloxacin/pharmacology , Drug Resistance, Multiple/genetics , Ethidium/pharmacology , Fluoroquinolones/pharmacology , Humans , Methylene Chloride/chemistry , Microbial Sensitivity Tests , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Norfloxacin/pharmacology , Plant Bark/chemistry , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Tetracycline/pharmacology , Tetracycline Resistance/genetics
15.
Molecules ; 24(16)2019 Aug 16.
Article in English | MEDLINE | ID: mdl-31426277

ABSTRACT

Multidrug resistance (MDR) causes challenging tasks in medicine. Human cancer cells, as well as microorganisms, can acquire multiresistance due to the up-regulation of efflux pumps (ABC transporters) and are difficult to treat. Here, we evaluated the effects of chlorophyll, the most abundant pigment on the globe, and its derivative, pheophytin, on cancer cells and methicillin-resistant Staphylococcus aureus (MRSA). We found that both substances have significant reversal effects on multidrug-resistant CEM/ADR5000 cells (RRpheophytin = 3.13, combination index (CI)pheophytin = 0.438; RRchlorophyll = 2.72, CIchlorophyll < 0.407), but not on drug-sensitive CCRF-CEM cells when used in combination with doxorubicin. This indicates that the porphyrins could interact with efflux pumps. Strong synergism was also observed in antimicrobial tests against MRSA when combining ethidium bromide with chlorophyll (FICI = 0.08). As there is a strong need for new drugs in order to reliably treat MDR cells, our research provides potential candidates for further investigation.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Chlorophyll/pharmacology , Doxorubicin/pharmacology , Drug Resistance, Neoplasm/drug effects , Ethidium/pharmacology , Pheophytins/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Drug Combinations , Drug Resistance, Multiple/drug effects , Drug Synergism , Humans , Inhibitory Concentration 50 , Lymphocytes/drug effects , Lymphocytes/pathology , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/growth & development , Microbial Sensitivity Tests
16.
Nat Chem Biol ; 12(3): 141-5, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26751516

ABSTRACT

Secondary active transport proteins play a central role in conferring bacterial multidrug resistance. In this work, we investigated the proton-coupled transport mechanism for the Escherichia coli drug efflux pump EmrE using NMR spectroscopy. Our results show that the global conformational motions necessary for transport are modulated in an allosteric fashion by the protonation state of a membrane-embedded glutamate residue. These observations directly correlate with the resistance phenotype for wild-type EmrE and the E14D mutant as a function of pH. Furthermore, our results support a model in which the pH gradient across the inner membrane of E. coli may be used on a mechanistic level to shift the equilibrium of the transporter in favor of an inward-open resting conformation poised for drug binding.


Subject(s)
Antiporters/chemistry , Antiporters/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Glutamates/chemistry , Antiporters/genetics , Cell Membrane/chemistry , Drug Resistance, Multiple, Bacterial/genetics , Enzyme Inhibitors/pharmacology , Escherichia coli Proteins/genetics , Ethidium/pharmacology , Hydrogen-Ion Concentration , Liposomes/chemistry , Magnetic Resonance Spectroscopy , Models, Biological , Models, Molecular , Mutation/genetics , Protein Conformation , Protons
17.
Bioorg Med Chem ; 26(17): 4942-4951, 2018 09 15.
Article in English | MEDLINE | ID: mdl-30190182

ABSTRACT

Mycobacterium tuberculosis infection causes 1.8 million deaths worldwide, of which half a million has been diagnosed with resistant tuberculosis (TB). Emergence of multi drug resistant and extensive drug resistant strains has made all the existing anti-TB therapy futile. The major involvement of efflux pump in drug resistance has made it a direct approach for therapeutic exploration against resistant M. tuberculosis. This study demarcates the role of 11H-pyrido[2,1-b]quinazolin-11-one (quinazolinone) analogues as efflux pump inhibitor in Mycobacterium smegmatis. Sixteen quinazolinone analogues were synthesized by treating 2-aminopyridine and 2-fluorobenzonitrile with KtOBu. Analogues were tested, and 3a, 3b, 3c, 3g, 3j, 3l, 3m, and 3p were found to modulate EtBr MIC by >4 whereas 3a, 3g, 3i and 3o showed >4 modulation on norfloxacin MIC. 3l and 3o in addition to their very low toxicity they showed high EtBr and norfloxacin accumulation respectively. Time kill curve showed effective log reduction in colony forming unit in presence of these analogues, thus confirming their role as efflux pump inhibitor. Through docking and alignment studies, we have also shown that the LfrA amino acid residues that the analogues are interacting with are present in Rv2333c and Rv2846c of M. tuberculosis. This study have shown for the first time the possibility of developing the 11H-pyrido[2,1-b]quinazolin-11-one analogues as efflux pump inhibitors for M. smegmatis and hence unbolts the scope to advance this study against resistant M. tuberculosis as well.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Mycobacterium smegmatis/drug effects , Mycobacterium tuberculosis/drug effects , Quinazolines/pharmacology , Anti-Bacterial Agents/chemistry , Binding Sites , Biological Transport , Ethidium/pharmacology , Microbial Sensitivity Tests , Molecular Docking Simulation , Norfloxacin/pharmacology , Quinazolines/chemistry
18.
Arch Pharm (Weinheim) ; 351(5): e1700308, 2018 May.
Article in English | MEDLINE | ID: mdl-29656443

ABSTRACT

In order to investigate new potential therapeutically active agents, we investigated the biological properties of two small libraries of quinoxalinones and 1,4-benzoxazin-2-ones. The results obtained showed that compounds 5, 9-11 have good cytotoxic activity against HeLa cells where the lowest IC50 value (10.46 ± 0.82 µM/mL) was measured for compound 10. Additionally, the most active compounds (5, 9-11) showed much better selectivity for MRC-5 cells (up to 17.4) compared to cisplatin. In vitro evaluation of the inhibition of the enzyme α-glucosidase showed that compounds 10 and 11 exert significant inhibition of the enzyme at 52.54 ± 0.09 and 40.09 ± 0.49 µM, respectively. Competitive experiments with ethidium bromide (EB) indicated that all tested compounds have affinity to displace EB from the EB-DNA complex through intercalation, suggesting good competition with EB (Ksv = (3.1 ± 0.2), (5.1 ± 0.1), (5.6 ± 0.2), and (6.3 ± 0.2) × 103 M-1 ). A molecular docking study was also performed to better understand the binding modes and to conclude the structure-activity relationships of the synthesized compounds.


Subject(s)
Antineoplastic Agents/pharmacology , Benzoxazines/pharmacology , Molecular Docking Simulation , Quinoxalines/pharmacology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Benzoxazines/administration & dosage , Benzoxazines/chemistry , Cell Line, Tumor , Cisplatin/pharmacology , Ethidium/pharmacology , HeLa Cells , Humans , Inhibitory Concentration 50 , Neoplasms/drug therapy , Neoplasms/pathology , Quinoxalines/administration & dosage , Quinoxalines/chemistry , Structure-Activity Relationship
19.
Microb Pathog ; 112: 156-163, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28964825

ABSTRACT

Dental caries remains the most prevalent oral infectious disease worldwide. In this study, the antibacterial and the antibiofilm activities of five essential oils (EO's): eugenol (EUG), carvacrol (CAR), thymol (TYH), p-cymene (CYM) and γ-terpinene (TER) were tested (alone or in combinaison with tetracycline) against oral bacteria. In addition, their potential roles to enhance the accumulation of ethidium bromide (EtBr) in bacterial cells were tested. Our results indicated that EO's induced a selective antimicrobial activity. A synergistic effect of EO's and tetracycline (TET) was noticed with a reduction rate ranged from 2 to 8-fold. In addition, the efflux of EtBr was inhibited with a decrease in loss of EtBr from the bacteria. On the other hand a significant anti-biofilm activities of EO's (alone or combined with antibiotics) was noticed. In conclusion the tested EO's may be considered as a potential natural source with a resistance-modifying activity and may be applied to eradicate bacterial biofilm.


Subject(s)
Bacteria/drug effects , Biofilms/drug effects , Drug Resistance, Bacterial/drug effects , Eugenol/pharmacology , Monoterpenes/pharmacology , Mouth/microbiology , Thymol/pharmacology , Anti-Bacterial Agents , Cyclohexane Monoterpenes , Cymenes , Dental Caries/microbiology , Dental Enamel/microbiology , Drug Synergism , Ethidium/pharmacology , Microbial Sensitivity Tests , Microbiota/drug effects , Microscopy, Electron, Scanning , Oils, Volatile/pharmacology , Staphylococcus aureus/cytology , Staphylococcus aureus/drug effects , Tetracycline/pharmacology
20.
Tumour Biol ; 39(8): 1010428317713671, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28789597

ABSTRACT

Our earlier study revealed that long-term ethidium bromide application causes mitochondrial DNA depletion in human prostate cancer DU145 cell line (DU145MtDP), and this DU145MtDP subline appears to have expanded CD44Bright cell population than its parental wild type DU145 cells (DU145WT). Increasing evidence suggests that CD44Bright cells are highly cancer stem cell like, but it is not clear about their dynamic transition between CD44Dim and CD44Bright phenotypes in prostate cancer cells, and how it is affected by mitochondrial DNA depletion. To address these questions, four cell subpopulations were isolated from both DU145WT and DU145MtDP cell lines based on their CD44 expression level and mitochondrial membrane potential. The cell motility and colony formation capability of the fluorescence activated cell sorting-sorted cell subpopulations were further examined. It was discovered in the DU145WT cells that CD44Dim cells could transit into both CD44Dim and CD44Bright phenotypes and that CD44Bright cells were prone to sustain their CD44Bright phenotype as renewal. However, such transition principle was altered in the DU145MtDP cells, in which CD44Bright cells showed similar capability to sustain a CD44Bright phenotype, while the transition of CD44Dim cells to CD44Bright were suppressed. It is concluded that mitochondrial DNA depletion in the human prostate cancer DU145 cells influences their renewal and CD44 subphenotype transition. Such alterations may be the driving force for the enrichment of CD44Bright DU145 cells after the mitochondrial DNA depletion, although the molecular mechanisms remain unclear.


Subject(s)
Cell Lineage/genetics , Cell Proliferation/genetics , DNA, Mitochondrial/genetics , Prostatic Neoplasms/genetics , Cell Line, Tumor , Cell Movement/genetics , Ethidium/pharmacology , Flow Cytometry , Gene Expression Regulation, Neoplastic/genetics , Humans , Hyaluronan Receptors/biosynthesis , Hyaluronan Receptors/genetics , Male , Neoplastic Stem Cells/drug effects , Prostatic Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL