Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
Add more filters

Publication year range
1.
Mol Cell ; 71(4): 621-628.e4, 2018 08 16.
Article in English | MEDLINE | ID: mdl-30057198

ABSTRACT

FANCA is a component of the Fanconi anemia (FA) core complex that activates DNA interstrand crosslink repair by monoubiquitination of FANCD2. Here, we report that purified FANCA protein catalyzes bidirectional single-strand annealing (SA) and strand exchange (SE) at a level comparable to RAD52, while a disease-causing FANCA mutant, F1263Δ, is defective in both activities. FANCG, which directly interacts with FANCA, dramatically stimulates its SA and SE activities. Alternatively, FANCB, which does not directly interact with FANCA, does not stimulate this activity. Importantly, five other patient-derived FANCA mutants also exhibit deficient SA and SE, suggesting that the biochemical activities of FANCA are relevant to the etiology of FA. A cell-based DNA double-strand break (DSB) repair assay demonstrates that FANCA plays a direct role in the single-strand annealing sub-pathway (SSA) of DSB repair by catalyzing SA, and this role is independent of the canonical FA pathway and RAD52.


Subject(s)
DNA End-Joining Repair , DNA Mismatch Repair , DNA/genetics , Fanconi Anemia Complementation Group A Protein/genetics , Fanconi Anemia Complementation Group G Protein/genetics , Fanconi Anemia Complementation Group Proteins/genetics , Recombinational DNA Repair , Animals , Baculoviridae/genetics , Baculoviridae/metabolism , Cell Line, Tumor , Cloning, Molecular , DNA/metabolism , DNA Breaks, Double-Stranded , Epithelial Cells/cytology , Epithelial Cells/metabolism , Fanconi Anemia Complementation Group A Protein/metabolism , Fanconi Anemia Complementation Group G Protein/metabolism , Fanconi Anemia Complementation Group Proteins/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Moths , Osteoblasts/cytology , Osteoblasts/metabolism , Rad52 DNA Repair and Recombination Protein/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
2.
Mol Cell ; 65(2): 247-259, 2017 Jan 19.
Article in English | MEDLINE | ID: mdl-27986371

ABSTRACT

Monoubiquitination and deubiquitination of FANCD2:FANCI heterodimer is central to DNA repair in a pathway that is defective in the cancer predisposition syndrome Fanconi anemia (FA). The "FA core complex" contains the RING-E3 ligase FANCL and seven other essential proteins that are mutated in various FA subtypes. Here, we purified recombinant FA core complex to reveal the function of these other proteins. The complex contains two spatially separate FANCL molecules that are dimerized by FANCB and FAAP100. FANCC and FANCE act as substrate receptors and restrict monoubiquitination to the FANCD2:FANCI heterodimer in only a DNA-bound form. FANCA and FANCG are dispensable for maximal in vitro ubiquitination. Finally, we show that the reversal of this reaction by the USP1:UAF1 deubiquitinase only occurs when DNA is disengaged. Our work reveals the mechanistic basis for temporal and spatial control of FANCD2:FANCI monoubiquitination that is critical for chemotherapy responses and prevention of Fanconi anemia.


Subject(s)
Fanconi Anemia Complementation Group D2 Protein/metabolism , Fanconi Anemia Complementation Group Proteins/metabolism , Fanconi Anemia/metabolism , Ubiquitination , Cell Line , DNA/genetics , DNA/metabolism , DNA-Binding Proteins/metabolism , Fanconi Anemia/genetics , Fanconi Anemia Complementation Group A Protein/metabolism , Fanconi Anemia Complementation Group C Protein/metabolism , Fanconi Anemia Complementation Group D2 Protein/genetics , Fanconi Anemia Complementation Group E Protein/metabolism , Fanconi Anemia Complementation Group G Protein/metabolism , Fanconi Anemia Complementation Group L Protein/metabolism , Fanconi Anemia Complementation Group Proteins/genetics , Humans , Inhibitor of Differentiation Protein 2/metabolism , Multiprotein Complexes , Nuclear Proteins/metabolism , Protein Binding , Protein Multimerization , Recombinant Proteins/metabolism , Substrate Specificity , Time Factors , Transfection , Ubiquitin-Specific Proteases/metabolism
3.
Hum Mol Genet ; 31(1): 97-110, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34368842

ABSTRACT

Fanconi anemia (FA) is a rare human genetic disorder characterized by bone marrow failure, predisposition to cancer and developmental defects including hypogonadism. Reproductive defects leading to germ cell aplasia are the most consistent phenotypes seen in FA mouse models. We examined the role of the nuclear FA core complex gene Fancg in the development of primordial germ cells (PGCs), the embryonic precursors of adult gametes, during fetal development. PGC maintenance was severely impaired in Fancg-/- embryos. We observed a defect in the number of PGCs starting at E9.5 and a strong attrition at E11.5 and E13.5. Remarkably, we observed a mosaic pattern reflecting a portion of testicular cords devoid of PGCs in E13.5 fetal gonads. Our in vitro and in vivo data highlight a potential role of Fancg in the proliferation and in the intrinsic cell motility abilities of PGCs. The random migratory process is abnormally activated in Fancg-/- PGCs, altering the migration of cells. Increased cell death and PGC attrition observed in E11.5 Fancg-/- embryos are features consistent with delayed migration of PGCs along the migratory pathway to the genital ridges. Moreover, we show that an inhibitor of RAC1 mitigates the abnormal migratory pattern observed in Fancg-/- PGCs.


Subject(s)
Fanconi Anemia , Animals , Cell Movement/genetics , Fanconi Anemia/genetics , Fanconi Anemia Complementation Group G Protein/metabolism , Germ Cells/metabolism , Gonads/metabolism , Mice , Signal Transduction
4.
Int J Mol Sci ; 24(13)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37446306

ABSTRACT

Fanconi anemia (FA) develops due to a mutation in one of the FANC genes that are involved in the repair of interstrand crosslinks (ICLs). FANCG, a member of the FA core complex, is essential for ICL repair. Previous FANCG-deficient mouse models were generated with drug-based selection cassettes in mixed mice backgrounds, leading to a disparity in the interpretation of genotype-related phenotype. We created a Fancg-KO (KO) mouse model using CRISPR/Cas9 to exclude these confounders. The entire Fancg locus was targeted and maintained on the immunological well-characterized C57BL/6J background. The intercrossing of heterozygous mice resulted in sub-Mendelian numbers of homozygous mice, suggesting the loss of FANCG can be embryonically lethal. KO mice displayed infertility and hypogonadism, but no other developmental problems. Bone marrow analysis revealed a defect in various hematopoietic stem and progenitor subsets with a bias towards myelopoiesis. Cell lines derived from Fancg-KO mice were hypersensitive to the crosslinking agents cisplatin and Mitomycin C, and Fancg-KO mouse embryonic fibroblasts (MEFs) displayed increased γ-H2AX upon cisplatin treatment. The reconstitution of these MEFs with Fancg cDNA corrected for the ICL hypersensitivity. This project provides a new, genetically, and immunologically well-defined Fancg-KO mouse model for further in vivo and in vitro studies on FANCG and ICL repair.


Subject(s)
Cisplatin , Fanconi Anemia , Humans , Animals , Mice , Cisplatin/metabolism , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Mice, Inbred C57BL , CRISPR-Cas Systems , DNA-Binding Proteins/metabolism , Fibroblasts/metabolism , Mitomycin , Phenotype , Fanconi Anemia Complementation Group G Protein/genetics
5.
Nucleic Acids Res ; 48(6): 3328-3342, 2020 04 06.
Article in English | MEDLINE | ID: mdl-32002546

ABSTRACT

Monoubiquitination of the Fanconi anemia complementation group D2 (FANCD2) protein by the FA core ubiquitin ligase complex is the central event in the FA pathway. FANCA and FANCG play major roles in the nuclear localization of the FA core complex. Mutations of these two genes are the most frequently observed genetic alterations in FA patients, and most point mutations in FANCA are clustered in the C-terminal domain (CTD). To understand the basis of the FA-associated FANCA mutations, we determined the cryo-electron microscopy (EM) structures of Xenopus laevis FANCA alone at 3.35 Å and 3.46 Å resolution and two distinct FANCA-FANCG complexes at 4.59 and 4.84 Å resolution, respectively. The FANCA CTD adopts an arc-shaped solenoid structure that forms a pseudo-symmetric dimer through its outer surface. FA- and cancer-associated point mutations are widely distributed over the CTD. The two different complex structures capture independent interactions of FANCG with either FANCA C-terminal HEAT repeats, or the N-terminal region. We show that mutations that disturb either of these two interactions prevent the nuclear localization of FANCA, thereby leading to an FA pathway defect. The structure provides insights into the function of FANCA CTD, and provides a framework for understanding FA- and cancer-associated mutations.


Subject(s)
Fanconi Anemia Complementation Group A Protein/ultrastructure , Fanconi Anemia Complementation Group D2 Protein/ultrastructure , Fanconi Anemia Complementation Group G Protein/ultrastructure , Fanconi Anemia/genetics , Animals , Cell Nucleus/genetics , Cell Nucleus/ultrastructure , Cryoelectron Microscopy , Crystallography, X-Ray , DNA-Binding Proteins/genetics , DNA-Binding Proteins/ultrastructure , Fanconi Anemia/pathology , Fanconi Anemia Complementation Group A Protein/genetics , Fanconi Anemia Complementation Group D2 Protein/genetics , Fanconi Anemia Complementation Group G Protein/chemistry , Humans , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Mutation , Protein Binding/genetics , Protein Conformation , Xenopus laevis/genetics
6.
Int J Mol Sci ; 23(4)2022 Feb 20.
Article in English | MEDLINE | ID: mdl-35216452

ABSTRACT

Fanconi anemia (FA) is a rare genetic disorder caused by pathogenic variants (PV) in at least 22 genes, which cooperate in the Fanconi anemia/Breast Cancer (FA/BRCA) pathway to maintain genome stability. PV in FANCA, FANCC, and FANCG account for most cases (~90%). This study evaluated the chromosomal, molecular, and physical phenotypic findings of a novel founder FANCG PV, identified in three patients with FA from the Mixe community of Oaxaca, Mexico. All patients presented chromosomal instability and a homozygous PV, FANCG: c.511-3_511-2delCA, identified by next-generation sequencing analysis. Bioinformatic predictions suggest that this deletion disrupts a splice acceptor site promoting the exon 5 skipping. Analysis of Cytoscan 750 K arrays for haplotyping and global ancestry supported the Mexican origin and founder effect of the variant, reaffirming the high frequency of founder PV in FANCG. The degree of bone marrow failure and physical findings (described through the acronyms VACTERL-H and PHENOS) were used to depict the phenotype of the patients. Despite having a similar frequency of chromosomal aberrations and genetic constitution, the phenotype showed a wide spectrum of severity. The identification of a founder PV could help for a systematic and accurate genetic screening of patients with FA suspicion in this population.


Subject(s)
Fanconi Anemia , Computational Biology , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Fanconi Anemia Complementation Group G Protein/genetics , Founder Effect , Homozygote , Humans , Mexico
7.
Mol Biol Rep ; 48(1): 585-593, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33394227

ABSTRACT

Fanconi Anemia (FA) is a rare genetic disease with the incidence of 1 in 360,000 and is characterised by bone marrow failure, physical abnormalities, pancytopenia, and high frequency of chromosomal breakage and increased risk of evolving into malignancy. Telomere plays an important role in genomic stability, ageing process and cancers. Telomere shortening has been reported in FA. We studied telomere length in FA subjects and compared with complementation groups. Chromosomal breakage analysis from PHA stimulated, MMC induced peripheral blood culture was carried out in 37 clinically diagnosed FA. Molecular study of FANCA, G, and L was done through Sanger sequencing and next generation sequencing. Telomere length was estimated using real time quantitative polymerase chain reaction (qPCR) method. Student t-test was applied to test the significance. A high frequency of chromosomal breakage was observed in all the patients compared to healthy controls. We found significantly shorter telomere length in all the three complementation groups compare to age matched healthy controls. Among all complementation groups, FANCL showed severe telomere shortening (P value 0.0001). A negative correlation was observed between telomere length and chromosomal breakage frequency (R = -0.3116). Telomere shortening is not uncommon in FA subjects. However the telomere length shortening is different in complementation groups as FANCL showed severe telomere shortening in FA subjects. Though BM transplantation is essential for the management of the FA subjects, the telomere length can be considered as biological marker to understand the prognosis of the disease as FA subjects primarily treated with androgens.


Subject(s)
Fanconi Anemia Complementation Group A Protein/genetics , Fanconi Anemia Complementation Group G Protein/genetics , Fanconi Anemia Complementation Group L Protein/genetics , Fanconi Anemia/genetics , Telomere Shortening/genetics , Adolescent , Adult , Child , Child, Preschool , Chromosome Breakage , DNA-Binding Proteins/genetics , Fanconi Anemia/pathology , Female , Gene Expression Regulation/genetics , High-Throughput Nucleotide Sequencing , Humans , Male , Telomere/genetics , Young Adult
8.
J Pediatr Hematol Oncol ; 43(5): e727-e735, 2021 07 01.
Article in English | MEDLINE | ID: mdl-32947577

ABSTRACT

Fanconi anemia (FA) is the most common inherited bone marrow failure syndrome and presents with cytopenias, characteristic physical features, increased chromosomal breaks, and a higher risk of malignancy. Genetic features of this disease vary among different ethnic groups. We aimed to identify the incidence, outcome, overall condition, and genetic features of patients affected with FA in Lebanon to optimize management, identify the most common genes, describe new mutations, and offer prenatal diagnosis and counseling to the affected families. Over a period of 17 years, 40 patients with FA were identified in 2 major diagnostic laboratories in Lebanon. Information was obtained on their clinical course and outcome from their primary physician. DNA was available in 20 patients and was studied for underlying mutations. FANCA seemed to be the most frequent genetic alteration and 2 novel mutations, one each in FANCA and FANCG, were identified. Nine patients developed various malignancies and died. This is the first study looking at clinical and genetic features of FA in Lebanon, and points to the need for establishing a national and regional registry for this condition.


Subject(s)
Fanconi Anemia Complementation Group A Protein/genetics , Fanconi Anemia Complementation Group G Protein/genetics , Fanconi Anemia/genetics , Adolescent , Adult , Child , Child, Preschool , Fanconi Anemia/epidemiology , Female , Humans , Lebanon/epidemiology , Male , Mutation , Young Adult
9.
Int J Mol Sci ; 22(15)2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34360546

ABSTRACT

Promyelocytic leukemia (PML) protein is the core component of subnuclear structures called PML nuclear bodies that are known to play important roles in cell survival, DNA damage responses, and DNA repair. Fanconi anemia (FA) proteins are required for repairing interstrand DNA crosslinks (ICLs). Here we report a novel role of PML proteins, regulating the ICL repair pathway. We found that depletion of the PML protein led to the significant reduction of damage-induced FANCD2 mono-ubiquitination and FANCD2 foci formation. Consistently, the cells treated with siRNA against PML showed enhanced sensitivity to a crosslinking agent, mitomycin C. Further studies showed that depletion of PML reduced the protein expression of FANCA, FANCG, and FANCD2 via reduced transcriptional activity. Interestingly, we observed that damage-induced CHK1 phosphorylation was severely impaired in cells with depleted PML, and we demonstrated that CHK1 regulates FANCA, FANCG, and FANCD2 transcription. Finally, we showed that inhibition of CHK1 phosphorylation further sensitized cancer cells to mitomycin C. Taken together, these findings suggest that the PML is critical for damage-induced CHK1 phosphorylation, which is important for FA gene expression and for repairing ICLs.


Subject(s)
Checkpoint Kinase 1/metabolism , Fanconi Anemia Complementation Group A Protein/metabolism , Fanconi Anemia Complementation Group D2 Protein/metabolism , Fanconi Anemia Complementation Group G Protein/metabolism , Fanconi Anemia/pathology , Gene Expression Regulation , Checkpoint Kinase 1/genetics , DNA Damage , DNA Repair , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Fanconi Anemia Complementation Group A Protein/genetics , Fanconi Anemia Complementation Group D2 Protein/genetics , Fanconi Anemia Complementation Group G Protein/genetics , HeLa Cells , Humans , Phosphorylation , Ubiquitination
10.
J Cell Mol Med ; 24(17): 9839-9852, 2020 09.
Article in English | MEDLINE | ID: mdl-32762026

ABSTRACT

Ovarian cancer is the most lethal gynaecological cancer, and resistance of platinum-based chemotherapy is the main reason for treatment failure. The aim of the present study was to identify candidate genes involved in ovarian cancer platinum response by analysing genes from homologous recombination and Fanconi anaemia pathways. Associations between these two functional genes were explored in the study, and we performed a random walk algorithm based on reconstructed gene-gene network, including protein-protein interaction and co-expression relations. Following the random walk, all genes were ranked and GSEA analysis showed that the biological functions focused primarily on autophagy, histone modification and gluconeogenesis. Based on three types of seed nodes, the top two genes were utilized as examples. We selected a total of six candidate genes (FANCA, FANCG, POLD1, KDM1A, BLM and BRCA1) for subsequent verification. The validation results of the six candidate genes have significance in three independent ovarian cancer data sets with platinum-resistant and platinum-sensitive information. To explore the correlation between biomarkers and clinical prognostic factors, we performed differential analysis and multivariate clinical subgroup analysis for six candidate genes at both mRNA and protein levels. And each of the six candidate genes and their neighbouring genes with a mutation rate greater than 10% were also analysed by network construction and functional enrichment analysis. In the meanwhile, the survival analysis for platinum-treated patients was performed in the current study. Finally, the RT-qPCR assay was used to determine the performance of candidate genes in ovarian cancer platinum response. Taken together, this research demonstrated that comprehensive bioinformatics methods could help to understand the molecular mechanism of platinum response and provide new strategies for overcoming platinum resistance in ovarian cancer treatment.


Subject(s)
Drug Resistance, Neoplasm/genetics , Fanconi Anemia/genetics , Homologous Recombination/genetics , Ovarian Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , Algorithms , Cell Line, Tumor , DNA Polymerase III/genetics , Disease-Free Survival , Fanconi Anemia/pathology , Fanconi Anemia Complementation Group A Protein/genetics , Fanconi Anemia Complementation Group G Protein/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Histone Demethylases/genetics , Humans , Middle Aged , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Platinum/administration & dosage , Platinum/adverse effects , RecQ Helicases/genetics , Risk Factors
11.
Ann Hematol ; 98(2): 271-280, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30368588

ABSTRACT

Fanconi anemia (FA) is a genetically and clinically heterogeneous disorder that predisposes patients to bone marrow failure (BMF), myelodysplastic syndromes (MDS), and acute myeloid leukemia (AML). To study which genetic and phenotypic factors predict clinical outcomes for Japanese FA patients, we examined the FA genes, bone marrow karyotype, and aldehyde dehydrogenase-2 (ALDH2) genotype; variants of which are associated with accelerated progression of BMF in FA. In 88 patients, we found morphologic MDS/AML in 33 patients, including refractory cytopenia in 16, refractory anemia with excess blasts (RAEB) in 7, and AML in 10. The major mutated FA genes observed in this study were FANCA (n = 52) and FANCG (n = 23). The distribution of the ALDH2 variant alleles did not differ significantly between patients with mutations in FANCA and FANCG. However, patients with FANCG mutations had inferior BMF-free survival and received hematopoietic stem cell transplantation (HSCT) at a younger age than those with FANCA mutations. In FANCA, patients with the c.2546delC mutation (n = 24) related to poorer MDS/AML-free survival and a younger age at HSCT than those without this mutation. All patients with RAEB/AML had an abnormal karyotype and poorer prognosis after HSCT; specifically, the presence of a structurally complex karyotype with a monosomy (n = 6) was associated with dismal prognosis. In conclusion, the best practice for a clinician may be to integrate the morphological, cytogenetic, and genetic data to optimize HSCT timing in Japanese FA patients.


Subject(s)
Aldehyde Dehydrogenase, Mitochondrial/genetics , Base Sequence , Fanconi Anemia/genetics , Fanconi Anemia/mortality , Genotype , Sequence Deletion , Age Factors , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Alleles , Allografts , Asian People , Disease-Free Survival , Fanconi Anemia/enzymology , Fanconi Anemia/therapy , Fanconi Anemia Complementation Group A Protein/genetics , Fanconi Anemia Complementation Group A Protein/metabolism , Fanconi Anemia Complementation Group G Protein/genetics , Fanconi Anemia Complementation Group G Protein/metabolism , Female , Gene Frequency , Hematopoietic Stem Cell Transplantation , Humans , Japan , Male , Survival Rate
13.
J Recept Signal Transduct Res ; 37(3): 276-282, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27608133

ABSTRACT

Fanconi anemia (FA) is an autosomal recessive disorder with a high risk of malignancies including acute myeloid leukemia and squamous cell carcinoma. There is a constant search out of new potential therapeutic molecule to combat this disorder. In most cases, patients with FA develop haematological malignancies with acute myeloid leukemia and acute lymphoblastic leukemia. Identifying drugs which can efficiently block the pathways of both these disorders can be an ideal and novel strategy to treat FA. The curcumin, a natural compound obtained from turmeric is an interesting therapeutic molecule as it has been reported in the literature to combat both FA as well as leukemia. However, its complete mechanism is not elucidated. Herein, a systems biology approach for elucidating the therapeutic potential of curcumin against FA and leukemia is investigated by analyzing the computational molecular interactions of curcumin ligand with FANC G of FA and seven other key disease targets of leukemia. The proteins namely DOT1L, farnesyl transferase (FDPS), histone decetylase (EP3000), Polo-like kinase (PLK-2), aurora-like kinase (AUKRB), tyrosine kinase (ABL1), and retinoic acid receptor alpha (RARA) were chosen as disease targets for leukemia and modeled structure of FANC G protein as the disease target for FA. The docking investigations showed that curcumin had a very high binding affinity of -8.1 kcal/mol with FANC G protein. The key disease targets of leukemia namely tyrosine kinase (ABL1), aurora-like kinase (AUKRB), and polo-like kinase (PLK-2) showed that they had the comparable binding affinities of -9.7 k cal/mol, -8.7 k cal/mol, and -8.6 k cal/mol, respectively with curcumin. Further, the percentage similarity scores obtained from PAM50 using EMBOSS MATCHER was shown to provide a clue to understand the structural relationships to an extent and to predict the binding affinity. This investigation shows that curcumin effectively interacts with the disease targets of both FA and leukemia.


Subject(s)
Curcumin/chemistry , Fanconi Anemia Complementation Group G Protein/chemistry , Fanconi Anemia/drug therapy , Leukemia, Myeloid, Acute/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Computational Biology , DNA-Binding Proteins , Fanconi Anemia/metabolism , Fanconi Anemia Complementation Group G Protein/antagonists & inhibitors , Fanconi Anemia Complementation Group G Protein/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Ligands , Models, Molecular , Neoplasm Proteins/chemistry , Neoplasm Proteins/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Systems Biology
14.
Ann Hum Genet ; 79(3): 153-61, 2015 May.
Article in English | MEDLINE | ID: mdl-25703136

ABSTRACT

A common ancestral haplotype is strongly suggested in the Korean and Japanese patients with Fanconi anemia (FA), because common mutations have been frequently found: c.2546delC and c.3720_3724delAAACA of FANCA; c.307+1G>C, c.1066C>T, and c.1589_1591delATA of FANCG. Our aim in this study was to investigate the origin of these common mutations of FANCA and FANCG. We genotyped 13 FA patients consisting of five FA-A patients and eight FA-G patients from the Korean FA population. Microsatellite markers used for haplotype analysis included four CA repeat markers which are closely linked with FANCA and eight CA repeat markers which are contiguous with FANCG. As a result, Korean FA-A patients carrying c.2546delC or c.3720_3724delAAACA did not share the same haplotypes. However, three unique haplotypes carrying c.307+1G>C, c.1066C > T, or c.1589_1591delATA, that consisted of eight polymorphic loci covering a flanking region were strongly associated with Korean FA-G, consistent with founder haplotypes reported previously in the Japanese FA-G population. Our finding confirmed the common ancestral haplotypes on the origins of the East Asian FA-G patients, which will improve our understanding of the molecular population genetics of FA-G. To the best of our knowledge, this is the first report on the association between disease-linked mutations and common ancestral haplotypes in the Korean FA population.


Subject(s)
Fanconi Anemia Complementation Group G Protein/genetics , Fanconi Anemia/genetics , Founder Effect , Haplotypes , Asian People/genetics , DNA Mutational Analysis , Fanconi Anemia Complementation Group A Protein/genetics , Female , Gene Frequency , Genotype , Humans , Male , Microsatellite Repeats , Pedigree , Republic of Korea
15.
Blood Cells Mol Dis ; 54(3): 270-4, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25477267

ABSTRACT

Fanconi anemia (FA) is a rare disorder of DNA repair, associated with various somatic abnormalities but characterized by hematological disease that manifests as bone marrow aplasia and malignancy. The mainstay of treatment, in developed nations, is hematopoietic stem cell transplantation (HSCT) with subsequent surveillance for solid organ and non-hematological malignancies. In South Africa, FA in the Black population is caused by a homozygous deletion mutation in the FANCG gene in more than 80% of cases. Many affected patients are not diagnosed until late in the disease course when severe cytopenia and bone marrow aplasia are already present. Most patients are not eligible for HSCT at this late stage of the disease, even when it is available in the state health care system. In this study, the hematological presentation and disease progression in 30 Black South African patients with FA, confirmed to have the FANCG founder mutation, were evaluated and compared to those described in other FA cohorts. Our results showed that patients, homozygous for the FANCG founder mutation, present with severe cytopenia but progress to bone marrow failure at similar ages to other individuals affected with FA of heterogeneous genotype. Further, the incidence of myelodysplastic syndrome is similar to that which has been previously described in other FA cohorts. Although severe cytopenia at presentation may be predicted by a higher number of somatic anomalies, the recognition of the physical FA phenotype in Black South African patients is challenging and may not be useful in expediting referral of suspected FA patients for tertiary level investigations and care. Given the late but severe hematological presentation of FA in Black South African patients, an investigative strategy is needed for earlier recognition of affected individuals to allow for possible HSCT and management of bone marrow disease.


Subject(s)
Fanconi Anemia Complementation Group G Protein/genetics , Fanconi Anemia/blood , Fanconi Anemia/genetics , Sequence Deletion , Adolescent , Black People/genetics , Child , Child, Preschool , Cohort Studies , Fanconi Anemia/epidemiology , Fanconi Anemia/therapy , Female , Hematopoietic Stem Cell Transplantation , Homozygote , Humans , Male , Middle Aged , South Africa/epidemiology
16.
Clin Genet ; 88(1): 68-73, 2015 Jul.
Article in English | MEDLINE | ID: mdl-24989076

ABSTRACT

Mutations in downstream Fanconi anemia (FA) pathway genes, BRCA2, PALB2, BRIP1 and RAD51C, explain part of the hereditary breast cancer susceptibility, but the contribution of other FA genes has remained questionable. Due to FA's rarity, the finding of recurrent deleterious FA mutations among breast cancer families is challenging. The use of founder populations, such as the Finns, could provide some advantage in this. Here, we have resolved complementation groups and causative mutations of five FA patients, representing the first mutation confirmed FA cases in Finland. These patients belonged to complementation groups FA-A (n = 3), FA-G (n = 1) and FA-I (n = 1). The prevalence of the six FA causing mutations was then studied in breast (n = 1840) and prostate (n = 565) cancer cohorts, and in matched controls (n = 1176 females, n = 469 males). All mutations were recurrent, but no significant association with cancer susceptibility was observed for any: the prevalence of FANCI c.2957_2969del and c.3041G>A mutations was even highest in healthy males (1.7%). This strengthens the exclusive role of downstream genes in cancer predisposition. From a clinical point of view, current results provide fundamental information of the mutations to be tested first in all suspected FA cases in Finland.


Subject(s)
Fanconi Anemia/genetics , Mutation , Prostatic Neoplasms/genetics , Adolescent , Adult , Aged , Breast Neoplasms/genetics , Child , Child, Preschool , Fanconi Anemia Complementation Group A Protein/genetics , Fanconi Anemia Complementation Group G Protein/genetics , Fanconi Anemia Complementation Group Proteins/genetics , Female , Finland , Genetic Testing , Humans , Male , Middle Aged
17.
Blood ; 121(22): e138-48, 2013 May 30.
Article in English | MEDLINE | ID: mdl-23613520

ABSTRACT

Current methods for detecting mutations in Fanconi anemia (FA)-suspected patients are inefficient and often miss mutations. We have applied recent advances in DNA sequencing and genomic capture to the diagnosis of FA. Specifically, we used custom molecular inversion probes or TruSeq-enrichment oligos to capture and sequence FA and related genes, including introns, from 27 samples from the International Fanconi Anemia Registry at The Rockefeller University. DNA sequencing was complemented with custom array comparative genomic hybridization (aCGH) and RNA sequencing (RNA-seq) analysis. aCGH identified deletions/duplications in 4 different FA genes. RNA-seq analysis revealed lack of allele specific expression associated with a deletion and splicing defects caused by missense, synonymous, and deep-in-intron variants. The combination of TruSeq-targeted capture, aCGH, and RNA-seq enabled us to identify the complementation group and biallelic germline mutations in all 27 families: FANCA (7), FANCB (3), FANCC (3), FANCD1 (1), FANCD2 (3), FANCF (2), FANCG (2), FANCI (1), FANCJ (2), and FANCL (3). FANCC mutations are often the cause of FA in patients of Ashkenazi Jewish (AJ) ancestry, and we identified 2 novel FANCC mutations in 2 patients of AJ ancestry. We describe here a strategy for efficient molecular diagnosis of FA.


Subject(s)
Comparative Genomic Hybridization/methods , Fanconi Anemia/diagnosis , Fanconi Anemia/genetics , Jews/genetics , Sequence Analysis, RNA/methods , Basic-Leucine Zipper Transcription Factors/genetics , Family Health , Fanconi Anemia/ethnology , Fanconi Anemia Complementation Group A Protein/genetics , Fanconi Anemia Complementation Group C Protein/genetics , Fanconi Anemia Complementation Group D2 Protein/genetics , Fanconi Anemia Complementation Group G Protein/genetics , Fanconi Anemia Complementation Group L Protein/genetics , Fanconi Anemia Complementation Group Proteins/genetics , Gene Deletion , Gene Duplication , Humans , Mutation
18.
Blood ; 122(18): 3206-9, 2013 Oct 31.
Article in English | MEDLINE | ID: mdl-24037726

ABSTRACT

Fanconi anemia (FA) is a severe hereditary disorder with defective DNA damage response and repair. It is characterized by phenotypes including progressive bone marrow failure (BMF), developmental abnormalities, and increased occurrence of leukemia and cancer. Recent studies in mice have suggested that the FA proteins might counteract aldehyde-induced genotoxicity in hematopoietic stem cells. Nearly half of the Japanese population carries a dominant-negative allele (rs671) of the aldehyde-catalyzing enzyme ALDH2 (acetaldehyde dehydrogenase 2), providing an opportunity to test this hypothesis in humans. We examined 64 Japanese FA patients, and found that the ALDH2 variant is associated with accelerated progression of BMF, while birth weight or the number of physical abnormalities was not affected. Moreover, malformations at some specific anatomic locations were observed more frequently in ALDH2-deficient patients. Our current data indicate that the level of ALDH2 activity impacts pathogenesis in FA, suggesting the possibility of a novel therapeutic approach.


Subject(s)
Aldehyde Dehydrogenase/genetics , Bone Marrow Diseases/genetics , Fanconi Anemia/genetics , Genetic Variation , Aldehyde Dehydrogenase, Mitochondrial , Alleles , Asian People/genetics , Bone Marrow Diseases/pathology , Cells, Cultured , DNA Mutational Analysis , Disease Progression , Fanconi Anemia/ethnology , Fanconi Anemia/pathology , Fanconi Anemia Complementation Group A Protein/genetics , Fanconi Anemia Complementation Group C Protein/genetics , Fanconi Anemia Complementation Group G Protein/genetics , Gene Frequency , Genotype , Humans , Japan
19.
Nucleic Acids Res ; 41(11): 5827-36, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23609537

ABSTRACT

5-Aza-2'-deoxycytidine (5-azadC) is a DNA methyltransferase (DNMT) inhibitor increasingly used in treatments of hematological diseases and works by being incorporated into DNA and trapping DNMT. It is unclear what DNA lesions are caused by 5-azadC and if such are substrates for DNA repair. Here, we identify that 5-azadC induces DNA damage as measured by γ-H2AX and 53BP1 foci. Furthermore, 5-azadC induces radial chromosomes and chromatid breaks that depend on active replication, which altogether suggest that trapped DNMT collapses oncoming replication forks into double-strand breaks. We demonstrate that RAD51-mediated homologous recombination (HR) is activated to repair 5-azadC collapsed replication forks. Fanconi anemia (FA) is a rare autosomal recessive disorder, and deaths are often associated with leukemia. Here, we show that FANCG-deficient cells fail to trigger HR-mediated repair of 5-azadC-induced lesions, leading to accumulation of chromatid breaks and inter-chromosomal radial fusions as well as hypersensitivity to the cytotoxic effects of 5-azadC. These data demonstrate that the FA pathway is important to protect from 5-azadC-induced toxicity. Altogether, our data demonstrate that cytotoxicity of the epigenetic drug 5-azadC can, at least in part, be explained by collapsed replication forks requiring FA-mediated HR for repair.


Subject(s)
Azacitidine/analogs & derivatives , DNA Replication/drug effects , Enzyme Inhibitors/toxicity , Fanconi Anemia Complementation Group G Protein/physiology , Recombinational DNA Repair , Animals , Azacitidine/toxicity , Cell Line , Chromatids/drug effects , Cricetinae , Cricetulus , DNA Breaks , DNA-Activated Protein Kinase/antagonists & inhibitors , Decitabine , Leupeptins/pharmacology , Proteasome Inhibitors/pharmacology
20.
Hum Mol Genet ; 21(1): 121-35, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-21968513

ABSTRACT

Fanconi anemia (FA) is a human rare genetic disorder characterized by congenital defects, bone marrow (BM) failure and predisposition to leukemia. The progressive aplastic anemia suggests a defect in the ability of hematopoietic stem cells (HSC) to sustain hematopoieis. We have examined the role of the nuclear FA core complex gene Fancg in the functionality of HSC. In Fancg-/- mice, we observed a decay of long-term HSC and multipotent progenitors that account for the reduction in the LSK compartment containing primitive hematopoietic cells. Fancg-/- lymphoid and myeloid progenitor cells were also affected, and myeloid progenitors show compromised in vitro functionality. HSC from Fancg-/- mice failed to engraft and to reconstitute at short and long term the hematopoiesis in a competitive transplantation assay. Fancg-/- LSK cells showed a loss of quiescence, an impaired migration in vitro in response to the chemokine CXCL12 and a defective homing to the BM after transplantation. Finally, the expression of several key genes involved in self-renewal, quiescence and migration of HSC was dysregulated in Fancg-deficient LSK subset. Collectively, our data reveal that Fancg should play a role in the regulation of physiological functions of HSC.


Subject(s)
Fanconi Anemia Complementation Group G Protein/deficiency , Fanconi Anemia/physiopathology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Animals , Bone Marrow/metabolism , Cell Movement , Chemokine CXCL12/metabolism , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Fanconi Anemia Complementation Group G Protein/genetics , Female , Hematopoiesis , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL