Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.097
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 36: 435-459, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29400984

ABSTRACT

The initiation and maintenance of adaptive immunity require multifaceted modes of communication between different types of immune cells, including direct intercellular contact, secreted soluble signaling molecules, and extracellular vesicles (EVs). EVs can be formed as microvesicles directly pinched off from the plasma membrane or as exosomes secreted by multivesicular endosomes. Membrane receptors guide EVs to specific target cells, allowing directional transfer of specific and complex signaling cues. EVs are released by most, if not all, immune cells. Depending on the type and status of their originating cell, EVs may facilitate the initiation, expansion, maintenance, or silencing of adaptive immune responses. This review focusses on EVs from professional antigen-presenting cells, their demonstrated and speculated roles, and their potential for cancer immunotherapy.


Subject(s)
Antigen Presentation/immunology , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Extracellular Vesicles/metabolism , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Biological Transport , Cell-Derived Microparticles/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Epithelial Cells/metabolism , Exosomes/metabolism , Histocompatibility Antigens/genetics , Histocompatibility Antigens/immunology , Humans , Immune Tolerance , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Macrophages/immunology , Macrophages/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
2.
Cell ; 186(8): 1610-1626, 2023 04 13.
Article in English | MEDLINE | ID: mdl-37059067

ABSTRACT

Intercellular communication is a key feature of cancer progression and metastasis. Extracellular vesicles (EVs) are generated by all cells, including cancer cells, and recent studies have identified EVs as key mediators of cell-cell communication via packaging and transfer of bioactive constituents to impact the biology and function of cancer cells and cells of the tumor microenvironment. Here, we review recent advances in understanding the functional contribution of EVs to cancer progression and metastasis, as cancer biomarkers, and the development of cancer therapeutics.


Subject(s)
Extracellular Vesicles , Neoplasms , Humans , Neoplasms/pathology , Cell Communication/physiology , Biomarkers, Tumor , Tumor Microenvironment/physiology
3.
Cell ; 184(18): 4697-4712.e18, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34363756

ABSTRACT

Animals face both external and internal dangers: pathogens threaten from the environment, and unstable genomic elements threaten from within. C. elegans protects itself from pathogens by "reading" bacterial small RNAs, using this information to both induce avoidance and transmit memories for four generations. Here, we found that memories can be transferred from either lysed animals or from conditioned media to naive animals via Cer1 retrotransposon-encoded virus-like particles. Moreover, Cer1 functions internally at the step of transmission of information from the germline to neurons and is required for learned avoidance. The presence of the Cer1 retrotransposon in wild C. elegans strains correlates with the ability to learn and inherit small-RNA-induced pathogen avoidance. Together, these results suggest that C. elegans has co-opted a potentially dangerous retrotransposon to instead protect itself and its progeny from a common pathogen through its inter-tissue signaling ability, hijacking this genomic element for its own adaptive immunity benefit.


Subject(s)
DNA Transposable Elements/genetics , Gene Transfer, Horizontal/genetics , Inheritance Patterns/genetics , Memory/physiology , Animals , Avoidance Learning , Behavior, Animal , Caenorhabditis elegans/genetics , Caenorhabditis elegans/physiology , Extracellular Vesicles/metabolism , Gene Expression Regulation , Genome , Germ Cells/metabolism , RNA/metabolism , RNA Interference , Virion/metabolism
4.
Cell ; 184(8): 2121-2134.e13, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33735609

ABSTRACT

The α7 nicotinic acetylcholine receptor plays critical roles in the central nervous system and in the cholinergic inflammatory pathway. This ligand-gated ion channel assembles as a homopentamer, is exceptionally permeable to Ca2+, and desensitizes faster than any other Cys-loop receptor. The α7 receptor has served as a prototype for the Cys-loop superfamily yet has proven refractory to structural analysis. We present cryo-EM structures of the human α7 nicotinic receptor in a lipidic environment in resting, activated, and desensitized states, illuminating the principal steps in the gating cycle. The structures also reveal elements that contribute to its function, including a C-terminal latch that is permissive for channel opening, and an anionic ring in the extracellular vestibule that contributes to its high conductance and calcium permeability. Comparisons among the α7 structures provide a foundation for mapping the gating cycle and reveal divergence in gating mechanisms in the Cys-loop receptor superfamily.


Subject(s)
alpha7 Nicotinic Acetylcholine Receptor/metabolism , Amino Acid Sequence , Binding Sites , Bungarotoxins/chemistry , Bungarotoxins/metabolism , Calcium/metabolism , Cell Membrane/chemistry , Cryoelectron Microscopy , Extracellular Vesicles/metabolism , HEK293 Cells , Humans , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Patch-Clamp Techniques , Protein Domains , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , alpha7 Nicotinic Acetylcholine Receptor/chemistry , alpha7 Nicotinic Acetylcholine Receptor/genetics
5.
Cell ; 184(19): 4981-4995.e14, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34464586

ABSTRACT

Poor tumor infiltration, development of exhaustion, and antigen insufficiency are common mechanisms that limit chimeric antigen receptor (CAR)-T cell efficacy. Delivery of pattern recognition receptor agonists is one strategy to improve immune function; however, targeting these agonists to immune cells is challenging, and off-target signaling in cancer cells can be detrimental. Here, we engineer CAR-T cells to deliver RN7SL1, an endogenous RNA that activates RIG-I/MDA5 signaling. RN7SL1 promotes expansion and effector-memory differentiation of CAR-T cells. Moreover, RN7SL1 is deployed in extracellular vesicles and selectively transferred to immune cells. Unlike other RNA agonists, transferred RN7SL1 restricts myeloid-derived suppressor cell (MDSC) development, decreases TGFB in myeloid cells, and fosters dendritic cell (DC) subsets with costimulatory features. Consequently, endogenous effector-memory and tumor-specific T cells also expand, allowing rejection of solid tumors with CAR antigen loss. Supported by improved endogenous immunity, CAR-T cells can now co-deploy peptide antigens with RN7SL1 to enhance efficacy, even when heterogenous CAR antigen tumors lack adequate neoantigens.


Subject(s)
Immunologic Factors/pharmacology , RNA/pharmacology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Animals , Antigens/metabolism , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , DEAD Box Protein 58/metabolism , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Extracellular Vesicles/metabolism , Humans , Immunity/drug effects , Immunocompetence , Immunologic Memory , Immunotherapy , Interferons/metabolism , Melanoma, Experimental/pathology , Mice, Inbred C57BL , Myeloid Cells/drug effects , Myeloid Cells/metabolism , Peptides/metabolism , Receptors, Pattern Recognition/metabolism , T-Lymphocytes/drug effects
6.
Nat Rev Mol Cell Biol ; 24(7): 454-476, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36765164

ABSTRACT

To coordinate, adapt and respond to biological signals, cells convey specific messages to other cells. An important aspect of cell-cell communication involves secretion of molecules into the extracellular space. How these molecules are selected for secretion has been a fundamental question in the membrane trafficking field for decades. Recently, extracellular vesicles (EVs) have been recognized as key players in intercellular communication, carrying not only membrane proteins and lipids but also RNAs, cytosolic proteins and other signalling molecules to recipient cells. To communicate the right message, it is essential to sort cargoes into EVs in a regulated and context-specific manner. In recent years, a wealth of lipidomic, proteomic and RNA sequencing studies have revealed that EV cargo composition differs depending upon the donor cell type, metabolic cues and disease states. Analyses of distinct cargo 'fingerprints' have uncovered mechanistic linkages between the activation of specific molecular pathways and cargo sorting. In addition, cell biology studies are beginning to reveal novel biogenesis mechanisms regulated by cellular context. Here, we review context-specific mechanisms of EV biogenesis and cargo sorting, focusing on how cell signalling and cell state influence which cellular components are ultimately targeted to EVs.


Subject(s)
Extracellular Vesicles , Proteomics , Biological Transport , Extracellular Vesicles/metabolism , Protein Transport , Signal Transduction , Cell Communication
7.
Cell ; 182(1): 262-262.e1, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32649878

ABSTRACT

Cells release a variety of extracellular vesicles (EVs; including exosomes, microvesicles, and many others) into their environment. EVs can bud in endosomes or directly at the plasma membrane, carrying a selection of components from the cell and displaying various functional properties. Different techniques can be used to separate EV subtypes and EVs from co-isolated components, resulting in preparations of different abundance and purity.


Subject(s)
Extracellular Vesicles/metabolism , Endosomes/metabolism , Humans
8.
Cell ; 182(4): 1044-1061.e18, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32795414

ABSTRACT

There is an unmet clinical need for improved tissue and liquid biopsy tools for cancer detection. We investigated the proteomic profile of extracellular vesicles and particles (EVPs) in 426 human samples from tissue explants (TEs), plasma, and other bodily fluids. Among traditional exosome markers, CD9, HSPA8, ALIX, and HSP90AB1 represent pan-EVP markers, while ACTB, MSN, and RAP1B are novel pan-EVP markers. To confirm that EVPs are ideal diagnostic tools, we analyzed proteomes of TE- (n = 151) and plasma-derived (n = 120) EVPs. Comparison of TE EVPs identified proteins (e.g., VCAN, TNC, and THBS2) that distinguish tumors from normal tissues with 90% sensitivity/94% specificity. Machine-learning classification of plasma-derived EVP cargo, including immunoglobulins, revealed 95% sensitivity/90% specificity in detecting cancer. Finally, we defined a panel of tumor-type-specific EVP proteins in TEs and plasma, which can classify tumors of unknown primary origin. Thus, EVP proteins can serve as reliable biomarkers for cancer detection and determining cancer type.


Subject(s)
Biomarkers, Tumor/metabolism , Extracellular Vesicles/metabolism , Neoplasms/diagnosis , Animals , Biomarkers, Tumor/blood , Cell Line , HSC70 Heat-Shock Proteins/metabolism , Humans , Machine Learning , Mice , Mice, Inbred C57BL , Microfilament Proteins/metabolism , Neoplasms/metabolism , Proteome/analysis , Proteome/metabolism , Proteomics/methods , Sensitivity and Specificity , Tetraspanin 29/metabolism , rap GTP-Binding Proteins/metabolism
9.
Annu Rev Cell Dev Biol ; 37: 171-197, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34270326

ABSTRACT

Viral egress and transmission have long been described to take place through single free virus particles. However, viruses can also shed into the environment and transmit as populations clustered inside extracellular vesicles (EVs), a process we had first called vesicle-mediated en bloc transmission. These membrane-cloaked virus clusters can originate from a variety of cellular organelles including autophagosomes, plasma membrane, and multivesicular bodies. Their viral cargo can be multiples of nonenveloped or enveloped virus particles or even naked infectious genomes, but egress is always nonlytic, with the cell remaining intact. Here we put forth the thesis that EV-cloaked viral clusters are a distinct form of infectious unit as compared to free single viruses (nonenveloped or enveloped) or even free virus aggregates. We discuss how efficient and prevalent these infectious EVs are in the context of virus-associated diseases and highlight the importance of their proper detection and disinfection for public health.


Subject(s)
Extracellular Vesicles , Viruses , Extracellular Vesicles/metabolism , Viruses/genetics
10.
Nat Rev Mol Cell Biol ; 23(5): 369-382, 2022 05.
Article in English | MEDLINE | ID: mdl-35260831

ABSTRACT

Extracellular vesicles (EVs) are increasingly recognized as important mediators of intercellular communication. They have important roles in numerous physiological and pathological processes, and show considerable promise as novel biomarkers of disease, as therapeutic agents and as drug delivery vehicles. Intriguingly, however, understanding of the cellular and molecular mechanisms that govern the many observed functions of EVs remains far from comprehensive, at least partly due to technical challenges in working with these small messengers. Here, we highlight areas of consensus as well as contentious issues in our understanding of the intracellular and intercellular journey of EVs: from biogenesis, release and dynamics in the extracellular space, to interaction with and uptake by recipient cells. We define knowledge gaps, identify key questions and challenges, and make recommendations on how to address these.


Subject(s)
Extracellular Vesicles , Biological Transport , Biomarkers/metabolism , Cell Communication , Drug Delivery Systems , Extracellular Vesicles/metabolism
11.
Cell ; 177(2): 225-227, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30951665

ABSTRACT

There is growing interest surrounding the diagnostic and therapeutic potential of exosomes, but a definitive description of these extracellular vesicles remains elusive. In this issue, Jeppesen et al. characterize exosomes following a strict isolation protocol and in so doing challenge several of the accepted properties of these agents of intercellular communication.


Subject(s)
Exosomes , Extracellular Vesicles , Cell Communication
12.
Cell ; 177(2): 231-242, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30951667

ABSTRACT

The Extracellular RNA Communication Consortium (ERCC) was launched to accelerate progress in the new field of extracellular RNA (exRNA) biology and to establish whether exRNAs and their carriers, including extracellular vesicles (EVs), can mediate intercellular communication and be utilized for clinical applications. Phase 1 of the ERCC focused on exRNA/EV biogenesis and function, discovery of exRNA biomarkers, development of exRNA/EV-based therapeutics, and construction of a robust set of reference exRNA profiles for a variety of biofluids. Here, we present progress by ERCC investigators in these areas, and we discuss collaborative projects directed at development of robust methods for EV/exRNA isolation and analysis and tools for sharing and computational analysis of exRNA profiling data.


Subject(s)
Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/metabolism , Extracellular Vesicles/genetics , Biomarkers , Humans , Knowledge Bases , MicroRNAs/genetics , RNA/genetics
13.
Cell ; 177(2): 428-445.e18, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30951670

ABSTRACT

The heterogeneity of small extracellular vesicles and presence of non-vesicular extracellular matter have led to debate about contents and functional properties of exosomes. Here, we employ high-resolution density gradient fractionation and direct immunoaffinity capture to precisely characterize the RNA, DNA, and protein constituents of exosomes and other non-vesicle material. Extracellular RNA, RNA-binding proteins, and other cellular proteins are differentially expressed in exosomes and non-vesicle compartments. Argonaute 1-4, glycolytic enzymes, and cytoskeletal proteins were not detected in exosomes. We identify annexin A1 as a specific marker for microvesicles that are shed directly from the plasma membrane. We further show that small extracellular vesicles are not vehicles of active DNA release. Instead, we propose a new model for active secretion of extracellular DNA through an autophagy- and multivesicular-endosome-dependent but exosome-independent mechanism. This study demonstrates the need for a reassessment of exosome composition and offers a framework for a clearer understanding of extracellular vesicle heterogeneity.


Subject(s)
Exosomes/metabolism , Exosomes/physiology , Annexin A1/metabolism , Argonaute Proteins/metabolism , Cell Line, Tumor , Cell Membrane/metabolism , Cell-Derived Microparticles/metabolism , DNA/metabolism , Exosomes/chemistry , Extracellular Vesicles , Female , Humans , Lysosomes/metabolism , Male , Proteins/metabolism , RNA/metabolism
14.
Cell ; 177(2): 446-462.e16, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30951671

ABSTRACT

Poor reproducibility within and across studies arising from lack of knowledge regarding the performance of extracellular RNA (exRNA) isolation methods has hindered progress in the exRNA field. A systematic comparison of 10 exRNA isolation methods across 5 biofluids revealed marked differences in the complexity and reproducibility of the resulting small RNA-seq profiles. The relative efficiency with which each method accessed different exRNA carrier subclasses was determined by estimating the proportions of extracellular vesicle (EV)-, ribonucleoprotein (RNP)-, and high-density lipoprotein (HDL)-specific miRNA signatures in each profile. An interactive web-based application (miRDaR) was developed to help investigators select the optimal exRNA isolation method for their studies. miRDar provides comparative statistics for all expressed miRNAs or a selected subset of miRNAs in the desired biofluid for each exRNA isolation method and returns a ranked list of exRNA isolation methods prioritized by complexity, expression level, and reproducibility. These results will improve reproducibility and stimulate further progress in exRNA biomarker development.


Subject(s)
Cell-Free Nucleic Acids/isolation & purification , Circulating MicroRNA/isolation & purification , RNA/isolation & purification , Adult , Body Fluids/chemistry , Cell Line , Extracellular Vesicles/metabolism , Female , Healthy Volunteers , Humans , Male , MicroRNAs/isolation & purification , MicroRNAs/metabolism , RNA/metabolism , Reproducibility of Results , Sequence Analysis, RNA/methods
15.
Cell ; 177(2): 463-477.e15, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30951672

ABSTRACT

To develop a map of cell-cell communication mediated by extracellular RNA (exRNA), the NIH Extracellular RNA Communication Consortium created the exRNA Atlas resource (https://exrna-atlas.org). The Atlas version 4P1 hosts 5,309 exRNA-seq and exRNA qPCR profiles from 19 studies and a suite of analysis and visualization tools. To analyze variation between profiles, we apply computational deconvolution. The analysis leads to a model with six exRNA cargo types (CT1, CT2, CT3A, CT3B, CT3C, CT4), each detectable in multiple biofluids (serum, plasma, CSF, saliva, urine). Five of the cargo types associate with known vesicular and non-vesicular (lipoprotein and ribonucleoprotein) exRNA carriers. To validate utility of this model, we re-analyze an exercise response study by deconvolution to identify physiologically relevant response pathways that were not detected previously. To enable wide application of this model, as part of the exRNA Atlas resource, we provide tools for deconvolution and analysis of user-provided case-control studies.


Subject(s)
Cell Communication/physiology , RNA/metabolism , Adult , Body Fluids/chemistry , Cell-Free Nucleic Acids/metabolism , Circulating MicroRNA/metabolism , Extracellular Vesicles/metabolism , Female , Humans , Male , Reproducibility of Results , Sequence Analysis, RNA/methods , Software
16.
Nat Immunol ; 22(5): 560-570, 2021 05.
Article in English | MEDLINE | ID: mdl-33753940

ABSTRACT

Extracellular vesicles have emerged as prominent regulators of the immune response during tumor progression. EVs contain a diverse repertoire of molecular cargo that plays a critical role in immunomodulation. Here, we identify the role of EVs as mediators of communication between cancer and immune cells. This expanded role of EVs may shed light on the mechanisms behind tumor progression and provide translational diagnostic and prognostic tools for immunologists.


Subject(s)
Extracellular Vesicles/immunology , Neoplasms/immunology , Tumor Escape , Animals , Disease Progression , Extracellular Vesicles/metabolism , Extracellular Vesicles/pathology , Humans , Immunotherapy , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/therapy , Signal Transduction , Tumor Microenvironment
17.
Immunity ; 57(8): 1752-1768, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39142276

ABSTRACT

Extracellular vesicles (EVs), such as ectosomes and exosomes, contain DNA, RNA, proteins and are encased in a phospholipid bilayer. EVs provide intralumenal cargo for delivery into the cytoplasm of recipient cells with an impact on the function of immune cells, in part because their biogenesis can also intersect with antigen processing and presentation. Motile EVs from activated immune cells may increase the frequency of immune synapses on recipient cells in a proximity-independent manner for local and long-distance modulation of systemic immunity in inflammation, autoimmunity, organ fibrosis, cancer, and infections. Natural and engineered EVs exhibit the ability to impact innate and adaptive immunity and are entering clinical trials. EVs are likely a component of an optimally functioning immune system, with the potential to serve as immunotherapeutics. Considering the evolving evidence, it is possible that EVs could be the original primordial organic units that preceded the creation of the first cell.


Subject(s)
Extracellular Vesicles , Humans , Extracellular Vesicles/immunology , Extracellular Vesicles/metabolism , Animals , Immunity, Innate/immunology , Adaptive Immunity/immunology , Antigen Presentation/immunology , Immunity
18.
Immunity ; 57(8): 1828-1847.e11, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39002541

ABSTRACT

Interaction of mast cells (MCs) with fibroblasts is essential for MC maturation within tissue microenvironments, although the underlying mechanism is incompletely understood. Through a phenotypic screening of >30 mouse lines deficient in lipid-related genes, we found that deletion of the lysophosphatidic acid (LPA) receptor LPA1, like that of the phospholipase PLA2G3, the prostaglandin D2 (PGD2) synthase L-PGDS, or the PGD2 receptor DP1, impairs MC maturation and thereby anaphylaxis. Mechanistically, MC-secreted PLA2G3 acts on extracellular vesicles (EVs) to supply lysophospholipids, which are converted by fibroblast-derived autotaxin (ATX) to LPA. Fibroblast LPA1 then integrates multiple pathways required for MC maturation by facilitating integrin-mediated MC-fibroblast adhesion, IL-33-ST2 signaling, L-PGDS-driven PGD2 generation, and feedforward ATX-LPA1 amplification. Defective MC maturation resulting from PLA2G3 deficiency is restored by supplementation with LPA1 agonists or PLA2G3-modified EVs. Thus, the lipid-orchestrated paracrine circuit involving PLA2G3-driven lysophospholipid, eicosanoid, integrin, and cytokine signaling fine-tunes MC-fibroblast communication, ensuring MC maturation.


Subject(s)
Anaphylaxis , Fibroblasts , Lysophospholipids , Mast Cells , Mice, Knockout , Paracrine Communication , Phosphoric Diester Hydrolases , Receptors, Lysophosphatidic Acid , Signal Transduction , Animals , Mast Cells/immunology , Mast Cells/metabolism , Anaphylaxis/immunology , Anaphylaxis/metabolism , Mice , Fibroblasts/metabolism , Lysophospholipids/metabolism , Receptors, Lysophosphatidic Acid/metabolism , Receptors, Lysophosphatidic Acid/genetics , Phosphoric Diester Hydrolases/metabolism , Phosphoric Diester Hydrolases/genetics , Prostaglandin D2/metabolism , Extracellular Vesicles/metabolism , Interleukin-33/metabolism , Intramolecular Oxidoreductases/metabolism , Intramolecular Oxidoreductases/genetics , Receptors, Prostaglandin/metabolism , Receptors, Prostaglandin/genetics , Cell Differentiation , Mice, Inbred C57BL , Interleukin-1 Receptor-Like 1 Protein , Lipocalins
19.
Cell ; 175(3): 695-708.e13, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30293865

ABSTRACT

We have uncovered the existence of extracellular vesicle (EV)-mediated signaling between cell types within the adipose tissue (AT) proper. This phenomenon became evident in our attempts at generating an adipocyte-specific knockout of caveolin 1 (cav1) protein. Although we effectively ablated the CAV1 gene in adipocytes, cav1 protein remained abundant. With the use of newly generated mouse models, we show that neighboring endothelial cells (ECs) transfer cav1-containing EVs to adipocytes in vivo, which reciprocate by releasing EVs to ECs. AT-derived EVs contain proteins and lipids capable of modulating cellular signaling pathways. Furthermore, this mechanism facilitates transfer of plasma constituents from ECs to the adipocyte. The transfer event is physiologically regulated by fasting/refeeding and obesity, suggesting EVs participate in the tissue response to changes in the systemic nutrient state. This work offers new insights into the complex signaling mechanisms that exist among adipocytes, stromal vascular cells, and, potentially, distal organs.


Subject(s)
Adipocytes/metabolism , Endothelial Cells/metabolism , Extracellular Vesicles/metabolism , Fasting/metabolism , Signal Transduction , Animals , Caveolin 1/genetics , Caveolin 1/metabolism , Cell Line , Cells, Cultured , Endothelium, Vascular/cytology , Male , Mice , Mice, Inbred C57BL
20.
Nat Rev Mol Cell Biol ; 21(10): 585-606, 2020 10.
Article in English | MEDLINE | ID: mdl-32457507

ABSTRACT

The term 'extracellular vesicles' refers to a heterogeneous population of vesicular bodies of cellular origin that derive either from the endosomal compartment (exosomes) or as a result of shedding from the plasma membrane (microvesicles, oncosomes and apoptotic bodies). Extracellular vesicles carry a variety of cargo, including RNAs, proteins, lipids and DNA, which can be taken up by other cells, both in the direct vicinity of the source cell and at distant sites in the body via biofluids, and elicit a variety of phenotypic responses. Owing to their unique biology and roles in cell-cell communication, extracellular vesicles have attracted strong interest, which is further enhanced by their potential clinical utility. Because extracellular vesicles derive their cargo from the contents of the cells that produce them, they are attractive sources of biomarkers for a variety of diseases. Furthermore, studies demonstrating phenotypic effects of specific extracellular vesicle-associated cargo on target cells have stoked interest in extracellular vesicles as therapeutic vehicles. There is particularly strong evidence that the RNA cargo of extracellular vesicles can alter recipient cell gene expression and function. During the past decade, extracellular vesicles and their RNA cargo have become better defined, but many aspects of extracellular vesicle biology remain to be elucidated. These include selective cargo loading resulting in substantial differences between the composition of extracellular vesicles and source cells; heterogeneity in extracellular vesicle size and composition; and undefined mechanisms for the uptake of extracellular vesicles into recipient cells and the fates of their cargo. Further progress in unravelling the basic mechanisms of extracellular vesicle biogenesis, transport, and cargo delivery and function is needed for successful clinical implementation. This Review focuses on the current state of knowledge pertaining to packaging, transport and function of RNAs in extracellular vesicles and outlines the progress made thus far towards their clinical applications.


Subject(s)
Extracellular Vesicles/metabolism , Mammals/metabolism , RNA/metabolism , Animals , Biological Transport/physiology , Cell Communication/physiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL