Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 232
Filter
Add more filters

Publication year range
1.
Planta ; 259(6): 132, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662123

ABSTRACT

MAIN CONCLUSION: Emblematic Vachellia spp. naturally exposed to hyper-arid conditions, intensive grazing, and parasitism maintain a high nitrogen content and functional mutualistic nitrogen-fixing symbioses. AlUla region in Saudi Arabia has a rich history regarding mankind, local wildlife, and fertility islands suitable for leguminous species, such as the emblematic Vachellia spp. desert trees. In this region, we investigated the characteristics of desert legumes in two nature reserves (Sharaan and Madakhil), at one archaeological site (Hegra), and in open public domains et al. Ward and Jabal Abu Oud. Biological nitrogen fixation (BNF), isotopes, and N and C contents were investigated through multiple lenses, including parasitism, plant tissues, species identification, plant maturity, health status, and plant growth. The average BNF rates of 19 Vachellia gerrardii and 21 Vachellia tortilis trees were respectively 39 and 67%, with low signs of inner N content fluctuations (2.10-2.63% N) compared to other co-occurring plants. The BNF of 23 R. raetam was just as high, with an average of 65% and steady inner N contents of 2.25 ± 0.30%. Regarding parasitism, infected Vachellia trees were unfazed compared to uninfected trees, thereby challenging the commonly accepted detrimental role of parasites. Overall, these results suggest that Vachellia trees and R. raetam shrubs exploit BNF in hyper-arid environments to maintain a high N content when exposed to parasitism and grazing. These findings underline the pivotal role of plant-bacteria mutualistic symbioses in desert environments. All ecological traits and relationships mentioned are further arguments in favor of these legumes serving as keystone species for ecological restoration and agro-silvo-pastoralism in the AlUla region.


Subject(s)
Fabaceae , Nitrogen Fixation , Desert Climate , Ecosystem , Ethnobotany , Fabaceae/parasitology , Fabaceae/physiology , Saudi Arabia , Symbiosis
2.
Proc Natl Acad Sci U S A ; 114(36): E7499-E7505, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28827317

ABSTRACT

Coevolutionary models suggest that herbivores drive diversification and community composition in plants. For herbivores, many questions remain regarding how plant defenses shape host choice and community structure. We addressed these questions using the tree genus Inga and its lepidopteran herbivores in the Amazon. We constructed phylogenies for both plants and insects and quantified host associations and plant defenses. We found that similarity in herbivore assemblages between Inga species was correlated with similarity in defenses. There was no correlation with phylogeny, a result consistent with our observations that the expression of defenses in Inga is independent of phylogeny. Furthermore, host defensive traits explained 40% of herbivore community similarity. Analyses at finer taxonomic scales showed that different lepidopteran clades select hosts based on different defenses, suggesting taxon-specific histories of herbivore-host plant interactions. Finally, we compared the phylogeny and defenses of Inga to phylogenies for the major lepidopteran clades. We found that closely related herbivores fed on Inga with similar defenses rather than on closely related plants. Together, these results suggest that plant defenses might be more evolutionarily labile than the herbivore traits related to host association. Hence, there is an apparent asymmetry in the evolutionary interactions between Inga and its herbivores. Although plants may evolve under selection by herbivores, we hypothesize that herbivores may not show coevolutionary adaptations, but instead "chase" hosts based on the herbivore's own traits at the time that they encounter a new host, a pattern more consistent with resource tracking than with the arms race model of coevolution.


Subject(s)
Fabaceae/genetics , Fabaceae/parasitology , Herbivory/genetics , Host-Parasite Interactions/genetics , Lepidoptera/genetics , Animals , Biological Evolution , Insecta/genetics , Phenotype , Phylogeny , Plant Leaves/genetics , Plant Leaves/parasitology
3.
Int J Mol Sci ; 19(6)2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29914126

ABSTRACT

Some herbivores suppress plant defenses, which may be viewed as a result of the coevolutionary arms race between plants and herbivores. However, this ability is usually studied in a one-herbivore-one-plant system, which hampers comparative studies that could corroborate this hypothesis. Here, we extend this paradigm and ask whether the herbivorous spider-mite Tetranychus evansi, which suppresses the jasmonic-acid pathway in tomato plants, is also able to suppress defenses in other host plants at different phylogenetic distances from tomatoes. We test this using different plants from the Solanales order, namely tomato, jimsonweed, tobacco, and morning glory (three Solanaceae and one Convolvulaceae), and bean plants (Fabales). First, we compare the performance of T. evansi to that of the other two most-commonly found species of the same genus, T. urticae and T. ludeni, on several plants. We found that the performance of T. evansi is higher than that of the other species only on tomato plants. We then showed, by measuring trypsin inhibitor activity and life history traits of conspecific mites on either clean or pre-infested plants, that T. evansi can suppress plant defenses on all plants except tobacco. This study suggests that the suppression of plant defenses may occur on host plants other than those to which herbivores are adapted.


Subject(s)
Acari/pathogenicity , Adaptation, Physiological , Host-Parasite Interactions , Plant Immunity , Acari/genetics , Acari/metabolism , Animals , Fabaceae/immunology , Fabaceae/parasitology , Host Specificity , Life History Traits , Solanum tuberosum/immunology , Solanum tuberosum/parasitology , Nicotiana/immunology , Nicotiana/parasitology , Trypsin Inhibitors/metabolism
4.
New Phytol ; 213(2): 812-821, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27717020

ABSTRACT

Associations between plants and nitrogen (N)-fixing rhizobia intensify with decreasing N supply and come at a carbon cost to the host. However, what additional impact parasitic plants have on their leguminous hosts' carbon budget in terms of effects on host physiology and growth is unknown. Under glasshouse conditions, Ulex europaeus and Acacia paradoxa either uninfected or infected with the hemiparasite Cassytha pubescens were supplied (high nitrogen (HN)) or not (low nitrogen (LN)) with extra N. The photosynthetic performance and growth of the association were measured. Cassytha pubescens significantly reduced the maximum electron transport rates and total biomass of U. europaeus but not those of A. paradoxa, regardless of N. Infection significantly decreased the root biomass of A. paradoxa only at LN, while the significant negative effect of infection on roots of U. europaeus was less severe at LN. Infection had a significant negative impact on host nodule biomass. Ulex europaeus supported significantly greater parasite biomass (also per unit host biomass) than A. paradoxa, regardless of N. We concluded that rhizobia do not influence the effect of a native parasite on overall growth of leguminous hosts. Our results suggest that C. pubescens will have a strong impact on U. europaeus but not A. paradoxa, regardless of N in the field.


Subject(s)
Fabaceae/parasitology , Host-Parasite Interactions/drug effects , Introduced Species , Nitrogen/pharmacology , Parasites/physiology , Analysis of Variance , Animals , Biomass , Electron Transport/drug effects , Models, Biological , Photosynthesis/drug effects , Plant Leaves/drug effects , Plant Leaves/physiology , Plant Root Nodulation/drug effects , Plant Shoots/drug effects , Plant Shoots/physiology , Species Specificity
5.
Genetica ; 145(6): 481-489, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28932936

ABSTRACT

Phelipanche ramosa is a major root-holoparasitic damaging weed characterized by a broad host range, including numerous Fabaceae species. In France, the agricultural threat posed by P. ramosa has increased over two decades due to the appearance of a genetically differentiated pathovar presenting a clear host specificity for oilseed rape. The new pathovar has led to a massive expansion of P. ramosa in oilseed rape fields. The germination rate of P. ramosa seeds is currently known to vary among P. ramosa pathovars and host species. However, only a few studies have investigated whether phylogenetic relatedness among potential host species is a predictor of the ability of these species to induce the seed germination of parasitic weeds by testing for phylogenetic signal. We focused on a set of 12 Fabaceae species and we assessed the rate of induction of seed germination by these species for two pathovars based on in vitro co-cultivation experiments. All Fabaceae species tested induced the germination of P. ramosa seeds. The germination rate of P. ramosa seeds varied between Fabaceae species and tribes studied, while pathovars appeared non-influential. Considering oilseed rape as a reference species, we also highlighted a significant phylogenetic signal. Phylogenetically related species therefore showed more similar rates of induction of seed germination than species drawn at random from a phylogenetic tree. In in vitro conditions, only Lotus corniculatus induced a significantly higher germination rate than oilseed rape, and could potentially be used as a catch crop after confirmation of these results under field conditions.


Subject(s)
Fabaceae/parasitology , Germination , Orobanchaceae/physiology , Seeds/growth & development , Fabaceae/classification , Fabaceae/physiology , Orobanchaceae/growth & development , Phylogeny , Plant Weeds , Species Specificity
6.
BMC Plant Biol ; 16: 46, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26887961

ABSTRACT

BACKGROUND: Mungbean (Vigna radiata [L.] R. Wilczek) is an important legume crop with high nutritional value in South and Southeast Asia. The crop plant is susceptible to a storage pest caused by bruchids (Callosobruchus spp.). Some wild and cultivated mungbean accessions show resistance to bruchids. Genomic and transcriptomic comparison of bruchid-resistant and -susceptible mungbean could reveal bruchid-resistant genes (Br) for this pest and give insights into the bruchid resistance of mungbean. RESULTS: Flow cytometry showed that the genome size varied by 61 Mb (mega base pairs) among the tested mungbean accessions. Next generation sequencing followed by de novo assembly of the genome of the bruchid-resistant recombinant inbred line 59 (RIL59) revealed more than 42,000 genes. Transcriptomic comparison of bruchid-resistant and -susceptible parental lines and their offspring identified 91 differentially expressed genes (DEGs) classified into 17 major and 74 minor bruchid-resistance-associated genes. We found 408 nucleotide variations (NVs) between bruchid-resistant and -susceptible lines in regions spanning 2 kb (kilo base pairs) of the promoters of 68 DEGs. Furthermore, 282 NVs were identified on exons of 148 sequence-changed-protein genes (SCPs). DEGs and SCPs comprised genes involved in resistant-related, transposable elements (TEs) and conserved metabolic pathways. A large number of these genes were mapped to a region on chromosome 5. Molecular markers designed for variants of putative bruchid-resistance-associated genes were highly diagnostic for the bruchid-resistant genotype. CONCLUSIONS: In addition to identifying bruchid-resistance-associated genes, we found that conserved metabolism and TEs may be modifier factors for bruchid resistance of mungbean. The genome sequence of a bruchid-resistant inbred line, candidate genes and sequence variations in promoter regions and exons putatively conditioning resistance as well as markers detecting these variants could be used for development of bruchid-resistant mungbean varieties.


Subject(s)
Coleoptera , Fabaceae/parasitology , Genetic Variation , Plant Diseases/genetics , Animals , DNA Transposable Elements , Fabaceae/genetics , Gene Expression , Genome, Plant , Transcriptome
7.
Mol Ecol ; 25(14): 3332-43, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27154249

ABSTRACT

Parasites are among the most diverse groups of life on Earth, yet complex natural histories often preclude studies of their speciation processes. The biology of parasitic plants facilitates in situ collection of data on both genetic structure and the mechanisms responsible for that structure. Here, we studied the role of mating, dispersal and establishment in host race formation of a parasitic plant. We investigated the population genetics of a vector-borne desert mistletoe (Phoradendron californicum) across two legume host tree species (Senegalia greggii and Prosopis velutina) in the Sonoran desert using microsatellites. Consistent with host race formation, we found strong host-associated genetic structure in sympatry, little genetic variation due to geographic site and weak isolation by distance. We hypothesize that genetic differentiation results from differences in the timing of mistletoe flowering by host species, as we found initial flowering date of individual mistletoes correlated with genetic ancestry. Hybrids with intermediate ancestry were detected genetically. Individuals likely resulting from recent, successful establishment events following dispersal between the host species were detected at frequencies similar to hybrids between host races. Therefore, barriers to gene flow between the host races may have been stronger at mating than at dispersal. We also found higher inbreeding and within-host individual relatedness values for mistletoes on the more rare and isolated host species (S. greggii). Our study spanned spatial scales to address how interactions with both vectors and hosts influence parasitic plant structure with implications for parasite virulence evolution and speciation.


Subject(s)
Fabaceae/parasitology , Genetics, Population , Viscaceae/genetics , Animals , Arizona , Biological Evolution , Fabaceae/genetics , Flowers/physiology , Gene Flow , Genetic Variation , Hybridization, Genetic , Inbreeding , Insect Vectors , Microsatellite Repeats , Reproduction , Sympatry , Viscaceae/physiology
8.
Theor Appl Genet ; 129(1): 87-95, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26450274

ABSTRACT

KEY MESSAGE: Genome resolution of a major QTL associated with the Rk locus in cowpea for resistance to root-knot nematodes has significance for plant breeding programs and R gene characterization. Cowpea (Vigna unguiculata L. Walp.) is a susceptible host of root-knot nematodes (Meloidogyne spp.) (RKN), major plant-parasitic pests in global agriculture. To date, breeding for host resistance in cowpea has relied on phenotypic selection which requires time-consuming and expensive controlled infection assays. To facilitate marker-based selection, we aimed to identify and map quantitative trait loci (QTL) conferring the resistance trait. One recombinant inbred line (RIL) and two F2:3 populations, each derived from a cross between a susceptible and a resistant parent, were genotyped with genome-wide single nucleotide polymorphism (SNP) markers. The populations were screened in the field for root-galling symptoms and/or under growth-chamber conditions for nematode reproduction levels using M. incognita and M. javanica biotypes. One major QTL was mapped consistently on linkage group VuLG11 of each population. By genotyping additional cowpea lines and near-isogenic lines derived from conventional backcrossing, we confirmed that the detected QTL co-localized with the genome region associated with the Rk locus for RKN resistance that has been used in conventional breeding for many decades. This chromosomal location defined with flanking markers will be a valuable target in marker-assisted breeding and for positional cloning of genes controlling RKN resistance.


Subject(s)
Disease Resistance/genetics , Fabaceae/genetics , Plant Diseases/genetics , Quantitative Trait Loci , Tylenchoidea , Animals , Chromosome Mapping , Crosses, Genetic , Fabaceae/parasitology , Genetic Linkage , Genotype , Phenotype , Plant Diseases/parasitology , Plant Roots/genetics , Plant Roots/parasitology , Polymorphism, Single Nucleotide
9.
Rev Biol Trop ; 64(2): 507-20, 2016 Jun.
Article in English | MEDLINE | ID: mdl-29451751

ABSTRACT

Plants have limited resources to invest in reproduction, vegetative growth and defense against herbivorous. Trade-off in resources allocation promotes changes in plant traits that may affect higher trophic levels. In this study, we evaluated the trade-off effect between years of high and low fruiting on the investment of resources for growth and defense, and their indirect effects on herbivory in Copaifera langsdorffii. Our questions were: (i) does the resource investment on reproduction causes a depletion in vegetative growth as predicted by the Carbon/Nutrient Balance hypothesis (CNBH), resulting in more availability of resources to be allocated for defense?, (ii) does the variation in resource allocation for growth and defense between years of high and low fruiting leads to indirect changes in herbivory? Thirty-five trees located in a Cerrado area were monitored during 2008 (year of high fruiting) and 2009 (year of no fruiting) to evaluate the differential investment in vegetative traits (biomass, growth and number of ramifications), plant defense (tannin concentration and plant hypersensitivity) and herbivory (galling attack and folivory). According to our first question, we observed that in the fruiting year, woody biomass negatively affected tannin concentration, indicating that fruit production restricted the resources that could be invested both in growth as in defense. In the same way, we observed an inter-annual variation in herbivorous attack, and found that plants with higher leaf biomass and tannin concentration, experienced higher galling attack and hypersensitive reaction, regardless years. These findings suggested that plants' resistance to herbivory is a good proxy of plant defense and an effective defense strategy for C. langsdorffii, besides the evidence of indirect responses of the third trophic level, as postulated by the second question. In summary, the supra-annual fruiting pattern promoted several changes on plant development, demonstrating the importance of evaluating different plant traits when characterizing the vegetative investment. As expected by theory, the trade-off in resource allocation favored changes in defense compounds production and patterns of herbivory. The understanding of this important element of insect-plant interactions will be fundamental to decipher coevolutionary life histories and interactions between plant species reproduction and herbivory. Besides that, only through long-term studies we will be able to build models and develop more accurate forecasts about the factors that trigger the bottom-up effect on herbivory performance, as well the top-down effect of herbivores on plant trait evolution.


Subject(s)
Adaptation, Physiological/physiology , Fabaceae/physiology , Herbivory/physiology , Insecta/physiology , Animals , Fabaceae/growth & development , Fabaceae/parasitology , Herbivory/classification , Insecta/classification , Plant Tumors
10.
Proteomics ; 15(10): 1746-59, 2015 May.
Article in English | MEDLINE | ID: mdl-25736976

ABSTRACT

Cowpea (Vigna unguiculata L. Walp) is an important legume species well adapted to low fertility soils and prolonged drought periods. One of the main problems that cause severe yield losses in cowpea is the root-knot nematode Meloidogyne incognita. The aim of this work was to analyze the differential expression of proteins in the contrasting cultivars of cowpea CE 31 (highly resistant) and CE 109 (slightly resistant) during early stages of M. incognita infection. Cowpea roots were collected at 3, 6, and 9 days after inoculation and used for protein extraction and 2-DE analysis. From a total of 59 differential spots, 37 proteins were identified, mostly involved in plant defense, such as spermidine synthase, patatin, proteasome component, and nitrile-specifier protein. A follow-up study was performed by quantitative RT-PCR analysis of nine selected proteins and the results revealed a very similar upregulation trend between the protein expression profiles and the corresponding transcripts. This study also identified ACT and GAPDH as a good combination of reference genes for quantitative RT-PCR analysis of the pathosystem cowpea/nematode. Additionally, an interactome analysis showed three major pathways affected by nematode infection: proteasome endopeptidase complex, oxidative phosphorylation, and flavonoid biosynthesis. Taken together, the results obtained by proteome, transcriptome, and interactome approaches suggest that oxidative stress, ubiquitination, and glucosinolate degradation may be part of cowpea CE 31 resistance mechanisms in response to nematode infection.


Subject(s)
Fabaceae/parasitology , Host-Parasite Interactions , Plant Roots/metabolism , Plant Roots/parasitology , Proteomics/methods , Tylenchoidea/physiology , Animals , Electrophoresis, Gel, Two-Dimensional , Fabaceae/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Genetic Association Studies , Host-Parasite Interactions/genetics , Mass Spectrometry , Plant Diseases/genetics , Plant Diseases/parasitology , Plant Proteins/genetics , Plant Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
11.
Mol Phylogenet Evol ; 89: 91-103, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25916187

ABSTRACT

Seed beetles are a group of specialized chrysomelid beetles, which are mostly associated with plants of the legume family (Fabaceae). In the legume-feeding species, a marked trend of phylogenetic conservatism of host use has been highlighted by several molecular phylogenetics studies. Yet, little is known about the evolutionary patterns of association of species feeding outside the legume family. Here, we investigate the evolution of host use in Spermophagus, a species-rich seed beetle genus that is specialized on two non-legume host-plant groups: morning glories (Convolvulaceae) and mallows (Malvaceae: Malvoideae). Spermophagus species are widespread in the Old World, especially in the Afrotropical, Indomalaya and Palearctic regions. In this study we rely on eight gene regions to provide the first phylogenetic framework for the genus, along with reconstructions of host use evolution, estimates of divergence times and historical biogeography analyses. Like the legume-feeding species, a marked trend toward conservatism of host use is revealed, with one clade specializing on Convolvulaceae and the other on Malvoideae. Comparisons of plants' and insects' estimates of divergence times yield a contrasted pattern: on one hand a quite congruent temporal framework was recovered for morning-glories and their seed-predators; on the other hand the diversification of Spermophagus species associated with mallows apparently lagged far behind the diversification of their hosts. We hypothesize that this delayed colonization of Malvoideae can be accounted for by the respective biogeographic histories of the two groups.


Subject(s)
Coleoptera/physiology , Host Specificity , Ipomoea/parasitology , Malvaceae/parasitology , Phylogeny , Seeds/parasitology , Animals , Coleoptera/classification , Coleoptera/genetics , Evolution, Molecular , Fabaceae/parasitology , Host-Parasite Interactions , Phylogeography , Sequence Analysis, DNA , Time Factors
12.
J Insect Sci ; 152015.
Article in English | MEDLINE | ID: mdl-26386040

ABSTRACT

Microsatellite markers were developed for epidemiological studies on the black locust gall midge Obolodiplosis robiniae (Haldeman) (Diptera: Cecidomyiidae), a native North America pest introduced to Europe and Asia. Polymorphism at each locus was tested on 68 individuals from six populations reared from infected host leaves of Robinia pseudoacacia L. collected in China. Fourteen loci were found to be polymorphic, with the number of alleles ranging from 3 to 10. The observed heterozygosity varied evenly from 0.2667 to 0.6540. For populations, the observed heterozygosity ranged from 0.1429 to 1.000. The allele frequency of the predominant allele varied from 0.250 to 0.500. All loci with negative FST values indicated heterozygote excess in each locus with six populations. Of 14 loci, four were observed to have FST values up to 0.05, which indicated negligible genetic differentiation within the population. Significant deviations (P < 0.05) from the expected Hardy-Weinberg equilibrium, as evaluated using the Markov chain algorithm for each locus and for all six populations, were observed, and genotypic linkage disequilibrium was clearly detected. These markers represent a useful tool to design strategies for integrated pest management and in the study of population evolution in this important introduced pest.


Subject(s)
Diptera/genetics , Microsatellite Repeats , Polymorphism, Genetic , Animals , China , Fabaceae/parasitology , Gene Frequency , Heterozygote , Introduced Species , Linkage Disequilibrium , Markov Chains
13.
J Insect Sci ; 15: 172, 2015.
Article in English | MEDLINE | ID: mdl-25700537

ABSTRACT

Arthropods are an important group of macroorganisms that work to maintain ecosystem health. Despite the agricultural benefits of chemical control against arthropod pests, insecticides can cause environmental damage. We examined the effects of one and two applications of the insecticides chlorfenapyr (0.18 liters a.i. ha-1) and methamidophos (0.45 liters a.i. ha-1), both independently and in combination, on arthropods in plots of common bean. The experiment was repeated for two growing seasons. Principal response curve, richness estimator, and Shannon-Wiener diversity index analyses were performed. The insecticides generally affected the frequency, richness, diversity, and relative abundance of the arthropods. In addition, the arthropods did not experience recovery after the insecticide applications. The results suggest that the insecticide impacts were sufficiently drastic to eliminate many taxa from the studied common bean plots.


Subject(s)
Arthropods/drug effects , Insecticides/toxicity , Organothiophosphorus Compounds/toxicity , Pyrethrins/toxicity , Agriculture/methods , Animals , Biodiversity , Brazil , Ecosystem , Fabaceae/parasitology
14.
J Insect Sci ; 152015.
Article in English | MEDLINE | ID: mdl-26443776

ABSTRACT

As part of on-going efforts to use eco-friendly alternatives to chemical pesticides, methanol crude extracts of Plectranthus glandulosus and Callistemon rigidus leaves were sequentially fractionated in hexane, chloroform, ethyl acetate, and methanol to establish the most active fraction(s) against Callosobruchus maculatus in cowpea. Cowpea seeds (25 g) were treated with 0.5, 1, 2, and 4 g/kg of extract to evaluate the contact toxicity and F1 progeny production of the beetles in the laboratory. Mortality was recorded 1, 3, and 7 d postexposure. P. glandulosus hexane fraction was more toxic than the other fractions recording 100% mortality at 4 g/kg, within 7 d with LC50 of 0.39 g/kg. Hexane fraction of C. rigidus showed superior toxicity, causing 100% mortality at 4 g/kg within only 1 d of exposure with LC50 of 1.02 g/kg. All the fractions greatly reduced progeny emergence, with C. rigidus hexane fraction being the best progeny inhibitor. Fractions of P. glandulosus and C. rigidus leaves had sufficient efficacy to be a component of storage pest management package for C. maculatus.


Subject(s)
Coleoptera/growth & development , Fabaceae/parasitology , Myrtaceae/chemistry , Plant Extracts/chemistry , Plectranthus/chemistry , Animals , Insecticides , Pest Control, Biological , Plant Leaves/chemistry , Seeds/parasitology
15.
Genet Mol Res ; 13(1): 2323-32, 2014 Mar 31.
Article in English | MEDLINE | ID: mdl-24737480

ABSTRACT

The cowpea weevil (Callosobruchus maculatus Fabr.) is the most destructive pest of the cowpea bean; it reduces seed quality. To control this pest, resistance testing combined with genetic analysis using molecular markers has been widely applied in research. Among the markers that show reliable results, the inter-simple sequence repeats (ISSRs) (microsatellites) are noteworthy. This study was performed to evaluate the resistance of 27 cultivars of cowpea bean to cowpea weevil. We tested the resistance related to the genetic variability of these cultivars using ISSR markers. To analyze the resistance of cultivars to weevil, a completely randomized test design with 4 replicates and 27 treatments was adopted. Five pairs of the insect were placed in 30 grains per replicate. Analysis of variance showed that the number of eggs and emerged insects were significantly different in the treatments, and the means were compared by statistical tests. The analysis of the large genetic variability in all cultivars resulted in the formation of different groups. The test of resistance showed that the cultivar Inhuma was the most sensitive to both number of eggs and number of emerged adults, while the TE96-290-12-G and MNC99-537-F4 (BRS Tumucumaque) cultivars were the least sensitive to the number of eggs and the number of emerged insects, respectively.


Subject(s)
Disease Resistance/genetics , Fabaceae/genetics , Fabaceae/parasitology , Genetic Variation , Plant Diseases/genetics , Weevils/physiology , Animals , Fabaceae/classification , Microsatellite Repeats , Phylogeny , Plant Diseases/parasitology
16.
J Insect Sci ; 142014.
Article in English | MEDLINE | ID: mdl-25525109

ABSTRACT

Ripart's Anomalous Blue Polyommatus ripartii (Freyer, 1830) is one of the most seriously endangered butterfly species in central Europe, a small, relict population of which has survived in two localities in Poland. This isolated population is undoubtedly the last and northernmost remnant of a once much wider range in central Europe. P. ripartii is associated with highly xerophilous vegetation on gypsum and calcareous soils. Only active conservation measures can ensure its survival. For these to be successful, however, precise information on the butterfly's biology, behavior and also its morphology is crucial. The first to do so, this article describes the butterfly's egg-laying preferences, and specifies the numbers of eggs on a single shoot and their placement on it. A unique behavioral trait of the female--the secretion of oviposition-deterring pheromones--is reported. The preferred plant associations and nectar sources have been investigated, and information on overnight roosts is given. In addition, an exhaustive description of the morphologies of the egg, final instar and pupa, as well as new details of adult behavior are provided. The main conclusion of the this study is that the existence of a stable population in the Nida Region is determined by the presence of large patches of sainfoin, which is both the larval host plant and a source of nectar for the imago. Moreover, stress is laid on the importance of Inula ensifolia L. as the secondary nectaring plant, which may facilitate dispersion among patches of suitable habitat. Finally, the study shows that searching for the easily detected eggs may be the best method for proving the existence of the species in a given locality.


Subject(s)
Butterflies/growth & development , Butterflies/physiology , Ecosystem , Endangered Species , Animals , Behavior, Animal , Fabaceae/parasitology , Female , Food Preferences , Inula/parasitology , Larva , Oviposition/physiology , Ovum , Pheromones , Poland , Pupa
17.
Indian J Exp Biol ; 52(12): 1195-200, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25651613

ABSTRACT

Arcelin, the antimetabolic protein from wild pulses is a known natural insecticidal molecule. Wild pulses with high arcelin content could serve as potential source to. increase the levels of insect resistance in cultivated pulse crops. In this study, arcelin (Arl) gene expression was screened in seven stored product insect pest resistant wild pulse varieties using real time RT-qPCR. Arcelin gene specific real time PCR primers were synthesized from arcelin mRNA sequence of the wild pulse variety, Lablab purpureus. The results revealed different levels of arcelin gene expression in the tested varieties. Canavalia virosa registered significantly high content indicating its suitability for utilization of arcelin gene in developing stored product insect pest resistance with other cultivated pulses.


Subject(s)
Fabaceae/genetics , Gene Expression Regulation, Plant , Glycoproteins/genetics , Plant Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , Seeds/genetics , Animals , Canavalia/genetics , Canavalia/parasitology , Coleoptera/physiology , Disease Resistance/genetics , Fabaceae/classification , Fabaceae/parasitology , Host-Parasite Interactions , Phaseolus/genetics , Phaseolus/parasitology , Plant Diseases/genetics , Plant Diseases/parasitology , Seeds/parasitology , Species Specificity
18.
Plant Physiol ; 160(3): 1468-78, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23008466

ABSTRACT

Plants respond to insect herbivory through the production of biochemicals that function as either direct defenses or indirect defenses via the attraction of natural enemies. While attack by closely related insect pests can result in distinctive levels of induced plant defenses, precise biochemical mechanisms responsible for differing responses remain largely unknown. Cowpea (Vigna unguiculata) responds to Fall armyworm (Spodoptera frugiperda) herbivory through the detection of fragments of chloroplastic ATP synthase γ-subunit proteins, termed inceptin-related peptides, present in larval oral secretions (OS). In contrast to generalists like Fall armyworm, OS of the legume-specializing velvetbean caterpillar (VBC; Anticarsia gemmatalis) do not elicit ethylene production and demonstrate significantly lower induced volatile emission in direct herbivory comparisons. Unlike all other Lepidoptera OS examined, which preferentially contain inceptin (Vu-In; +ICDINGVCVDA-), VBC OS contain predominantly a C-terminal truncated peptide, Vu-In(-A) (+ICDINGVCVD-). Vu-In(-A) is both inactive and functions as a potent naturally occurring antagonist of Vu-In-induced responses. To block antagonist production, amino acid substitutions at the C terminus were screened for differences in VBC gut proteolysis. A valine-substituted peptide (Vu-In(ΔV); +ICDINGVCVDV-) retaining full elicitor activity was found to accumulate in VBC OS. Compared with the native polypeptide, VBC that previously ingested 500 pmol of the valine-modified chloroplastic ATP synthase γ-subunit precursor elicited significantly stronger plant responses in herbivory assays. We demonstrate that a specialist herbivore minimizes the activation of defenses by converting an elicitor into an antagonist effector and identify an amino acid substitution that recovers these induced plant defenses to a level observed with generalist herbivores.


Subject(s)
Amino Acid Substitution/genetics , Fabaceae/immunology , Fabaceae/parasitology , Herbivory/physiology , Moths/physiology , Amino Acid Sequence , Animals , Chloroplast Proton-Translocating ATPases/metabolism , Fabaceae/drug effects , Herbivory/drug effects , Larva/drug effects , Larva/physiology , Models, Biological , Molecular Sequence Data , Moths/drug effects , Moths/enzymology , Peptides/chemistry , Peptides/pharmacology , Spodoptera/drug effects
19.
Plant Cell Rep ; 32(6): 829-38, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23563521

ABSTRACT

KEY MESSAGE: Structure-activity relationship studies of strigolactones and Striga gesnerioides seed germination revealed strict structural requirements for germination induction and a new function of the plant hormones as germination inhibitors. Stereoisomers of the naturally occurring strigolactones, strigol, sorgolactone, orobanchol, sorgomol and 5-deoxystrigol, 36 in total, were prepared and screened for the ability to induce and/or inhibit the germination of Striga hermonthica and Striga gesnerioides seeds collected from mature plants that parasitized on sorghum and cowpea, respectively. All of the compounds induced S. hermonthica seed germination, albeit displayed differential activities. On the other hand, only a limited number of the compounds induced significant germination in S. gesnerioides, thus indicating strict structural requirements. Strigolactones inducing high germination in S. gesnerioides induced low germination in S. hermonthica. Strigolactones with the same configuration at C3a, C8b and C2' as that in 5-deoxystrigol (9a) induced high germination of S. hermonthica seeds, but most of them inhibited the germination of S. gesnerioides. The differential response of S. gesnerioides to strigolactones may play an important role in the survival of the species. However, the compounds could be used as means of control if mixed cropping of cowpea and sorghum is adopted.


Subject(s)
Germination/drug effects , Lactones/chemistry , Seeds/drug effects , Striga/drug effects , Fabaceae/parasitology , Lactones/pharmacology , Plant Roots/parasitology , Seeds/physiology , Sorghum/parasitology , Species Specificity , Stereoisomerism , Striga/physiology , Structure-Activity Relationship
20.
BMC Ecol ; 13: 20, 2013 May 13.
Article in English | MEDLINE | ID: mdl-23668239

ABSTRACT

BACKGROUND: Biodiversity loss and species invasions are among the most important human-induced global changes. Moreover, these two processes are interlinked as ecosystem invasibility is considered to increase with decreasing biodiversity. In temperate grasslands, earthworms serve as important ecosystem engineers making up the majority of soil faunal biomass. Herbivore behaviour has been shown to be affected by earthworms, however it is unclear whether these effects differ with the composition of plant communities. To test this we conducted a mesocosm experiment where we added earthworms (Annelida: Lumbricidae) to planted grassland communities with different plant species composition (3 vs. 12 plant spp.). Plant communities had equal plant densities and ratios of the functional groups grasses, non-leguminous forbs and legumes. Later, Arion vulgaris slugs (formerly known as A. lusitanicus; Gastropoda: Arionidae) were added and allowed to freely choose among the available plant species. This slug species is listed among the 100 worst alien species in Europe. We hypothesized that (i) the food choice of slugs would be altered by earthworms' specific effects on the growth and nutrient content of plant species, (ii) slug herbivory will be less affected by earthworms in plant communities containing more plant species than in those with fewer plant species because of a more readily utilization of plant resources making the impacts of earthworms less pronounced. RESULTS: Slug herbivory was significantly affected by both earthworms and plant species composition. Slugs damaged 60% less leaves when earthworms were present, regardless of the species composition of the plant communities. Percent leaf area consumed by slugs was 40% lower in communities containing 12 plant species; in communities containing only three species earthworms increased slug leaf area consumption. Grasses were generally avoided by slugs. Leaf length and number of tillers was increased in mesocosms containing more plant species but little influenced by earthworms. Overall shoot biomass was decreased, root biomass increased in plant communities with more plant species. Earthworms decreased total shoot biomass in mesocosms with more plant species but did not affect biomass production of individual functional groups. Plant nitrogen concentrations across three focus species were 18% higher when earthworms were present; composition of plant communities did not affect plant quality. CONCLUSIONS: Given the important role that both herbivores and earthworms play in structuring plant communities the implications of belowground-aboveground linkages should more broadly be considered when investigating global change effects on ecosystems.


Subject(s)
Fabaceae/parasitology , Gastropoda/physiology , Herbivory/physiology , Oligochaeta/physiology , Poaceae/parasitology , Animals , Ecosystem , Fabaceae/growth & development , Female , Male , Poaceae/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL