Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.996
Filter
Add more filters

Publication year range
1.
Nature ; 594(7861): 94-99, 2021 06.
Article in English | MEDLINE | ID: mdl-34012116

ABSTRACT

Inflammation is a defence response to tissue damage that requires tight regulation in order to prevent impaired healing. Tissue-resident macrophages have a key role in tissue repair1, but the precise molecular mechanisms that regulate the balance between inflammatory and pro-repair macrophage responses during healing remain poorly understood. Here we demonstrate a major role for sensory neurons in promoting the tissue-repair function of macrophages. In a sunburn-like model of skin damage in mice, the conditional ablation of sensory neurons expressing the Gαi-interacting protein (GINIP) results in defective tissue regeneration and in dermal fibrosis. Elucidation of the underlying molecular mechanisms revealed a crucial role for the neuropeptide TAFA4, which is produced in the skin by C-low threshold mechanoreceptors-a subset of GINIP+ neurons. TAFA4 modulates the inflammatory profile of macrophages directly in vitro. In vivo studies in Tafa4-deficient mice revealed that TAFA4 promotes the production of IL-10 by dermal macrophages after UV-induced skin damage. This TAFA4-IL-10 axis also ensures the survival and maintenance of IL-10+TIM4+ dermal macrophages, reducing skin inflammation and promoting tissue regeneration. These results reveal a neuroimmune regulatory pathway driven by the neuropeptide TAFA4 that promotes the anti-inflammatory functions of macrophages and prevents fibrosis after tissue damage, and could lead to new therapeutic perspectives for inflammatory diseases.


Subject(s)
Cytokines/metabolism , Macrophages/metabolism , Regeneration , Sensory Receptor Cells/metabolism , Wound Healing , Animals , Cell Survival , Cytokines/deficiency , Disease Models, Animal , Female , Fibrosis/etiology , Fibrosis/metabolism , Fibrosis/pathology , Fibrosis/prevention & control , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Inflammation/prevention & control , Interleukin-10/biosynthesis , Interleukin-10/metabolism , Macrophages/radiation effects , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Sensory Receptor Cells/radiation effects , Skin/pathology , Skin/radiation effects , Sunburn/complications , Sunburn/etiology , Sunburn/metabolism , Sunburn/pathology , Ultraviolet Rays/adverse effects
2.
N Engl J Med ; 389(11): 998-1008, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37356033

ABSTRACT

BACKGROUND: Pegozafermin is a long-acting glycopegylated (pegylated with the use of site-specific glycosyltransferases) fibroblast growth factor 21 (FGF21) analogue in development for the treatment of nonalcoholic steatohepatitis (NASH) and severe hypertriglyceridemia. The efficacy and safety of pegozafermin in patients with biopsy-proven noncirrhotic NASH are not well established. METHODS: In this phase 2b, multicenter, double-blind, 24-week, randomized, placebo-controlled trial, we randomly assigned patients with biopsy-confirmed NASH and stage F2 or F3 (moderate or severe) fibrosis to receive subcutaneous pegozafermin at a dose of 15 mg or 30 mg weekly or 44 mg once every 2 weeks or placebo weekly or every 2 weeks. The two primary end points were an improvement in fibrosis (defined as reduction by ≥1 stage, on a scale from 0 to 4, with higher stages indicating greater severity), with no worsening of NASH, at 24 weeks and NASH resolution without worsening of fibrosis at 24 weeks. Safety was also assessed. RESULTS: Among the 222 patients who underwent randomization, 219 received pegozafermin or placebo. The percentage of patients who met the criteria for fibrosis improvement was 7% in the pooled placebo group, 22% in the 15-mg pegozafermin group (difference vs. placebo, 14 percentage points; 95% confidence interval [CI], -9 to 38), 26% in the 30-mg pegozafermin group (difference, 19 percentage points; 95% CI, 5 to 32; P = 0.009), and 27% in the 44-mg pegozafermin group (difference, 20 percentage points; 95% CI, 5 to 35; P = 0.008). The percentage of patients who met the criteria for NASH resolution was 2% in the placebo group, 37% in the 15-mg pegozafermin group (difference vs. placebo, 35 percentage points; 95% CI, 10 to 59), 23% in the 30-mg pegozafermin group (difference, 21 percentage points; 95% CI, 9 to 33), and 26% in the 44-mg pegozafermin group (difference, 24 percentage points; 95% CI, 10 to 37). The most common adverse events associated with pegozafermin therapy were nausea and diarrhea. CONCLUSIONS: In this phase 2b trial, treatment with pegozafermin led to improvements in fibrosis. These results support the advancement of pegozafermin into phase 3 development. (Funded by 89bio; ENLIVEN ClinicalTrials.gov number, NCT04929483.).


Subject(s)
Fibroblast Growth Factors , Fibrosis , Gastrointestinal Agents , Non-alcoholic Fatty Liver Disease , Humans , Biopsy , Double-Blind Method , Fibroblast Growth Factors/analogs & derivatives , Fibrosis/drug therapy , Fibrosis/etiology , Fibrosis/pathology , Gastrointestinal Agents/administration & dosage , Gastrointestinal Agents/therapeutic use , Injections, Subcutaneous , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/pathology , Treatment Outcome
3.
Hepatology ; 78(5): 1625-1653, 2023 11 01.
Article in English | MEDLINE | ID: mdl-36626642

ABSTRACT

Liver fibrosis is the result of sustained chronic liver injury and inflammation leading to hepatocyte cell death followed by the formation of fibrous scars, which is the hallmark of NASH and alcoholic steatohepatitis and can lead to cirrhosis, HCC, and liver failure. Although progress has been made in understanding the pathogenesis and clinical consequences of hepatic fibrosis, therapeutic strategies for this disease are limited. Preclinical studies suggest that peroxisome proliferator-activated receptor alpha plays an important role in preventing the development of liver fibrosis by activating genes involved in detoxifying lipotoxicity and toxins, transrepressing genes involved in inflammation, and inhibiting activation of hepatic stellate cells. Given the robust preclinical data, several peroxisome proliferator-activated receptor alpha agonists have been tested in clinical trials for liver fibrosis. Here, we provide an update on recent progress in understanding the mechanisms by which peroxisome proliferator-activated receptor alpha prevents fibrosis and discuss the potential of targeting PPARα for the development of antifibrotic treatments.


Subject(s)
Liver Cirrhosis , PPAR alpha , Humans , Carcinoma, Hepatocellular/pathology , Fibrosis/etiology , Fibrosis/genetics , Fibrosis/metabolism , Inflammation/metabolism , Liver/pathology , Liver Cirrhosis/drug therapy , Liver Cirrhosis/etiology , Liver Cirrhosis/metabolism , Liver Neoplasms/pathology , Non-alcoholic Fatty Liver Disease/pathology , PPAR alpha/genetics , PPAR alpha/metabolism
4.
FASEB J ; 37(1): e22699, 2023 01.
Article in English | MEDLINE | ID: mdl-36520055

ABSTRACT

Cardiac fibrosis is an essential pathological process in pressure overload (PO)-induced heart failure. Recently, myocyte-fibroblast communication is proven to be critical in heart failure, in which, pathological growth of cardiomyocytes (CMs) may promote fibrosis via miRNAs-containing exosomes (Exos). Peli1 regulates the activation of NF-κB and AP-1, which has been demonstrated to engage in miRNA transcription in cardiomyocytes. Therefore, we hypothesized that Peli1 in CMs regulates the activation of cardiac fibroblasts (CFs) through an exosomal miRNA-mediated paracrine mechanism, thereby promoting cardiac fibrosis. We found that CM-conditional deletion of Peli1 improved PO-induced cardiac fibrosis. Moreover, Exos from mechanical stretch (MS)-induced WT CMs (WT MS-Exos) promote activation of CFs, Peli1-/- MS-Exos reversed it. Furthermore, miRNA microarray and qPCR analysis showed that miR-494-3p was increased in WT MS-Exos while being down regulated in Peli1-/- MS-Exos. Mechanistically, Peli1 promoted miR-494-3p expression via NF-κB/AP-1 in CMs, and then miR-494-3p induced CFs activation by inhibiting PTEN and amplifying the phosphorylation of AKT, SMAD2/3, and ERK. Collectively, our study suggests that CMs Peli1 contributes to myocardial fibrosis via CMs-derived miR-494-3p-enriched exosomes under PO, and provides a potential exosomal miRNA-based therapy for cardiac fibrosis.


Subject(s)
Cell Communication , Exosomes , Heart Failure , Myocytes, Cardiac , Humans , Exosomes/genetics , Exosomes/metabolism , Fibrosis/etiology , Fibrosis/genetics , Fibrosis/metabolism , Fibrosis/pathology , Heart Failure/genetics , Heart Failure/metabolism , Heart Failure/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , NF-kappa B/genetics , NF-kappa B/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Transcription Factor AP-1/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Heart Diseases/etiology , Heart Diseases/genetics , Heart Diseases/metabolism , Heart Diseases/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Cell Communication/genetics , Cell Communication/physiology
5.
EMBO J ; 38(5)2019 03 01.
Article in English | MEDLINE | ID: mdl-30737259

ABSTRACT

Ageing is the biggest risk factor for cardiovascular disease. Cellular senescence, a process driven in part by telomere shortening, has been implicated in age-related tissue dysfunction. Here, we address the question of how senescence is induced in rarely dividing/post-mitotic cardiomyocytes and investigate whether clearance of senescent cells attenuates age-related cardiac dysfunction. During ageing, human and murine cardiomyocytes acquire a senescent-like phenotype characterised by persistent DNA damage at telomere regions that can be driven by mitochondrial dysfunction and crucially can occur independently of cell division and telomere length. Length-independent telomere damage in cardiomyocytes activates the classical senescence-inducing pathways, p21CIP and p16INK4a, and results in a non-canonical senescence-associated secretory phenotype, which is pro-fibrotic and pro-hypertrophic. Pharmacological or genetic clearance of senescent cells in mice alleviates detrimental features of cardiac ageing, including myocardial hypertrophy and fibrosis. Our data describe a mechanism by which senescence can occur and contribute to age-related myocardial dysfunction and in the wider setting to ageing in post-mitotic tissues.


Subject(s)
Cardiomegaly/pathology , Cellular Senescence , DNA Damage , Fibrosis/pathology , Mitosis , Myocytes, Cardiac/pathology , Telomere Shortening , Aging , Animals , Cardiomegaly/etiology , Female , Fibrosis/etiology , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Monoamine Oxidase/physiology , Myocytes, Cardiac/metabolism , Phenotype , RNA/physiology , Rats, Sprague-Dawley , Telomerase/physiology
6.
Exp Cell Res ; 411(1): 112983, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34921827

ABSTRACT

After the severe initial insults of acute kidney injury, progressive kidney tubulointerstitial fibrosis may occur, the peritubular capillary (PTC) rarefaction plays a key role in the disease progression. However, the mechanisms of PTC damage were not fully understood and potential therapeutic interventions were not explored. Previous studies of our research team and others in this field suggested that bone marrow-derived mesenchymal stem cells (BMSCs) transplanted into the AKI rat model may preserve the kidney function and pathological changes. In the current study, with the ischemia/reperfusion AKI rat model, we revealed that BMSCs transplantation attenuated the renal function decrease in the AKI model through preserving the peritubular capillaries (PTCs) function. The density of PTCs is maintained by BMSCs transplantation in the AKI model, detachment and relocation of pericytes in the PTCs diminished. Then we established that BMSCs transplantation may attenuate the renal fibrosis and preserve the kidney function after AKI by repairing the PTCs. Improving the vitality of pericytes, suppressing the detachment and trans-differentiation of pericytes, directly differentiation of BMSCs into pericytes by BMSCs transplantation all participate in the PTC repair. Through these processes, BMSCs rescued the microvascular damage and improved the density of PTCs. As a result, a preliminary conclusion can be reached that BMSCs transplantation can be an effective therapy for delaying renal fibrosis after AKI.


Subject(s)
Acute Kidney Injury/complications , Endothelium, Vascular/cytology , Fibrosis/therapy , Kidney Diseases/therapy , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , Pericytes/cytology , Animals , Fibrosis/etiology , Fibrosis/metabolism , Fibrosis/pathology , Kidney Diseases/etiology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Male , Rats , Rats, Sprague-Dawley
7.
Cell Mol Life Sci ; 79(3): 137, 2022 Feb 19.
Article in English | MEDLINE | ID: mdl-35182235

ABSTRACT

Renal interstitial fibrosis is the pathological basis of end-stage renal disease, in which the heterogeneity of macrophages in renal microenvironment plays an important role. However, the molecular mechanisms of macrophage plasticity during renal fibrosis progression remain unclear. In this study, we found for the first time that increased expression of Twist1 in macrophages was significantly associated with the severity of renal fibrosis in IgA nephropathy patients and mice with unilateral ureteral obstruction (UUO). Ablation of Twist1 in macrophages markedly alleviated renal tubular injury and renal fibrosis in UUO mice, accompanied by a lower extent of macrophage infiltration and M2 polarization in the kidney. The knockdown of Twist1 inhibited the chemotaxis and migration of macrophages, at least partially, through the CCL2/CCR2 axis. Twist1 downregulation inhibited M2 macrophage polarization and reduced the secretion of the profibrotic factors Arg-1, MR (CD206), IL-10, and TGF-ß. Galectin-3 was decreased in the macrophages of the conditional Twist1-deficient mice, and Twist1 was shown to directly activate galectin-3 transcription. Up-regulation of galectin-3 recovered Twist1-mediated M2 macrophage polarization. In conclusion, Twist1/galectin-3 signaling regulates macrophage plasticity (M2 phenotype) and promotes renal fibrosis. This study could suggest new strategies for delaying kidney fibrosis in patients with chronic kidney disease.


Subject(s)
Fibrosis/pathology , Galectin 3/metabolism , Kidney Diseases/pathology , Macrophage Activation , Twist-Related Protein 1/metabolism , Ureteral Obstruction/complications , Animals , Fibrosis/etiology , Fibrosis/metabolism , Galectin 3/genetics , Humans , Kidney Diseases/etiology , Kidney Diseases/metabolism , Male , Mice , Mice, Inbred C57BL , Signal Transduction , Twist-Related Protein 1/genetics
8.
Cell Mol Life Sci ; 79(2): 93, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35075545

ABSTRACT

Arterial hypertension causes left ventricular hypertrophy leading to dilated cardiomyopathy. Following compensatory cardiomyocyte hypertrophy, cardiac dysfunction develops due to loss of cardiomyocytes preceded or paralleled by cardiac fibrosis. Zyxin acts as a mechanotransducer in vascular cells that may promote cardiomyocyte survival. Here, we analyzed cardiac function during experimental hypertension in zyxin knockout (KO) mice. In zyxin KO mice, made hypertensive by way of deoxycorticosterone acetate (DOCA)-salt treatment telemetry recording showed an attenuated rise in systolic blood pressure. Echocardiography indicated a systolic dysfunction, and isolated working heart measurements showed a decrease in systolic elastance. Hearts from hypertensive zyxin KO mice revealed increased apoptosis, fibrosis and an upregulation of active focal adhesion kinase as well as of integrins α5 and ß1. Both interstitial and perivascular fibrosis were even more pronounced in zyxin KO mice exposed to angiotensin II instead of DOCA-salt. Stretched microvascular endothelial cells may release collagen 1α2 and TGF-ß, which is characteristic for the transition to an intermediate mesenchymal phenotype, and thus spur the transformation of cardiac fibroblasts to myofibroblasts resulting in excessive scar tissue formation in the heart of hypertensive zyxin KO mice. While zyxin KO mice per se do not reveal a cardiac phenotype, this is unmasked upon induction of hypertension and owing to enhanced cardiomyocyte apoptosis and excessive fibrosis causes cardiac dysfunction. Zyxin may thus be important for the maintenance of cardiac function in spite of hypertension.


Subject(s)
Angiotensin II/toxicity , Cardiomegaly/prevention & control , Fibrosis/prevention & control , Hypertension/complications , Myocytes, Cardiac/cytology , Zyxin/physiology , Animals , Apoptosis , Blood Pressure , Cardiomegaly/etiology , Cardiomegaly/pathology , Fibrosis/etiology , Fibrosis/pathology , Hypertension/chemically induced , Hypertension/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/metabolism
9.
Int J Mol Sci ; 24(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36834937

ABSTRACT

Nephronophthisis (NPHP) is the most prevalent monogenic disease leading to end-stage renal failure in childhood. RhoA activation is involved in NPHP pathogenesis. This study explored the role of the RhoA activator guanine nucleotide exchange factor (GEF)-H1 in NPHP pathogenesis. We analyzed the expression and distribution of GEF-H1 in NPHP1 knockout (NPHP1KO) mice using Western blotting and immunofluorescence, followed by GEF-H1 knockdown. Immunofluorescence and renal histology were used to examine the cysts, inflammation, and fibrosis. A RhoA GTPase activation assay and Western blotting were used to detect the expression of downstream GTP-RhoA and p-MLC2, respectively. In NPHP1 knockdown (NPHP1KD) human kidney proximal tubular cells (HK2 cells), we detected the expressions of E-cadherin and α-smooth muscle actin (α-SMA). In vivo, increased expression and redistribution of GEF-H1, and higher levels of GTP-RhoA and p-MLC2 in renal tissue of NPHP1KO mice were observed, together with renal cysts, fibrosis, and inflammation. These changes were alleviated by GEF-H1 knockdown. In vitro, the expression of GEF-H1 and activation of RhoA were also increased, with increased expression of α-SMA and decreased E-cadherin. GEF-H1 knockdown reversed these changes in NPHP1KD HK2 cells. Thus, the GEF-H1/RhoA/MLC2 axis is activated in NPHP1 defects and may play a pivotal role in NPHP pathogenesis.


Subject(s)
Cysts , Fibrosis , Kidney Diseases, Cystic , Rho Guanine Nucleotide Exchange Factors , Animals , Humans , Mice , Cadherins/metabolism , Cysts/genetics , Cysts/metabolism , Fibrosis/etiology , Fibrosis/metabolism , Guanosine Triphosphate , Inflammation , Kidney/metabolism , Kidney/pathology , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/metabolism , Rho Guanine Nucleotide Exchange Factors/metabolism , rhoA GTP-Binding Protein/metabolism
10.
PLoS Pathog ; 16(10): e1008947, 2020 10.
Article in English | MEDLINE | ID: mdl-33075079

ABSTRACT

Endothelin receptors (ETRs) are activated by vasoactive peptide endothelins and involved in the pathogenesis of hepatic fibrosis. However, less is known about the role of ETRs in Schistosoma (S.) japonicum-induced hepatic fibrosis. Here, we show that the expression of ETRs is markedly enhanced in the liver and spleen tissues of patients with schistosome-induced fibrosis, as well as in murine models. Additional analyses have indicated that the expression levels of ETRs in schistosomiasis patients are highly correlated with the portal vein and spleen thickness diameter, both of which represent the severity of fibrosis. Splenomegaly is a characteristic symptom of schistosome infection, and splenic abnormality may promote the progression of hepatic fibrosis. We further demonstrate that elevated levels of ETRs are predominantly expressed on splenic B cells in spleen tissues during infection. Importantly, using a well-studied model of human schistosomiasis, we demonstrate that endothelin receptor antagonists can partially reverse schistosome-induced hepatic fibrosis by suppressing the activation of splenic B cells characterized by interleukin-10 (IL-10) secretion and regulatory T (Treg) cell-inducing capacity. Our study provides insights into the mechanisms by which ETRs regulate schistosomiasis hepatic fibrosis and highlights the potential of endothelin receptor antagonist as a therapeutic intervention for fibrotic diseases.


Subject(s)
B-Lymphocytes/pathology , Fibrosis/pathology , Liver Diseases/pathology , Receptors, Endothelin/metabolism , Schistosoma japonicum/isolation & purification , Schistosomiasis/complications , Spleen/pathology , Adult , Aged , Animals , B-Lymphocytes/metabolism , B-Lymphocytes/parasitology , Female , Fibrosis/etiology , Fibrosis/metabolism , Humans , Liver Diseases/etiology , Liver Diseases/metabolism , Male , Mice , Mice, Inbred C57BL , Middle Aged , Receptors, Endothelin/genetics , Schistosomiasis/parasitology , Spleen/metabolism , Spleen/parasitology
11.
Blood ; 136(18): 2051-2064, 2020 10 29.
Article in English | MEDLINE | ID: mdl-32726410

ABSTRACT

Primary myelofibrosis (PMF) is a myeloproliferative neoplasm (MPN) that leads to progressive bone marrow (BM) fibrosis. Although the cellular mutations involved in the pathogenesis of PMF have been extensively investigated, the sequential events that drive stromal activation and fibrosis by hematopoietic-stromal cross-talk remain elusive. Using an unbiased approach and validation in patients with MPN, we determined that the differential spatial expression of the chemokine CXCL4/platelet factor-4 marks the progression of fibrosis. We show that the absence of hematopoietic CXCL4 ameliorates the MPN phenotype, reduces stromal cell activation and BM fibrosis, and decreases the activation of profibrotic pathways in megakaryocytes, inflammation in fibrosis-driving cells, and JAK/STAT activation in both megakaryocytes and stromal cells in 3 murine PMF models. Our data indicate that higher CXCL4 expression in MPN has profibrotic effects and is a mediator of the characteristic inflammation. Therefore, targeting CXCL4 might be a promising strategy to reduce inflammation in PMF.


Subject(s)
Bone Marrow/pathology , Fibrosis/pathology , Inflammation/pathology , Myeloproliferative Disorders/complications , Platelet Factor 4/metabolism , Primary Myelofibrosis/pathology , Animals , Bone Marrow/immunology , Bone Marrow/metabolism , Cell Proliferation , Disease Progression , Fibrosis/etiology , Fibrosis/immunology , Fibrosis/metabolism , Humans , Inflammation/etiology , Inflammation/immunology , Inflammation/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Male , Megakaryocytes , Mice , Mice, Knockout , Mutation , Platelet Factor 4/genetics , Primary Myelofibrosis/etiology , Primary Myelofibrosis/immunology , Primary Myelofibrosis/metabolism
12.
FASEB J ; 35(5): e21595, 2021 05.
Article in English | MEDLINE | ID: mdl-33908676

ABSTRACT

Current histological measurement techniques for interstitial collagen, the basis of interstitial fibrosis, are semi-quantitative at best and only provide a ratio of collagen levels within tissues. The Genesis200 imaging system and supplemental image analysis software, FibroIndex from HistoIndex, is a novel, automated platform that uses second-harmonic generation (SHG) for imaging and characterization of interstitial collagen deposition and additional characteristics, in the absence of any staining. However, its ability to quantify renal fibrosis requires investigation. This study compared SHG imaging of renal fibrosis in mice with unilateral ureteric obstruction (UUO), to that of Masson's trichrome staining (MTS) and immunohistochemistry (IHC) of collagen I. Additionally, the platform generated data on collagen morphology and distribution patterns. While all three methods determined that UUO-injured mice underwent significantly increased renal fibrosis after 7 days, the HistoIndex platform additionally determined that UUO-injured mice had a significantly increased collagen-to-tissue cross reticulation ratio (all P < .001 vs sham group). Furthermore, in UUO-injured mice treated with the relaxin family peptide receptor-1 agonists, relaxin (0.5 mg/kg/day) or B7-33 (0.25 mg/kg/day), or angiotensin converting enzyme-inhibitor, perindopril (1 mg/kg/day) over the 7-day period, only the HistoIndex platform determined that the drug-induced prevention of renal fibrosis correlated with significantly reduced collagen fiber thickness and collagen-to-tissue cross reticulation ratio, but increased collagen fiber counts. Relaxin or B7-33 treatment also increased renal matrix metalloproteinase-2 and reduced tissue inhibitor of metalloproteinase-1 levels (all P < .01 vs UUO alone). This study demonstrated the diagnostic value of the HistoIndex platform over currently used staining techniques.


Subject(s)
Fibrosis/pathology , Kidney Diseases/pathology , Peptide Fragments/pharmacology , Relaxin/pharmacology , Ureteral Obstruction/complications , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Fibrosis/drug therapy , Fibrosis/etiology , Kidney Diseases/drug therapy , Kidney Diseases/etiology , Male , Mice , Mice, Inbred C57BL
13.
FASEB J ; 35(5): e21530, 2021 05.
Article in English | MEDLINE | ID: mdl-33813752

ABSTRACT

Circadian clock is involved in regulating most renal physiological functions, including water and electrolyte balance and blood pressure homeostasis, however, the role of circadian clock in renal pathophysiology remains largely unknown. Here we aimed to investigate the role of Bmal1, a core clock component, in the development of renal fibrosis, the hallmark of pathological features in many renal diseases. The inducible Bmal1 knockout mice (iKO) whose gene deletion occurred in adulthood were used in the study. Analysis of the urinary water, sodium and potassium excretion showed that the iKO mice exhibit abolished diurnal variations. In the model of renal fibrosis induced by unilateral ureteral obstruction, the iKO mice displayed significantly decreased tubulointerstitial fibrosis reflected by attenuated collagen deposition and mitigated expression of fibrotic markers α-SMA and fibronectin. The hedgehog pathway transcriptional effectors Gli1 and Gli2, which have been reported to be involved in the pathogenesis of renal fibrosis, were significantly decreased in the iKO mice. Mechanistically, ChIP assay and luciferase reporter assay revealed that BMAL1 bound to the promoter of and activate the transcription of Gli2, but not Gli1, suggesting that the involvement of Bmal1 in renal fibrosis was possibly mediated via Gli2-dependent mechanisms. Furthermore, treatment with TGF-ß increased Bmal1 in cultured murine proximal tubular cells. Knockdown of Bmal1 abolished, while overexpression of Bmal1 increased, Gli2 and the expression of fibrosis-related genes. Collectively, these results revealed a prominent role of the core clock gene Bmal1 in tubulointerstitial fibrosis. Moreover, we identified Gli2 as a novel target of Bmal1, which may mediate the adverse effect of Bmal1 in obstructive nephropathy.


Subject(s)
ARNTL Transcription Factors/physiology , Fibrosis/prevention & control , Gene Expression Regulation , Kidney Diseases/prevention & control , Period Circadian Proteins/physiology , Zinc Finger Protein Gli2/antagonists & inhibitors , Animals , Animals, Newborn , Fibrosis/etiology , Fibrosis/metabolism , Fibrosis/pathology , Kidney Diseases/etiology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Zinc Finger Protein Gli2/genetics , Zinc Finger Protein Gli2/metabolism
14.
FASEB J ; 35(5): e21596, 2021 05.
Article in English | MEDLINE | ID: mdl-33871073

ABSTRACT

Severe burns remain a leading cause of death and disability worldwide. Despite advances in patient care, the excessive and uncontrolled hypermetabolic stress response induced by this trauma inevitably affects every organ system causing substantial morbidity and mortality. Recent evidence suggests interleukin-6 (IL-6) is a major culprit underlying post-burn hypermetabolism. Indeed, genetic deletion of IL-6 alleviates various complications associated with poor clinical outcomes including the adverse remodeling of adipose tissue, cachexia and hepatic steatosis. Thus, pharmacological blockade of IL-6 may be a more favorable treatment option to fully restore metabolic function after injury. To test this, we investigated the safety and effectiveness of blocking IL-6 for post-burn hypermetabolism using a validated anti-IL-6 monoclonal antibody (mAb) in our experimental murine model. Here, we show daily anti-IL-6 mAb administration protects against burn-induced weight loss (P < .0001) without any adverse effect on mortality. At the organ level, post-burn treatment with the IL-6 blocker suppressed the thermogenic activation of adipose tissue (P < .01) and its associated wasting (P < .05). The reduction of browning-induced lipolysis (P < .0001) indirectly decreased hepatic lipotoxicity (P < .01) which improved liver dysfunction (P < .05). Importantly, the beneficial effects of this anti-IL-6 agent extended to the skin, reflected by the decrease in excessive collagen deposition (P < .001) and genes involved in pathologic fibrosis and scarring (P < .05). Together, our results indicate that post-burn IL-6 blockade leads to significant improvements in systemic hypermetabolism by inhibiting pathological alterations in key immunometabolic organs. These findings support the therapeutic potential of anti-IL-6 interventions to improve care, quality of life, and survival in burned patients.


Subject(s)
Adipose Tissue/drug effects , Antibodies, Monoclonal/pharmacology , Burns/complications , Fibrosis/drug therapy , Interleukin-6/antagonists & inhibitors , Metabolic Diseases/drug therapy , Animals , Fibrosis/etiology , Fibrosis/pathology , Lipolysis , Male , Metabolic Diseases/etiology , Metabolic Diseases/pathology , Mice , Mice, Inbred C57BL
15.
FASEB J ; 35(12): e22058, 2021 12.
Article in English | MEDLINE | ID: mdl-34820908

ABSTRACT

Subretinal fibrosis is a key pathological feature in neovascular age-related macular degeneration (nAMD). Previously, we identified soluble very low-density lipoprotein receptor (sVLDLR) as an endogenous Wnt signaling inhibitor. This study investigates whether sVLDLR plays an anti-fibrogenic role in nAMD models, including Vldlr-/- mice and laser-induced choroidal neovascularization (CNV). We found that fibrosis factors including P-Smad2/3, α-SMA, and CTGF were upregulated in the subretinal area of Vldlr-/- mice and the laser-induced CNV model. The antibody blocking Wnt co-receptor LRP6 significantly attenuated the overexpression of fibrotic factors in these two models. Moreover, there was a significant reduction of sVLDLR in the interphotoreceptor matrix (IPM) in the laser-induced CNV model. A transgenic strain (sVLDLR-Tg) with sVLDLR overexpression in the IPM was generated. Overexpression of sVLDLR ameliorated the profibrotic changes in the subretinal area of the laser-induced CNV model. In addition, Wnt and TGF-ß signaling synergistically promoted fibrogenesis in human primary retinal pigment epithelium (RPE) cells. CRISPR/Cas9-mediated LRP6 gene knockout (KO) attenuated this synergistic effect. The disruption of VLDLR expression promoted, while the overexpression of sVLDLR inhibited TGF-ß-induced fibrosis. These findings suggest that overactivated Wnt signaling enhances the TGF-ß pathway in subretinal fibrosis. sVLDLR confers an antifibrotic effect, at least partially, through the inhibition of Wnt signaling and thus, has therapeutic potential for fibrosis.


Subject(s)
Choroidal Neovascularization/complications , Disease Models, Animal , Fibrosis/prevention & control , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Macular Degeneration/complications , Receptors, LDL/physiology , Retinal Pigment Epithelium/pathology , Animals , CRISPR-Cas Systems , Cells, Cultured , Connective Tissue Growth Factor/genetics , Connective Tissue Growth Factor/metabolism , Fibrosis/etiology , Fibrosis/metabolism , Fibrosis/pathology , Low Density Lipoprotein Receptor-Related Protein-6/antagonists & inhibitors , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Retinal Pigment Epithelium/metabolism , Smad Proteins/genetics , Smad Proteins/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Wnt Signaling Pathway
16.
Pacing Clin Electrophysiol ; 45(1): 72-82, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34820857

ABSTRACT

AIMS: Neither the long-term development of ablation lesions nor the capability of late gadolinium enhancement (LGE)-MRI to detect ablation-induced fibrosis at late stages of scar formation have been defined. We sought to assess the development of atrial ablation lesions over time using LGE-MRI and invasive electroanatomical mapping (EAM). METHODS AND RESULTS: Ablation lesions and total atrial fibrosis were assessed in serial LGE-MRI scans 3 months and >12 months post pulmonary vein (PV) isolation. High-density EAM performed in subsequent repeat ablation procedures served as a reference. Serial LGE-MRI of 22 patients were analyzed retrospectively. The PV encircling ablation lines displayed an average LGE, indicative of ablation-induced fibrosis, of 91.7% ± 7.0% of the circumference at 3 months, but only 62.8% ± 25.0% at a median of 28 months post ablation (p < 0.0001). EAM performed in 18 patients undergoing a subsequent repeat procedure revealed that the consistent decrease in LGE over time was owed to a reduced detectability of ablation-induced fibrosis by LGE-MRI at time-points > 12 months post ablation. Accordingly, the agreement with EAM regarding detection of ablation-induced fibrosis and functional gaps was good for the LGE-MRI at 3 months (κ .74; p < .0001), but only weak for the LGE-MRI at 28 months post-ablation (κ .29; p < .0001). CONCLUSION: While non-invasive lesion assessment with LGE-MRI 3 months post ablation provides accurate guidance for future redo-procedures, detectability of atrial ablation lesions appears to decrease over time. Thus, it should be considered to perform LGE-MRI 3 months post-ablation rather than at later time-points > 12 months post ablation, like for example, prior to a planned redo-ablation procedure.


Subject(s)
Atrial Fibrillation/surgery , Cicatrix/diagnostic imaging , Magnetic Resonance Imaging/methods , Postoperative Complications/diagnostic imaging , Cardiac-Gated Imaging Techniques , Cicatrix/etiology , Contrast Media , Electrophysiologic Techniques, Cardiac , Female , Fibrosis/diagnostic imaging , Fibrosis/etiology , Humans , Image Interpretation, Computer-Assisted , Male , Middle Aged , Organometallic Compounds , Postoperative Complications/etiology , Pulmonary Veins/surgery , Recurrence , Registries , Retrospective Studies , Spain
17.
Int J Mol Sci ; 23(21)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36362069

ABSTRACT

Fibrosis is a pathological process in which parenchymal cells are necrotic and excess extracellular matrix (ECM) is accumulated due to dysregulation of tissue injury repair. Thymosin ß4 (Tß4) is a 43 amino acid multifunctional polypeptide that is involved in wound healing. Prolyl oligopeptidase (POP) is the main enzyme that hydrolyzes Tß4 to produce its derivative N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) which is found to play a role in the regulation of fibrosis. Accumulating evidence suggests that the Tß4-POP-Ac-SDKP axis widely exists in various tissues and organs including the liver, kidney, heart, and lung, and participates in the process of fibrogenesis. Herein, we aim to elucidate the role of Tß4-POP-Ac-SDKP axis in hepatic fibrosis, renal fibrosis, cardiac fibrosis, and pulmonary fibrosis, as well as the underlying mechanisms. Based on this, we attempted to provide novel therapeutic strategies for the regulation of tissue damage repair and anti-fibrosis therapy. The Tß4-POP-Ac-SDKP axis exerts protective effects against organ fibrosis. It is promising that appropriate dosing regimens that rely on this axis could serve as a new therapeutic strategy for alleviating organ fibrosis in the early and late stages.


Subject(s)
Fibrosis , Oligopeptides , Prolyl Oligopeptidases , Humans , Fibrosis/etiology , Fibrosis/metabolism , Oligopeptides/metabolism , Prolyl Oligopeptidases/metabolism , Thymosin/metabolism
18.
J Mol Cell Cardiol ; 152: 52-68, 2021 03.
Article in English | MEDLINE | ID: mdl-33301800

ABSTRACT

Pathological cardiac remodeling, characterized by excessive deposition of extracellular matrix proteins and cardiac hypertrophy, leads to the development of heart failure. Meprin α (Mep1a), a zinc metalloprotease, previously reported to participate in the regulation of inflammatory response and fibrosis, may also contribute to cardiac remodeling, although whether and how it participates in this process remains unknown. Here, in this work, we investigated the role of Mep1a in pathological cardiac remodeling, as well as the effects of the Mep1a inhibitor actinonin on cardiac remodeling-associated phenotypes. We found that Mep1a deficiency or chemical inhibition both significantly alleviated TAC- and Ang II-induced cardiac remodeling and dysfunction. Mep1a deletion and blocking both attenuated TAC- and Ang II-induced heart enlargement and increases in the thickness of the left ventricle anterior and posterior walls, and reduced expression of pro-hypertrophic markers, including atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and myosin heavy chain beta (ß-MHC). In addition, Mep1a deletion and blocking significantly inhibited TAC- and Ang II-induced cardiac fibroblast activation and production of extracellular matrix (ECM). Moreover, in Mep1a-/- mice and treatment with actinonin significantly reduced Ang II-induced infiltration of macrophages and proinflammatory cytokines. Notably, we found that in vitro, Mep1a is expressed in cardiac myocytes and fibroblasts and that Mep1a deletion or chemical inhibition both markedly suppressed Ang II-induced hypertrophy of rat or mouse cardiac myocytes and activation of rat or mouse cardiac fibroblasts. In addition, blocking Mep1a in macrophages reduced Ang II-induced expression of interleukin (IL)-6 and IL-1ß, strongly suggesting that Mep1a participates in cardiac remodeling processes through regulation of inflammatory cytokine expression. Mechanism studies revealed that Mep1a mediated ERK1/2 activation in cardiac myocytes, fibroblasts and macrophages and contributed to cardiac remodeling. In light of our findings that blocking Mep1a can ameliorate cardiac remodeling via inhibition of cardiac hypertrophy, fibrosis, and inflammation, Mep1a may therefore serve as a strong potential candidate for therapeutic targeting to prevent cardiac remodeling.


Subject(s)
Angiotensin II/toxicity , Cardiomegaly/pathology , Fibrosis/pathology , Inflammation/pathology , Macrophages/immunology , Metalloendopeptidases/physiology , Ventricular Remodeling , Animals , Cardiomegaly/etiology , Cardiomegaly/metabolism , Cytokines/metabolism , Fibrosis/etiology , Fibrosis/metabolism , Inflammation/etiology , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction
19.
J Cell Mol Med ; 25(10): 4860-4869, 2021 05.
Article in English | MEDLINE | ID: mdl-33733577

ABSTRACT

Diabetic cardiomyopathy (DCM) is a common diabetic complication characterized by diastolic relaxation abnormalities, myocardial fibrosis and chronic heart failure. Although TGF-ß/Smad3 signalling has been shown to play a critical role in chronic heart disease, the role and mechanisms of Smad3 in DCM remain unclear. We reported here the potential role of Smad3 in the development of DCM by genetically deleting the Smad3 gene from db/db mice. At the age of 32 weeks, Smad3WT-db/db mice developed moderate to severe DCM as demonstrated by a marked increase in the left ventricular (LV) mass, a significant fall in the LV ejection fraction (EF) and LV fractional shortening (FS), and progressive myocardial fibrosis and inflammation. In contrast, db/db mice lacking Smad3 (Smad3KO-db/db) were protected against the development of DCM with normal cardiac function and undetectable myocardial inflammation and fibrosis. Interestingly, db/db mice with deleting one copy of Smad3 (Smad3 ± db/db) did not show any cardioprotective effects. Mechanistically, we found that deletion of Smad3 from db/db mice largely protected cardiac Smad7 from Smurf2-mediated ubiquitin proteasome degradation, thereby inducing IBα to suppress NF-kB-driven cardiac inflammation. In addition, deletion of Smad3 also altered Smad3-dependent miRNAs by up-regulating cardiac miR-29b while suppressing miR-21 to exhibit the cardioprotective effect on Smad3KO-db/db mice. In conclusion, results from this study reveal that Smad3 is a key mediator in the pathogenesis of DCM. Targeting Smad3 may be a novel therapy for DCM.


Subject(s)
Diabetes Mellitus, Experimental/complications , Diabetic Cardiomyopathies/prevention & control , Fibrosis/prevention & control , Inflammation/prevention & control , Smad3 Protein/physiology , Animals , Diabetic Cardiomyopathies/etiology , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Fibrosis/etiology , Fibrosis/metabolism , Fibrosis/pathology , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction , Transforming Growth Factor beta
20.
J Cell Mol Med ; 25(10): 4765-4775, 2021 05.
Article in English | MEDLINE | ID: mdl-33769664

ABSTRACT

Intestinal fibrosis is the most common complication of Crohn's disease (CD) that is one major disorder of inflammatory bowel disease (IBD), but the precise mechanism remains unclear. MiR-155 has been involved in fibrotic diseases. Here, we determined the role of miR-155 in regulating intestinal fibrosis. MiR-155 levels were significantly up-regulated in CD patients with intestinal stricture CD. The overexpression of miR-155 significantly aggravated TNBS-induced CD-associated intestinal fibrosis. Mechanistically, we identified that HBP1, a negative regulator of the Wnt/ß-catenin signalling pathway, is a direct target of miR-155. Moreover, in vitro and in vivo experiments suggested that the miR-155/HBP1 axis activates Wnt/ß-catenin signalling pathway to induce intestinal fibrosis. Taken together, we demonstrated that miR-155 directly targets HBP1 to induce CD-associated intestinal fibrosis via Wnt/ß-catenin signalling pathway.


Subject(s)
Colitis/complications , Fibrosis/pathology , High Mobility Group Proteins/metabolism , Intestinal Diseases/pathology , MicroRNAs/genetics , Repressor Proteins/metabolism , Wnt1 Protein/metabolism , beta Catenin/metabolism , Animals , Apoptosis , Case-Control Studies , Cell Proliferation , Cells, Cultured , Fibrosis/etiology , Fibrosis/metabolism , Gene Expression Regulation , High Mobility Group Proteins/genetics , Humans , Intestinal Diseases/etiology , Intestinal Diseases/metabolism , Male , Mice , Mice, Inbred BALB C , Prognosis , Repressor Proteins/genetics , Wnt1 Protein/genetics , beta Catenin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL