Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 307
Filter
Add more filters

Publication year range
2.
Proc Natl Acad Sci U S A ; 120(30): e2305495120, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37459532

ABSTRACT

Marine algae are responsible for half of the world's primary productivity, but this critical carbon sink is often constrained by insufficient iron. One species of marine algae, Dunaliella tertiolecta, is remarkable for its ability to maintain photosynthesis and thrive in low-iron environments. A related species, Dunaliella salina Bardawil, shares this attribute but is an extremophile found in hypersaline environments. To elucidate how algae manage their iron requirements, we produced high-quality genome assemblies and transcriptomes for both species to serve as a foundation for a comparative multiomics analysis. We identified a host of iron-uptake proteins in both species, including a massive expansion of transferrins and a unique family of siderophore-iron-uptake proteins. Complementing these multiple iron-uptake routes, ferredoxin functions as a large iron reservoir that can be released by induction of flavodoxin. Proteomic analysis revealed reduced investment in the photosynthetic apparatus coupled with remodeling of antenna proteins by dramatic iron-deficiency induction of TIDI1, which is closely related but identifiably distinct from the chlorophyll binding protein, LHCA3. These combinatorial iron scavenging and sparing strategies make Dunaliella unique among photosynthetic organisms.


Subject(s)
Chlorophyceae , Extremophiles , Iron/metabolism , Multiomics , Proteomics , Photosynthesis , Proteins/metabolism
3.
Semin Cell Dev Biol ; 134: 4-13, 2023 01 30.
Article in English | MEDLINE | ID: mdl-35339358

ABSTRACT

Extremophiles have always garnered great interest because of their exotic lifestyles and ability to thrive at the physical limits of life. In hot springs environments, the Cyanidiophyceae red algae are the only photosynthetic eukaryotes able to live under extremely low pH (0-5) and relatively high temperature (35ºC to 63ºC). These extremophiles live as biofilms in the springs, inhabit acid soils near the hot springs, and form endolithic populations in the surrounding rocks. Cyanidiophyceae represent a remarkable source of knowledge about the evolution of extremophilic lifestyles and their genomes encode specialized enzymes that have applied uses. Here we review the evolutionary origin, taxonomy, genome biology, industrial applications, and use of Cyanidiophyceae as genetic models. Currently, Cyanidiophyceae comprise a single order (Cyanidiales), three families, four genera, and nine species, including the well-known Cyanidioschyzon merolae and Galdieria sulphuraria. These algae have small, gene-rich genomes that are analogous to those of prokaryotes they live and compete with. There are few spliceosomal introns and evidence exists for horizontal gene transfer as a driver of local adaptation to gain access to external fixed carbon and to extrude toxic metals. Cyanidiophyceae offer a variety of commercial opportunities such as phytoremediation to detoxify contaminated soils or waters and exploitation of their mixotrophic lifestyles to support the efficient production of bioproducts such as phycocyanin and floridosides. In terms of exobiology, Cyanidiophyceae are an ideal model system for understanding the evolutionary effects of foreign gene acquisition and the interactions between different organisms inhabiting the same harsh environment on the early Earth. Finally, we describe ongoing research with C. merolae genetics and summarize the unique insights they offer to the understanding of algal biology and evolution.


Subject(s)
Extremophiles , Rhodophyta , Humans , Eukaryota , Extremophiles/genetics , Rhodophyta/genetics , Genome , Soil , Phylogeny
4.
J Biol Chem ; 300(2): 105537, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38072042

ABSTRACT

The extremophile bacterium D. radiodurans boasts a distinctive cell envelope characterized by the regular arrangement of three protein complexes. Among these, the Type II Secretion System (T2SS) stands out as a pivotal structural component. We used cryo-electron microscopy to reveal unique features, such as an unconventional protein belt (DR_1364) around the main secretin (GspD), and a cap (DR_0940) found to be a separated subunit rather than integrated with GspD. Furthermore, a novel region at the N-terminus of the GspD constitutes an additional second gate, supplementing the one typically found in the outer membrane region. This T2SS was found to contribute to envelope integrity, while also playing a role in nucleic acid and nutrient trafficking. Studies on intact cell envelopes show a consistent T2SS structure repetition, highlighting its significance within the cellular framework.


Subject(s)
Cell Membrane , Deinococcus , Extremophiles , Type II Secretion Systems , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cell Membrane/chemistry , Cell Membrane/metabolism , Cryoelectron Microscopy , Deinococcus/metabolism , Extremophiles/metabolism , Type II Secretion Systems/chemistry , Type II Secretion Systems/metabolism , Protein Transport
5.
J Proteome Res ; 23(3): 891-904, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38377575

ABSTRACT

Quickly identifying and characterizing isolates from extreme environments is currently challenging while very important to explore the Earth's biodiversity. As these isolates may, in principle, be distantly related to known species, techniques are needed to reliably identify the branch of life to which they belong. Proteotyping these environmental isolates by tandem mass spectrometry offers a rapid and cost-effective option for their identification using their peptide profiles. In this study, we document the first high-throughput proteotyping approach for environmental extremophilic and halophilic isolates. Microorganisms were isolated from samples originating from high-altitude Andean lakes (3700-4300 m a.s.l.) in the Chilean Altiplano, which represent environments on Earth that resemble conditions on other planets. A total of 66 microorganisms were cultivated and identified by proteotyping and 16S rRNA gene amplicon sequencing. Both the approaches revealed the same genus identification for all isolates except for three isolates possibly representing not yet taxonomically characterized organisms based on their peptidomes. Proteotyping was able to indicate the presence of two potentially new genera from the families of Paracoccaceae and Chromatiaceae/Alteromonadaceae, which have been overlooked by 16S rRNA amplicon sequencing approach only. The paper highlights that proteotyping has the potential to discover undescribed microorganisms from extreme environments.


Subject(s)
Extremophiles , Lakes , Altitude , RNA, Ribosomal, 16S/genetics , Biodiversity
6.
Mol Microbiol ; 120(3): 324-340, 2023 09.
Article in English | MEDLINE | ID: mdl-37469248

ABSTRACT

OLE RNA is a ~600-nucleotide noncoding RNA present in many Gram-positive bacteria that thrive mostly in extreme environments, including elevated temperature, salt, and pH conditions. The precise biochemical functions of this highly conserved RNA remain unknown, but it forms a ribonucleoprotein (RNP) complex that localizes to cell membranes. Genetic disruption of the RNA or its essential protein partners causes reduced cell growth under various stress conditions. These phenotypes include sensitivity to short-chain alcohols, cold intolerance, reduced growth on sub-optimal carbon sources, and intolerance of even modest concentrations of Mg2+ . Thus, many bacterial species appear to employ OLE RNA as a component of an intricate RNP apparatus to monitor fundamental cellular processes and make physiological and metabolic adaptations. Herein we hypothesize that the OLE RNP complex is functionally equivalent to the eukaryotic TOR complexes, which integrate signals from various diverse pathways to coordinate processes central to cell growth, replication, and survival.


Subject(s)
Extremophiles , RNA , Extremophiles/metabolism , Bacteria/genetics , Bacteria/metabolism , RNA, Untranslated/genetics , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism
7.
Trends Genet ; 37(9): 830-845, 2021 09.
Article in English | MEDLINE | ID: mdl-34088512

ABSTRACT

A growing number of known species possess a remarkable characteristic - extreme resistance to the effects of ionizing radiation (IR). This review examines our current understanding of how organisms can adapt to and survive exposure to IR, one of the most toxic stressors known. The study of natural extremophiles such as Deinococcus radiodurans has revealed much. However, the evolution of Deinococcus was not driven by IR. Another approach, pioneered by Evelyn Witkin in 1946, is to utilize experimental evolution. Contributions to the IR-resistance phenotype affect multiple aspects of cell physiology, including DNA repair, removal of reactive oxygen species, the structure and packaging of DNA and the cell itself, and repair of iron-sulfur centers. Based on progress to date, we overview the diversity of mechanisms that can contribute to biological IR resistance arising as a result of either natural or experimental evolution.


Subject(s)
Bacteria/radiation effects , DNA Repair , Extremophiles/physiology , Extremophiles/radiation effects , Radiation Genetics/methods , Background Radiation , Bacterial Physiological Phenomena , Deinococcus/physiology , Deinococcus/radiation effects , Radiation, Ionizing
8.
Environ Microbiol ; 26(5): e16629, 2024 May.
Article in English | MEDLINE | ID: mdl-38695111

ABSTRACT

Horizontal genetic transfer (HGT) is a common phenomenon in eukaryotic genomes. However, the mechanisms by which HGT-derived genes persist and integrate into other pathways remain unclear. This topic is of significant interest because, over time, the stressors that initially favoured the fixation of HGT may diminish or disappear. Despite this, the foreign genes may continue to exist if they become part of a broader stress response or other pathways. The conventional model suggests that the acquisition of HGT equates to adaptation. However, this model may evolve into more complex interactions between gene products, a concept we refer to as the 'Integrated HGT Model' (IHM). To explore this concept further, we studied specialized HGT-derived genes that encode heavy metal detoxification functions. The recruitment of these genes into other pathways could provide clear examples of IHM. In our study, we exposed two anciently diverged species of polyextremophilic red algae from the Galdieria genus to arsenic and mercury stress in laboratory cultures. We then analysed the transcriptome data using differential and coexpression analysis. Our findings revealed that mercury detoxification follows a 'one gene-one function' model, resulting in an indivisible response. In contrast, the arsH gene in the arsenite response pathway demonstrated a complex pattern of duplication, divergence and potential neofunctionalization, consistent with the IHM. Our research sheds light on the fate and integration of ancient HGTs, providing a novel perspective on the ecology of extremophiles.


Subject(s)
Arsenic , Extremophiles , Gene Transfer, Horizontal , Rhodophyta , Rhodophyta/genetics , Extremophiles/genetics , Arsenic/metabolism , Mercury/metabolism , Stress, Physiological/genetics , Inactivation, Metabolic/genetics , Evolution, Molecular
9.
Proc Biol Sci ; 291(2025): 20240412, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38889788

ABSTRACT

Regulating transcription allows organisms to respond to their environment, both within a single generation (plasticity) and across generations (adaptation). We examined transcriptional differences in gill tissues of fishes in the Poecilia mexicana species complex (family Poeciliidae), which have colonized toxic springs rich in hydrogen sulfide (H2S) in southern Mexico. There are gene expression differences between sulfidic and non-sulfidic populations, yet regulatory mechanisms mediating this gene expression variation remain poorly studied. We combined capped-small RNA sequencing (csRNA-seq), which captures actively transcribed (i.e. nascent) transcripts, and messenger RNA sequencing (mRNA-seq) to examine how variation in transcription, enhancer activity, and associated transcription factor binding sites may facilitate adaptation to extreme environments. csRNA-seq revealed thousands of differentially initiated transcripts between sulfidic and non-sulfidic populations, many of which are involved in H2S detoxification and response. Analyses of transcription factor binding sites in promoter and putative enhancer csRNA-seq peaks identified a suite of transcription factors likely involved in regulating H2S-specific shifts in gene expression, including several key transcription factors known to respond to hypoxia. Our findings uncover a complex interplay of regulatory processes that reflect the divergence of extremophile populations of P. mexicana from their non-sulfidic ancestors and suggest shared responses among evolutionarily independent lineages.


Subject(s)
Hydrogen Sulfide , Poecilia , Animals , Hydrogen Sulfide/metabolism , Poecilia/genetics , Poecilia/physiology , Poecilia/metabolism , Extremophiles/metabolism , Extremophiles/physiology , Extremophiles/genetics , Transcription, Genetic , Mexico , Transcription Factors/metabolism , Transcription Factors/genetics , Gills/metabolism
10.
New Phytol ; 243(1): 284-298, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38730535

ABSTRACT

Autophagy is a central degradative pathway highly conserved among eukaryotes, including microalgae, which remains unexplored in extremophilic organisms. In this study, we described and characterized autophagy in the newly identified extremophilic green microalga Chlamydomonas urium, which was isolated from an acidic environment. The nuclear genome of C. urium was sequenced, assembled and annotated in order to identify autophagy-related genes. Transmission electron microscopy, immunoblotting, metabolomic and photosynthetic analyses were performed to investigate autophagy in this extremophilic microalga. The analysis of the C. urium genome revealed the conservation of core autophagy-related genes. We investigated the role of autophagy in C. urium by blocking autophagic flux with the vacuolar ATPase inhibitor concanamycin A. Our results indicated that inhibition of autophagic flux in this microalga resulted in a pronounced accumulation of triacylglycerols and lipid droplets (LDs). Metabolomic and photosynthetic analyses indicated that C. urium cells with impaired vacuolar function maintained an active metabolism. Such effects were not observed in the neutrophilic microalga Chlamydomonas reinhardtii. Inhibition of autophagic flux in C. urium uncovered an active recycling of LDs through lipophagy, a selective autophagy pathway for lipid turnover. This study provided the metabolic basis by which extremophilic algae are able to catabolize lipids in the vacuole.


Subject(s)
Autophagy , Chlamydomonas , Lipid Metabolism , Photosynthesis , Chlamydomonas/metabolism , Photosynthesis/drug effects , Extremophiles/metabolism , Lipid Droplets/metabolism , Vacuoles/metabolism , Phylogeny , Triglycerides/metabolism , Macrolides
11.
Arch Microbiol ; 206(6): 247, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713374

ABSTRACT

Microbial life is not restricted to any particular setting. Over the past several decades, it has been evident that microbial populations can exist in a wide range of environments, including those with extremes in temperature, pressure, salinity, and pH. Bacteria and Archaea are the two most reported types of microbes that can sustain in extreme environments, such as hot springs, ice caves, acid drainage, and salt marshes. Some can even grow in toxic waste, organic solvents, and heavy metals. These microbes are called extremophiles. There exist certain microorganisms that are found capable of thriving in two or more extreme physiological conditions simultaneously, and are regarded as polyextremophiles. Extremophiles possess several physiological and molecular adaptations including production of extremolytes, ice nucleating proteins, pigments, extremozymes and exopolysaccharides. These metabolites are used in many biotechnological industries for making biofuels, developing new medicines, food additives, cryoprotective agents etc. Further, the study of extremophiles holds great significance in astrobiology. The current review summarizes the diversity of microorganisms inhabiting challenging environments and the biotechnological and therapeutic applications of the active metabolites obtained as a response to stress conditions. Bioprospection of extremophiles provides a progressive direction with significant enhancement in economy. Moreover, the introduction to omics approach including whole genome sequencing, single cell genomics, proteomics, metagenomics etc., has made it possible to find many unique microbial communities that could be otherwise difficult to cultivate using traditional methods. These findings might be capable enough to state that discovery of extremophiles can bring evolution to biotechnology.


Subject(s)
Archaea , Bacteria , Biotechnology , Extreme Environments , Extremophiles , Extremophiles/metabolism , Archaea/metabolism , Archaea/genetics , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification
12.
J Exp Biol ; 227(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38099471

ABSTRACT

Diapause exhibited by embryos of Artemia franciscana is accompanied by severe arrest of respiration. A large fraction of this depression is attributable to downregulation of trehalose catabolism that ultimately restricts fuel to mitochondria. This study now extends knowledge on the mechanism by revealing metabolic depression is heightened by inhibitions within mitochondria. Compared with that in embryo lysates during post-diapause, oxidative phosphorylation (OXPHOS) capacity P is depressed during diapause when either NADH-linked substrates (pyruvate and malate) for electron transfer (electron transfer capacity, E) through respiratory Complex I or the Complex II substrate succinate are used. When pyruvate, malate and succinate were combined, respiratory inhibition by the phosphorylation system in diapause lysates was discovered as judged by P/E flux control ratios (two-way ANOVA; F1,24=38.78; P<0.0001). Inhibition was eliminated as the diapause extract was diluted (significant interaction term; F2,24=9.866; P=0.0007), consistent with the presence of a diffusible inhibitor. One candidate is long-chain acyl-CoA esters known to inhibit the adenine nucleotide translocator. Addition of oleoyl-CoA to post-diapause lysates markedly decreased the P/E ratio to 0.40±0.07 (mean±s.d.; P=0.002) compared with 0.79±0.11 without oleoyl-CoA. Oleoyl-CoA inhibits the phosphorylation system and may be responsible for the depressed P/E in lysates from diapause embryos. With isolated mitochondria, depression of P/E by oleoyl-CoA was fully reversed by addition of l-carnitine (control versus recovery with l-carnitine, P=0.338), which facilitates oleoyl-CoA transport into the matrix and elimination by ß-oxidation. In conclusion, severe metabolic arrest during diapause promoted by restricting glycolytic carbon to mitochondria is reinforced by depression of OXPHOS capacity and the phosphorylation system.


Subject(s)
Diapause , Extremophiles , Animals , Oxidative Phosphorylation , Artemia/physiology , Malates , Pyruvates , Succinates , Carnitine
13.
Extremophiles ; 28(2): 26, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683238

ABSTRACT

Extremophiles and their products have been a major focus of research interest for over 40 years. Through this period, studies of these organisms have contributed hugely to many aspects of the fundamental and applied sciences, and to wider and more philosophical issues such as the origins of life and astrobiology. Our understanding of the cellular adaptations to extreme conditions (such as acid, temperature, pressure and more), of the mechanisms underpinning the stability of macromolecules, and of the subtleties, complexities and limits of fundamental biochemical processes has been informed by research on extremophiles. Extremophiles have also contributed numerous products and processes to the many fields of biotechnology, from diagnostics to bioremediation. Yet, after 40 years of dedicated research, there remains much to be discovered in this field. Fortunately, extremophiles remain an active and vibrant area of research. In the third decade of the twenty-first century, with decreasing global resources and a steadily increasing human population, the world's attention has turned with increasing urgency to issues of sustainability. These global concerns were encapsulated and formalized by the United Nations with the adoption of the 2030 Agenda for Sustainable Development and the presentation of the seventeen Sustainable Development Goals (SDGs) in 2015. In the run-up to 2030, we consider the contributions that extremophiles have made, and will in the future make, to the SDGs.


Subject(s)
Extremophiles , Extremophiles/metabolism , Extremophiles/physiology , Sustainable Development , Adaptation, Physiological , Extreme Environments , Biotechnology
14.
Environ Res ; 244: 118000, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38128601

ABSTRACT

The present investigation is the first of its kind which aims to study the characteristics of microbial consortium inhabiting one of the natural high background radiation areas of the world, Chavara Coast in Kerala, India. The composition of the microbial community and their structural changes were evaluated under the natural circumstances with exorbitant presence of radionuclides in the sediments and after the radionuclide's recession due to mining effects. For this purpose, the concentration of radionuclides, heavy metals, net radioactivity estimation via gross alpha and beta emitters and other physiochemical characteristics were assessed in the sediments throughout the estuarine stretch. According to the results, the radionuclides had a significant effect in shaping the community structure and composition, as confirmed by the bacterial heterogeneity achieved between the samples. The results indicate that high radioactivity in the background environment reduced the abundance and growth of normal microbial fauna and favoured only the growth of certain extremophiles belonging to families of Piscirickettsiacea, Rhodobacteriacea and Thermodesulfovibrionaceae, which were able to tolerate and adapt towards the ionizing radiation present in the environment. In contrast, communities from Comamondacea, Sphingomonadacea, Moraxellacea and Erythrobacteracea were present in the sediments collected from industrial outlet, reinforcing the potent role of radionuclides in governing the community pattern of microbes present in the natural environment. The study confirms the presence of these novel and unidentified bacterial communities and further opens the possibility of utilizing their usefulness in future prospects.


Subject(s)
Extremophiles , Metals, Heavy , Microbial Consortia , Background Radiation , Radioisotopes/analysis , Radioisotopes/pharmacology , Metals, Heavy/analysis , Bacteria , India , Geologic Sediments
15.
Appl Microbiol Biotechnol ; 108(1): 252, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38441672

ABSTRACT

Extremotolerant and extremophilic fungi are an important part of microbial communities that thrive in extreme environments. Among them, the black yeasts are particularly adaptable. They use their melanized cell walls and versatile morphology, as well as a complex set of molecular adaptations, to survive in conditions that are lethal to most other species. In contrast to extremophilic bacteria and archaea, these fungi are typically extremotolerant rather than extremophilic and exhibit an unusually wide ecological amplitude. Some extremely halotolerant black yeasts can grow in near-saturated NaCl solutions, but can also grow on normal mycological media. They adapt to the low water activity caused by high salt concentrations by sensing their environment, balancing osmotic pressure by accumulating compatible solutes, removing toxic salt ions from the cell using membrane transporters, altering membrane composition and remodelling the highly melanized cell wall. As protection against extreme conditions, halotolerant black yeasts also develop different morphologies, from yeast-like to meristematic. Genomic studies of black yeasts have revealed a variety of reproductive strategies, from clonality to intense recombination and the formation of stable hybrids. Although a comprehensive understanding of the ecological role and molecular adaptations of halotolerant black yeasts remains elusive and the application of many experimental methods is challenging due to their slow growth and recalcitrant cell walls, much progress has been made in deciphering their halotolerance. Advances in molecular tools and genomics are once again accelerating the research of black yeasts, promising further insights into their survival strategies and the molecular basis of their adaptations. KEY POINTS: • Black yeasts show remarkable adaptability to environmental stress • Black yeasts are part of microbial communities in hypersaline environments • Halotolerant black yeasts utilise various molecular and morphological adaptations.


Subject(s)
Ascomycota , Extremophiles , Saccharomyces cerevisiae , Archaea , Cell Wall , Extreme Environments
16.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Article in English | MEDLINE | ID: mdl-34725158

ABSTRACT

The Earth's deep biosphere hosts some of its most ancient chemolithotrophic lineages. The history of habitation in this environment is thus of interest for understanding the origin and evolution of life. The oldest rocks on Earth, formed about 4 billion years ago, are in continental cratons that have experienced complex histories due to burial and exhumation. Isolated fracture-hosted fluids in these cratons may have residence times older than a billion years, but understanding the history of their microbial communities requires assessing the evolution of habitable conditions. Here, we present a thermochronological perspective on the habitability of Precambrian cratons through time. We show that rocks now in the upper few kilometers of cratons have been uninhabitable (>∼122 °C) for most of their lifetime or have experienced high-temperature episodes, such that the longest record of habitability does not stretch much beyond a billion years. In several cratons, habitable conditions date back only 50 to 300 million years, in agreement with dated biosignatures. The thermochronologic approach outlined here provides context for prospecting and interpreting the little-explored geologic record of the deep biosphere of Earth's cratons, when and where microbial communities may have thrived, and candidate areas for the oldest records of chemolithotrophic microbes.


Subject(s)
Chemoautotrophic Growth , Environmental Microbiology , Extreme Environments , Extremophiles , Geologic Sediments , Biological Evolution , Canada , Evolution, Planetary , Origin of Life , Scandinavian and Nordic Countries , Temperature , Time
17.
Int J Phytoremediation ; 26(2): 228-240, 2024.
Article in English | MEDLINE | ID: mdl-37431240

ABSTRACT

Two extremophilic cyanobacterial-bacterial consortiums naturally grow in extreme habitats of high temperature and hypersaline were used to remediate hexavalent chromium and molybdenum ions. Extremophilic cyanobacterial-bacterial biomasses were collected from Zeiton and Aghormi Lakes in the Western Desert, Egypt, and were applied as novel and promising natural adsorbents for hexavalent chromium and molybdenum. Some physical characterizations of biosorbent surfaces were described using scanning electron microscope, energy-dispersive X-ray spectroscopy, Fourier transformation infrared spectroscopy, and surface area measure. The maximum removal efficiencies of both biosorbents were 15.62-22.72 mg/g for Cr(VI) and 42.15-46.29 mg/g for Mo(VI) at optimum conditions of pH 5, adsorbent biomass of 2.5-3.0 g/L, and 150 min contact time. Langmuir and Freundlich adsorption models were better fit for Cr(VI), whereas Langmuir model was better fit than the Freundlich model for Mo(VI) biosorption. The kinetic results revealed that the adsorption reaction obeyed the pseudo-second-order model confirming a chemisorption interaction between microbial films and the adsorbed metals. Zeiton biomass exhibited a relatively higher affinity for removing Cr(VI) than Aghormi biomass but a lower affinity for Mo(VI) removal. The results showed that these extremophiles are novel and promising candidates for toxic metal remediation.


Even though many researchers worked on the field of metal bioremediation, most use single organism or extracted biogenic materials for heavy metals removal. The novelty of this study is the application of a consortium of cyanobacteria and bacteria from extreme habitats (hyper-salinity, high temperature, harsh weather conditions, high intensity of light and UV light) in the field of environmental safety. This specialized microbial film composed of a diverse group of adapted organisms that co-operate between each other making them more effective bio-remediating agent. This study examined the effectiveness of these consortia as metals bioremediator and cover the gap of research results from the scarce application of novel, cheap and eco-friendly extremophiles in toxic metals removal.


Subject(s)
Cyanobacteria , Extremophiles , Water Pollutants, Chemical , Molybdenum , Kinetics , Biodegradation, Environmental , Chromium/chemistry , Adsorption , Ions , Hydrogen-Ion Concentration , Water Pollutants, Chemical/analysis
18.
Nano Lett ; 23(3): 1109-1118, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36716197

ABSTRACT

Understanding physicochemical interactions and mechanisms related to the cell membranes of lives under extreme conditions is of essential importance but remains scarcely explored. Here, using a combination of computer simulations and experiments, we demonstrate that the structural integrity and controllable permeability of cell membranes at high temperatures are predominantly directed by configurational entropy emerging from distorted intermolecular organization of bipolar tethered lipids peculiar to the extremophiles. Detailed simulations across multiple scales─from an all-atom exploration of molecular mechanism to a mesoscale examination of its universal nature─suggest that this configurational entropy effect can be generalized to diverse systems, such as block copolymers. This offers biomimetic inspiration for designing heat-tolerant materials based on entropy, as validated by our experiments of synthetic polymers. The findings provide new insight into the basic nature of the mechanism underlying the adaptation of organisms to extreme conditions and might open paths for designed materials inspired by entropic effects in biological systems.


Subject(s)
Extremophiles , Entropy , Computer Simulation , Cell Membrane
19.
J Environ Manage ; 352: 120081, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38237330

ABSTRACT

Protecting the environment from harmful pollutants has become increasingly difficult in recent decades. The presence of heavy metal (HM) pollution poses a serious environmental hazard that requires intricate attention on a worldwide scale. Even at low concentrations, HMs have the potential to induce deleterious health effects in both humans and other living organisms. Therefore, various strategies have been proposed to address this issue, with extremophiles being a promising solution. Bacteria that exhibit resistance to metals are preferred for applications involving metal removal due to their capacity for rapid multiplication and growth. Extremophiles are a special group of microorganisms that are capable of surviving under extreme conditions such as extreme temperatures, pH levels, and high salt concentrations where other organisms cannot. Due to their unique enzymes and adaptive capabilities, extremophiles are well suited as catalysts for environmental biotechnology applications, including the bioremediation of HMs through various strategies. The mechanisms of resistance to HMs by extremophilic bacteria encompass: (i) metal exclusion by permeability barrier; (ii) extracellular metal sequestration by protein/chelator binding; (iii) intracellular sequestration of the metal by protein/chelator binding; (iv) enzymatic detoxification of a metal to a less toxic form; (v) active transport of HMs; (vi) passive tolerance; (vii) reduced metal sensitivity of cellular targets to metal ions; and (viii) morphological change of cells. This review provides comprehensive information on extremophilic bacteria and their potential roles for bioremediation, particularly in environments contaminated with HMs, which pose a threat due to their stability and persistence. Genetic engineering of extremophilic bacteria in stressed environments could help in the bioremediation of contaminated sites. Due to their unique characteristics, these organisms and their enzymes are expected to bridge the gap between biological and chemical industrial processes. However, the structure and biochemical properties of extremophilic bacteria, along with any possible long-term effects of their applications, need to be investigated further.


Subject(s)
Extremophiles , Metals, Heavy , Humans , Biodegradation, Environmental , Extremophiles/metabolism , Metals, Heavy/toxicity , Bacteria/genetics , Extreme Environments , Chelating Agents
20.
Molecules ; 29(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38257271

ABSTRACT

Dye-decolorizing peroxidases (DyPs) are heme proteins with distinct structural properties and substrate specificities compared to classical peroxidases. Here, we demonstrate that DyP from the extremely radiation-resistant bacterium Deinococcus radiodurans is, like some other homologues, inactive at physiological pH. Resonance Raman (RR) spectroscopy confirms that the heme is in a six-coordinated-low-spin (6cLS) state at pH 7.5 and is thus unable to bind hydrogen peroxide. At pH 4.0, the RR spectra of the enzyme reveal the co-existence of high-spin and low-spin heme states, which corroborates catalytic activity towards H2O2 detected at lower pH. A sequence alignment with other DyPs reveals that DrDyP possesses a Methionine residue in position five in the highly conserved GXXDG motif. To analyze whether the presence of the Methionine is responsible for the lack of activity at high pH, this residue is substituted with a Glycine. UV-vis and RR spectroscopies reveal that the resulting DrDyPM190G is also in a 6cLS spin state at pH 7.5, and thus the Methionine does not affect the activity of the protein. The crystal structures of DrDyP and DrDyPM190G, determined to 2.20 and 1.53 Å resolution, respectively, nevertheless reveal interesting insights. The high-resolution structure of DrDyPM190G, obtained at pH 8.5, shows that one hydroxyl group and one water molecule are within hydrogen bonding distance to the heme and the catalytic Asparagine and Arginine. This strong ligand most likely prevents the binding of the H2O2 substrate, reinforcing questions about physiological substrates of this and other DyPs, and about the possible events that can trigger the removal of the hydroxyl group conferring catalytic activity to DrDyP.


Subject(s)
Deinococcus , Extremophiles , Hydrogen Peroxide , Methionine , Racemethionine , Heme , Peroxidases
SELECTION OF CITATIONS
SEARCH DETAIL