Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters

Publication year range
1.
J Virol ; 94(13)2020 06 16.
Article in English | MEDLINE | ID: mdl-32295912

ABSTRACT

Menglà virus (MLAV), identified in Rousettus bats, is a phylogenetically distinct member of the family Filoviridae Because the filoviruses Ebola virus (EBOV) and Marburg virus (MARV) modulate host innate immunity, MLAV VP35, VP40, and VP24 proteins were compared with their EBOV and MARV homologs for innate immune pathway modulation. In human and Rousettus cells, MLAV VP35 behaved like EBOV and MARV VP35s, inhibiting virus-induced activation of the interferon beta (IFN-ß) promoter and interferon regulatory factor 3 (IRF3) phosphorylation. MLAV VP35 also interacted with PACT, a host protein engaged by EBOV VP35 to inhibit RIG-I signaling. MLAV VP35 also inhibits PKR activation. MLAV VP40 was demonstrated to inhibit type I IFN-induced gene expression in human and bat cells. It blocked STAT1 tyrosine phosphorylation induced either by type I IFN or overexpressed Jak1, paralleling MARV VP40. MLAV VP40 also inhibited virus-induced IFN-ß promoter activation, a property shared by MARV VP40 and EBOV VP24. A Jak kinase inhibitor did not recapitulate this inhibition in the absence of viral proteins. Therefore, inhibition of Jak-STAT signaling is insufficient to explain inhibition of IFN-ß promoter activation. MLAV VP24 did not inhibit IFN-induced gene expression or bind karyopherin α proteins, properties of EBOV VP24. MLAV VP24 differed from MARV VP24 in that it failed to interact with Keap1 or activate an antioxidant response element reporter gene due to the absence of a Keap1-binding motif. These functional observations support a closer relationship of MLAV to MARV than to EBOV but also are consistent with MLAV belonging to a distinct genus.IMPORTANCE EBOV and MARV, members of the family Filoviridae, are highly pathogenic zoonotic viruses that cause severe disease in humans. Both viruses use several mechanisms to modulate the host innate immune response, and these likely contribute to the severity of disease. Here, we demonstrate that MLAV, a filovirus newly discovered in a bat, suppresses antiviral type I interferon responses in both human and bat cells. Inhibitory activities are possessed by MLAV VP35 and VP40, which parallels how MARV blocks IFN responses. However, whereas MARV activates cellular antioxidant responses through an interaction between its VP24 protein and host protein Keap1, MLAV VP24 lacks a Keap1-binding motif and fails to activate this cytoprotective response. These data indicate that MLAV possesses immune-suppressing functions that could facilitate human infection. They also support the placement of MLAV in a different genus than either EBOV or MARV.


Subject(s)
Filoviridae Infections/physiopathology , Filoviridae/genetics , Animals , Chiroptera/immunology , Chiroptera/virology , Ebolavirus , Filoviridae/metabolism , Filoviridae/pathogenicity , HEK293 Cells , Humans , Immunity, Innate , Interferon Regulatory Factor-3/immunology , Interferon Regulatory Factor-3/metabolism , Interferon-beta/immunology , Kelch-Like ECH-Associated Protein 1/metabolism , Marburgvirus , NF-E2-Related Factor 2/metabolism , STAT1 Transcription Factor , Viral Proteins/metabolism , Viral Regulatory and Accessory Proteins/genetics , Viral Regulatory and Accessory Proteins/metabolism
2.
PLoS Pathog ; 15(2): e1007564, 2019 02.
Article in English | MEDLINE | ID: mdl-30817809

ABSTRACT

There are a number of vaccine candidates under development against a small number of the most common outbreak filoviruses all employing the virus glycoprotein (GP) as the vaccine immunogen. However, antibodies induced by such GP vaccines are typically autologous and limited to the other members of the same species. In contrast, T-cell vaccines offer a possibility to design a single pan-filovirus vaccine protecting against all known and even likely existing, but as yet unencountered members of the family. Here, we used a cross-filovirus immunogen based on conserved regions of the filovirus nucleoprotein, matrix and polymerase to construct simian adenovirus- and poxvirus MVA-vectored vaccines, and in a proof-of-concept study demonstrated a protection of the BALB/c and C57BL/6J mice against high, lethal challenges with Ebola and Marburg viruses, two distant members of the family, by vaccine-elicited T cells in the absence of GP antibodies.


Subject(s)
Filoviridae/immunology , T-Lymphocytes/immunology , Viral Vaccines/pharmacology , Animals , Antibodies, Neutralizing , Antibodies, Viral , Ebola Vaccines , Ebolavirus/pathogenicity , Female , Filoviridae/metabolism , Filoviridae/pathogenicity , Hemorrhagic Fever, Ebola , Immunity, Cellular/immunology , Male , Marburgvirus/pathogenicity , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Proof of Concept Study , T-Lymphocytes/metabolism
3.
Arch Virol ; 165(10): 2165-2176, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32740830

ABSTRACT

The PI3K/Akt signalling pathway is a crucial signalling cascade that regulates transcription, protein translation, cell growth, proliferation, cell survival, and metabolism. During viral infection, viruses exploit a variety of cellular pathways, including the well-known PI3K/Akt signalling pathway. Conversely, cells rely on this pathway to stimulate an antiviral response. The PI3K/Akt pathway is manipulated by a number of viruses, including DNA and RNA viruses and retroviruses. The aim of this review is to provide up-to-date information about the role of the PI3K-Akt pathway in infection with members of five different families of negative-sense ssRNA viruses. This pathway is hijacked for viral entry, regulation of endocytosis, suppression of premature apoptosis, viral protein expression, and replication. Although less common, the PI3K/Akt pathway can be downregulated as an immunomodulatory strategy or as a mechanism for inducing autophagy. Moreover, the cell activates this pathway as an antiviral strategy for interferon and cytokine production, among other strategies. Here, we present new data concerning the role of this pathway in infection with the paramyxovirus Newcastle disease virus (NDV). Our data seem to indicate that NDV uses the PI3K/Akt pathway to delay cell death and increase cell survival as a means of improving its replication. The interference of negative-sense ssRNA viruses with this essential pathway might have implications for the development of antiviral therapies.


Subject(s)
Gene Expression Regulation , Host-Pathogen Interactions/genetics , Phosphatidylinositol 3-Kinase/genetics , Proto-Oncogene Proteins c-akt/genetics , RNA Virus Infections/genetics , Apoptosis/genetics , Autophagy/genetics , Autophagy/immunology , Cytokines/genetics , Cytokines/immunology , Endocytosis/genetics , Endocytosis/immunology , Filoviridae/genetics , Filoviridae/metabolism , Filoviridae/pathogenicity , Host-Pathogen Interactions/immunology , Interferons/genetics , Interferons/immunology , Orthomyxoviridae/genetics , Orthomyxoviridae/metabolism , Orthomyxoviridae/pathogenicity , Paramyxoviridae/genetics , Paramyxoviridae/metabolism , Paramyxoviridae/pathogenicity , Phosphatidylinositol 3-Kinase/immunology , Pneumovirinae/genetics , Pneumovirinae/metabolism , Pneumovirinae/pathogenicity , Protein Biosynthesis , Proto-Oncogene Proteins c-akt/immunology , RNA Virus Infections/immunology , RNA Virus Infections/virology , Rhabdoviridae/genetics , Rhabdoviridae/metabolism , Rhabdoviridae/pathogenicity , Signal Transduction , Viral Proteins/genetics , Viral Proteins/immunology , Virus Internalization , Virus Replication
4.
Virus Genes ; 56(2): 150-167, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32076918

ABSTRACT

The viruses historically implicated or currently considered as candidates for misuse in bioterrorist events are poxviruses, filoviruses, bunyaviruses, orthomyxoviruses, paramyxoviruses and a number of arboviruses causing encephalitis, including alpha- and flaviviruses. All these viruses are of concern for public health services when they occur in natural outbreaks or emerge in unvaccinated populations. Recent events and intelligence reports point to a growing risk of dangerous biological agents being used for nefarious purposes. Public health responses effective in natural outbreaks of infectious disease may not be sufficient to deal with the severe consequences of a deliberate release of such agents. One important aspect of countermeasures against viral biothreat agents are the antiviral treatment options available for use in post-exposure prophylaxis. These issues were adressed by the organizers of the 16th Medical Biodefense Conference, held in Munich in 2018, in a special session on the development of drugs to treat infections with viruses currently perceived as a threat to societies or associated with a potential for misuse as biothreat agents. This review will outline the state-of-the-art methods in antivirals research discussed and provide an overview of antiviral compounds in the pipeline that are already approved for use or still under development.


Subject(s)
Antiviral Agents/therapeutic use , Arboviruses/drug effects , Bioterrorism/prevention & control , Virus Diseases/drug therapy , Arboviruses/pathogenicity , Filoviridae/drug effects , Filoviridae/pathogenicity , Humans , Orthobunyavirus/drug effects , Orthobunyavirus/pathogenicity , Orthomyxoviridae/drug effects , Orthomyxoviridae/pathogenicity , Paramyxovirinae/drug effects , Paramyxovirinae/pathogenicity , Poxviridae/drug effects , Poxviridae/pathogenicity , Virus Diseases/virology
5.
BMC Biotechnol ; 19(1): 64, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31488108

ABSTRACT

BACKGROUND: Ebola hemorrhagic fever is caused by the Ebola filovirus (EBOV), which is one of the most aggressive infectious agents known worldwide. The EBOV pathogenesis starts with uncontrolled viral replication and subversion of both the innate and adaptive host immune response. The multifunctional viral VP35 protein is involved in this process by exerting an antagonistic action against the early antiviral alpha/beta interferon (IFN-α/ß) response, and represents a suitable target for the development of strategies to control EBOV infection. Phage display technology permits to select antibodies as single chain Fragment variable (scFv) from an artificial immune system, due to their ability to specifically recognize the antigen of interest. ScFv is ideal for genetic manipulation and to obtain antibody constructs useful for targeting either antigens expressed on cell surface or intracellular antigens if the scFv is expressed as intracellular antibody (intrabody) or delivered into the cells. RESULTS: Monoclonal antibodies (mAb) in scFv format specific for the EBOV VP35 were isolated from the ETH-2 library of human recombinant antibodies by phage display technology. Five different clones were identified by sequencing, produced in E.coli and expressed in CHO mammalian cells to be characterized in vitro. All the selected scFvs were able to react with recombinant VP35 protein in ELISA, one of the scFvs being also able to react in Western Blot assay (WB). In addition, all scFvs were expressed in cell cytoplasm as intrabodies; a luciferase reporter gene inhibition assay performed in A549 cells showed that two of the scFvs can significantly hamper the inhibition of the IFN-ß-induced RIG-I signaling cascade mediated by EBOV VP35. CONCLUSION: Five antibodies in scFv format recognize an active form of EBOV VP35 in ELISA, while one antibody also recognizes VP35 in WB. Two of these scFvs were also able to interfere with the intracellular activity of VP35 in a cell system in vitro. These findings suggest that such antibodies in scFv format might be employed to develop therapeutic molecules able to hamper EBOV infections.


Subject(s)
Filoviridae/immunology , Filoviridae/pathogenicity , Hemorrhagic Fever, Ebola/immunology , Single-Chain Antibodies/immunology , Antibodies, Viral/immunology , Humans , Viral Proteins/immunology
6.
J Infect Dis ; 218(suppl_5): S277-S286, 2018 11 22.
Article in English | MEDLINE | ID: mdl-29924324

ABSTRACT

Background: Human and filovirus host interactions remain poorly understood in areas where Ebola hemorrhagic fever outbreaks are likely to occur. In the Bwindi region of Uganda, a hot spot of mammalian biodiversity in Africa, human livelihoods are intimately connected with wildlife, creating potential for exposure to filoviruses. Methods: We tested samples from 331 febrile patients presenting to healthcare facilities near Bwindi Impenetrable Forest, Uganda, by polymerase chain reaction (PCR) analysis and Western blot, using recombinant glycoprotein antigens for Ebola virus (EBOV), Sudan virus (SUDV), Bundibugyo virus (BDBV), and Marburg virus. Behavioral data on contact with wildlife were collected to examine risk factors for filovirus seropositivity. Results: All patients were negative for active filovirus infection, by PCR analysis. However, patients were seroreactive to SUDV (4.7%), EBOV (5.3%), and BDBV (8.9%), indicating previous exposure. Touching duikers was the most significant risk factor associated with EBOV seropositivity, while hunting primates and touching and/or eating cane rats were significant risk factors for SUDV seropositivity. Conclusions: People in southwestern Uganda have suspected previous exposure to filoviruses, particularly those with a history of wildlife contact. Circulation of filoviruses in wild animals and subsequent spillover into humans could be more common than previously reported.


Subject(s)
Animals, Wild/virology , Filoviridae Infections/genetics , Filoviridae Infections/virology , Filoviridae/pathogenicity , Adolescent , Adult , Aged , Animals , Animals, Wild/immunology , Antigens, Viral/immunology , Child , Child, Preschool , Female , Filoviridae/immunology , Filoviridae Infections/immunology , Glycoproteins/immunology , Humans , Infant , Infant, Newborn , Male , Middle Aged , Uganda , Young Adult
7.
Curr Top Microbiol Immunol ; 411: 421-445, 2017.
Article in English | MEDLINE | ID: mdl-28918537

ABSTRACT

Reverse genetics systems are used for the generation of recombinant viruses. For filoviruses, this technology has been available for more than 15 years and has been used to investigate questions regarding the molecular biology, pathogenicity, and host adaptation determinants of these viruses. Further, reporter-expressing, recombinant viruses are increasingly used as tools for screening for and characterization of candidate medical countermeasures. Thus, reverse genetics systems represent powerful research tools. Here we provide an overview of available reverse genetics systems for the generation of recombinant filoviruses, potential applications, and the achievements that have been made using these systems.


Subject(s)
Filoviridae/genetics , Filoviridae/physiology , Reverse Genetics , Filoviridae/pathogenicity , Genome, Viral/genetics , Virulence/genetics
8.
Curr Top Microbiol Immunol ; 411: 195-227, 2017.
Article in English | MEDLINE | ID: mdl-28653189

ABSTRACT

Filovirus small animal disease models have so far been developed in laboratory mice, guinea pigs, and hamsters. Since immunocompetent rodents do not exhibit overt signs of disease following infection with wild-type filoviruses isolated from humans, rodent models have been established using adapted viruses produced through sequential passage in rodents. Rodent-adapted viruses target the same cells/tissues as the wild-type viruses, making rodents invaluable basic research tools for studying filovirus pathogenesis. Moreover, comparative analyses using wild-type and rodent-adapted viruses have provided beneficial insights into the molecular mechanisms of pathogenicity and acquisition of species-specific virulence. Additionally, wild-type filovirus infections in immunodeficient rodents have provided a better understanding of the host factors required for resistance to filovirus infection and of the immune response against the infection. This chapter provides comprehensive information on the filovirus rodent models and rodent-adapted filoviruses. Specifically, we summarize the clinical and pathological features of filovirus infections in all rodent models described to date, including the recently developed humanized and collaborative cross (CC) resource recombinant inbred (RI) intercrossed (CC-RIX) mouse models. We also cover the molecular determinants responsible for adaptation and virulence acquisition in a number of rodent-adapted filoviruses. This chapter clearly defines the characteristic and advantages/disadvantages of rodent models, helping to evaluate the practical use of rodent models in future filovirus studies.


Subject(s)
Disease Models, Animal , Filoviridae Infections/virology , Filoviridae/pathogenicity , Rodentia/virology , Animals , Hemorrhagic Fever, Ebola/virology , Humans , Virulence
9.
Curr Top Microbiol Immunol ; 411: 23-61, 2017.
Article in English | MEDLINE | ID: mdl-28710694

ABSTRACT

Filoviruses can cause severe and often fatal disease in humans. To date, there have been 47 outbreaks resulting in more than 31,500 cases of human illness and over 13,200 reported deaths. Since their discovery, researchers from many scientific disciplines have worked to better understand the natural history of these deadly viruses. Citing original research wherever possible, this chapter reviews laboratory and field-based studies on filovirus ecology and summarizes efforts to identify where filoviruses persist in nature, how virus is transmitted to other animals and ultimately, what drivers cause spillover to human beings. Furthermore, this chapter discusses concepts on what constitutes a reservoir host and highlights challenges encountered while conducting research on filovirus ecology, particularly field-based investigations.


Subject(s)
Ecology , Filoviridae Infections/transmission , Filoviridae Infections/virology , Filoviridae , Animals , Disease Outbreaks , Filoviridae/isolation & purification , Filoviridae/pathogenicity , Filoviridae Infections/epidemiology , Humans
10.
Curr Top Microbiol Immunol ; 411: 293-322, 2017.
Article in English | MEDLINE | ID: mdl-28685291

ABSTRACT

This chapter describes the various strategies filoviruses use to escape host immune responses with a focus on innate immune and cell death pathways. Since filovirus replication can be efficiently blocked by interferon (IFN), filoviruses have evolved mechanisms to counteract both type I IFN induction and IFN response signaling pathways. Intriguingly, marburg- and ebolaviruses use different strategies to inhibit IFN signaling. This chapter also summarizes what is known about the role of IFN-stimulated genes (ISGs) in filovirus infection. These fall into three categories: those that restrict filovirus replication, those whose activation is inhibited by filoviruses, and those that have no measurable effect on viral replication. In addition to innate immunity, mammalian cells have evolved strategies to counter viral infections, including the induction of cell death and stress response pathways, and we summarize our current knowledge of how filoviruses interact with these pathways. Finally, this chapter delves into the interaction of EBOV with myeloid dendritic cells and macrophages and the associated inflammatory response, which differs dramatically between these cell types when they are infected with EBOV. In summary, we highlight the multifaceted nature of the host-viral interactions during filoviral infections.


Subject(s)
Filoviridae/immunology , Immunity, Innate/immunology , Virus Replication/immunology , Animals , Ebolavirus/growth & development , Ebolavirus/immunology , Filoviridae/pathogenicity , Filoviridae/physiology , Host-Pathogen Interactions/immunology , Interferons/immunology
11.
Sensors (Basel) ; 18(6)2018 May 23.
Article in English | MEDLINE | ID: mdl-29789514

ABSTRACT

Optical biosensors based on scattered-light measurements are being developed for rapid and label-free detection of single virions captured from body fluids. Highly controlled, stable, and non-biohazardous reference materials producing virus-like signals are valuable tools to calibrate, evaluate, and refine the performance of these new optical biosensing methods. To date, spherical polymer nanoparticles have been the only non-biological reference materials employed with scattered-light biosensing techniques. However, pathogens like filoviruses, including the Ebola virus, are far from spherical and their shape strongly affects scattered-light signals. Using electron beam lithography, we fabricated nanostructures resembling individual filamentous virions attached to a biosensing substrate (silicon wafer overlaid with silicon oxide film) and characterized their dimensions with scanning electron and atomic force microscopes. To assess the relevance of these nanostructures, we compared their signals across the visible spectrum to signals recorded from Ebola virus-like particles which exhibit characteristic filamentous morphology. We demonstrate the highly stable nature of our nanostructures and use them to obtain new insights into the relationship between virion dimensions and scattered-light signal.


Subject(s)
Biosensing Techniques , Ebolavirus/isolation & purification , Nanostructures/chemistry , Body Fluids/virology , Ebolavirus/pathogenicity , Electrons , Filoviridae/isolation & purification , Filoviridae/pathogenicity , Hemorrhagic Fever, Ebola/diagnosis , Hemorrhagic Fever, Ebola/virology , Humans , Microscopy, Atomic Force , Nanotechnology/methods , Polymers/chemistry
12.
J Virol ; 89(10): 5441-9, 2015 May.
Article in English | MEDLINE | ID: mdl-25741008

ABSTRACT

UNLABELLED: Filoviruses, including both Ebola virus (EBOV) and Marburg virus (MARV), can infect humans and other animals, causing hemorrhagic fever with a high mortality rate. Entry of these viruses into the host is mediated by a single filoviral glycoprotein (GP). GP is composed of two subunits: GP1, which is responsible for attachment and binding to receptor(s) on susceptible cells, and GP2, which mediates viral and cell membrane fusion. Although numerous host factors have been implicated in the entry process, the initial attachment receptor(s) has not been well defined. In this report, we demonstrate that exostosin 1 (EXT1), which is involved in biosynthesis of heparan sulfate (HS), plays a role in filovirus entry. Expression knockdown of EXT1 by small interfering RNAs (siRNAs) impairs GP-mediated pseudoviral entry and that of infectious EBOV and MARV in tissue cultured cells. Furthermore, HS, heparin, and other related glycosaminoglycans (GAGs), to different extents, can bind to and block GP-mediated viral entry and that of infectious filoviruses. These results strongly suggest that HS and other related GAGs are attachment receptors that are utilized by filoviruses for entry and infection. These GAGs may have therapeutic potential in treating EBOV- and MARV-infected patients. IMPORTANCE: Infection by Ebola virus and Marburg virus can cause severe illness in humans, with a high mortality rate, and currently there is no FDA-approved vaccine or therapeutic treatment available. The ongoing 2014 outbreak in West Africa underscores a lack of our understanding in the infection and pathogenesis of these viruses and the urgency of drug discovery and development. In this study, we provide several pieces of evidence that demonstrate that heparan sulfate and other closely related glycosaminoglycans are the molecules that are used by filoviruses for initial attachment. Furthermore, we demonstrate that these glycosaminoglycans can block entry of and infection by filoviruses. Thus, this work provides mechanistic insights on the early step of filoviral infection and suggests a possible therapeutic option for diseases caused by filovirus infection.


Subject(s)
Filoviridae/physiology , Glycosaminoglycans/physiology , N-Acetylglucosaminyltransferases/physiology , Virus Internalization , Animals , Cell Line , Ebolavirus/pathogenicity , Ebolavirus/physiology , Filoviridae/pathogenicity , Filoviridae Infections/etiology , Filoviridae Infections/virology , Gene Knockdown Techniques , HEK293 Cells , Heparin/physiology , Heparitin Sulfate/biosynthesis , Heparitin Sulfate/deficiency , Host-Pathogen Interactions , Humans , Marburgvirus/pathogenicity , Marburgvirus/physiology , Mice , N-Acetylglucosaminyltransferases/antagonists & inhibitors , N-Acetylglucosaminyltransferases/genetics , Receptors, Virus/physiology , Viral Proteins/physiology , Virulence
13.
Cell Biochem Funct ; 34(4): 191-6, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27001679

ABSTRACT

Viruses from the Filoviridae family, as many other virus families, require an acidic pH for successful infection and are therefore susceptible to the actions of 4-aminoquinolines, such as chloroquine. Although the mechanisms of action of chloroquine clearly indicate that it might inhibit filoviral infections, several clinical trials that attempted to use chloroquine in the treatment of other acute viral infections - including dengue and influenza A and B - caused by low pH-dependent viruses, have reported that chloroquine had no clinical efficacy, and these results demoted chloroquine from the potential treatments for other virus families requiring low pH for infectivity. The present review is aimed at investigating whether chloroquine could combat the present Ebola virus epidemic, and also at exploring the main reasons for the reported lack of efficacy. Literature was sourced from PubMed, Scopus, Google Scholar, reference list of articles and textbooks - Fields Virology (Volumes 1and 2), the cytokine handbook, Pharmacology in Medicine: Principles and Practice, and hydroxychloroquine and chloroquine retinopathy. The present analysis concludes that (1) chloroquine might find a place in the treatment of Ebola, either as a monotherapy or in combination therapies; (2) the ineffectiveness of chloroquine, or its analogue, hydroxychloroquine, at treating infections from low pH-dependent viruses is a result of the failure to attain and sustain a steady state concentration sufficient to increase and keep the pH of the acidic organelles to approximately neutral levels; (3) to successfully treat filoviral infections - or other viral infections that emerge or emerged from low pH-dependent viruses - a steady state chloroquine plasma concentration of at least 1 µg/mL(~3.125 µM/L) or a whole blood concentration of 16 µM/L must be achieved and be sustained until the patients' viraemia becomes undetectable. These concentrations, however, do not rule out the efficacy of other, higher, steady state concentrations - although such concentrations might be accompanied by severe adverse effects or toxicities. The feasibility of the conclusion in the preceding texts has recently been supported by a subsequent study that shows that amodiaquine, a derivative of CQ, is able to protect humans infected with Ebola from death.


Subject(s)
Chloroquine/therapeutic use , Filoviridae Infections/drug therapy , Filoviridae/pathogenicity , Chloroquine/pharmacology , Filoviridae/drug effects , Hydrogen-Ion Concentration , Immunomodulation/drug effects , Organelles/drug effects , Organelles/metabolism , Tropism/drug effects
14.
J Infect Dis ; 212 Suppl 2: S98-S100, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-25821225

ABSTRACT

Personal protective equipment (PPE) is an important part of worker protection during filovirus outbreaks. The need to protect against a highly virulent fluid-borne pathogen in the tropical environment imposes a heat stress on the wearer that is itself a safety risk. No evidence supports the choice of PPE employed in recent outbreaks, and standard testing procedures employed by the protective garment industry do not well simulate filovirus exposure. Further research is needed to determine the appropriate PPE for filoviruses and the heat stress that it imposes.


Subject(s)
Filoviridae Infections/epidemiology , Filoviridae Infections/prevention & control , Filoviridae/pathogenicity , Personal Protective Equipment/virology , Disease Outbreaks , Epidemics , Filoviridae Infections/virology , Humans
16.
J Formos Med Assoc ; 114(5): 384-98, 2015 May.
Article in English | MEDLINE | ID: mdl-25882189

ABSTRACT

The 2014 West African outbreak of Ebola virus disease was unprecedented in its scale and has resulted in transmissions outside endemic countries. Clinicians in nonendemic countries will most likely face the disease in returning travelers, either among healthcare workers, expatriates, or visiting friends and relatives. Clinical suspicion for the disease must be heightened for travelers or contacts presenting with compatible clinical syndromes, and strict infection control measures must be promptly implemented to minimize the risk of secondary transmission within healthcare settings or in the community. We present a concise review on human filoviral disease with an emphasis on issues that are pertinent to clinicians practicing in nonendemic countries.


Subject(s)
Disease Outbreaks/history , Filoviridae/pathogenicity , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/transmission , Travel , Clinical Trials as Topic , Hemorrhagic Fever, Ebola/prevention & control , History, 20th Century , History, 21st Century , Humans , Travel Medicine , Vaccines, DNA/immunology
17.
Biochem Biophys Res Commun ; 455(3-4): 223-8, 2014 Dec 12.
Article in English | MEDLINE | ID: mdl-25449273

ABSTRACT

Filoviruses, including Ebola and Marburg viruses, cause severe hemorrhagic fever in humans and nonhuman primates with mortality rates of up to 90%. Human T-cell immunoglobulin and mucin domain 1 (TIM-1) is one of the host proteins that have been shown to promote filovirus entry into cells. In this study, we cloned TIM-1 genes from three different African green monkey kidney cell lines (Vero E6, COS-1, and BSC-1) and found that TIM-1 of Vero E6 had a 23-amino acid deletion and 6 amino acid substitutions compared with those of COS-1 and BSC-1. Interestingly, Vero E6 TIM-1 had a greater ability to promote the infectivity of vesicular stomatitis viruses pseudotyped with filovirus glycoproteins than COS-1-derived TIM-1. We further found that the increased ability of Vero E6 TIM-1 to promote virus infectivity was most likely due to a single amino acid difference between these TIM-1s. These results suggest that a polymorphism of the TIM-1 molecules is one of the factors that influence cell susceptibility to filovirus infection, providing a new insight into the molecular basis for the filovirus host range.


Subject(s)
Filoviridae Infections/genetics , Filoviridae/pathogenicity , Membrane Glycoproteins/genetics , Polymorphism, Genetic , Receptors, Virus/genetics , Amino Acid Sequence , Animals , COS Cells , Chlorocebus aethiops , Cloning, Molecular , Flow Cytometry , Genetic Predisposition to Disease , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Kidney/cytology , Kidney/virology , Membrane Glycoproteins/metabolism , Molecular Sequence Data , Mutagenesis , Protein Structure, Tertiary , Receptors, Virus/metabolism , Sequence Homology, Amino Acid , Vero Cells
18.
Article in Russian | MEDLINE | ID: mdl-25286519

ABSTRACT

Acceptable means of therapy and prophylaxis for most of the especially dangerous viral hemorrhagic fevers to present date are lacking. Analysis of the state of this problem shows that creation of a new generation of etiotropic preparations requires selection of additional targets for their effect that may be based on the use of molecular-biological features of pathogenesis of these infections. Literature data analysis has shown that during filovirus infection non-structural and structural proteins of the causative agents serve as pathogens during direct damaging effect of the virus and secondary immune reactions that in general pervert cell and humoral components of immunity converting its destructive effect on cells and tissues of the macro organism. Selection of promising approaches of antiviral therapy is possible based on molecular-biological analysis of interaction of micro- and macro organism with isolation of the most vulnerable for the effect of causative agent aggression factors.


Subject(s)
Antiviral Agents/therapeutic use , Ebolavirus/genetics , Filoviridae/genetics , Hemorrhagic Fever, Ebola/genetics , Ebolavirus/pathogenicity , Filoviridae/pathogenicity , Hemorrhagic Fever, Ebola/drug therapy , Hemorrhagic Fever, Ebola/virology , Humans , Viral Proteins/genetics , Viral Proteins/immunology
19.
PLoS Pathog ; 7(1): e1001258, 2011 Jan 06.
Article in English | MEDLINE | ID: mdl-21253575

ABSTRACT

Interferon-inducible transmembrane proteins 1, 2, and 3 (IFITM1, 2, and 3) are recently identified viral restriction factors that inhibit infection mediated by the influenza A virus (IAV) hemagglutinin (HA) protein. Here we show that IFITM proteins restricted infection mediated by the entry glycoproteins (GP(1,2)) of Marburg and Ebola filoviruses (MARV, EBOV). Consistent with these observations, interferon-ß specifically restricted filovirus and IAV entry processes. IFITM proteins also inhibited replication of infectious MARV and EBOV. We observed distinct patterns of IFITM-mediated restriction: compared with IAV, the entry processes of MARV and EBOV were less restricted by IFITM3, but more restricted by IFITM1. Moreover, murine Ifitm5 and 6 did not restrict IAV, but efficiently inhibited filovirus entry. We further demonstrate that replication of infectious SARS coronavirus (SARS-CoV) and entry mediated by the SARS-CoV spike (S) protein are restricted by IFITM proteins. The profile of IFITM-mediated restriction of SARS-CoV was more similar to that of filoviruses than to IAV. Trypsin treatment of receptor-associated SARS-CoV pseudovirions, which bypasses their dependence on lysosomal cathepsin L, also bypassed IFITM-mediated restriction. However, IFITM proteins did not reduce cellular cathepsin activity or limit access of virions to acidic intracellular compartments. Our data indicate that IFITM-mediated restriction is localized to a late stage in the endocytic pathway. They further show that IFITM proteins differentially restrict the entry of a broad range of enveloped viruses, and modulate cellular tropism independently of viral receptor expression.


Subject(s)
Antigens, Differentiation/metabolism , Filoviridae/pathogenicity , Influenza A virus/pathogenicity , Severe acute respiratory syndrome-related coronavirus/pathogenicity , Virus Diseases/virology , Virus Internalization , Animals , Antigens, Differentiation/immunology , Cell Line, Tumor , Chlorocebus aethiops , Endothelium, Vascular , Female , Filoviridae/growth & development , Host-Pathogen Interactions , Humans , Influenza A virus/growth & development , Mice , Severe acute respiratory syndrome-related coronavirus/growth & development , Vero Cells , Virus Diseases/immunology , Virus Diseases/metabolism , Virus Replication
20.
J Infect Dis ; 204 Suppl 3: S1053-9, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21987741

ABSTRACT

Ebola virus (EBOV) and Marburg virus (MARV) are among the deadliest human pathogens, with no vaccines or therapeutics available. Multiple vaccine platforms have been tested for efficacy as prophylactic pretreatments or therapeutics for prevention of filovirus hemorrhagic fever. Most successful vaccines are based on a virus-vectored approach expressing the protective glycoprotein (GP); protein-based subunit and DNA vaccines have been tested with moderate success. Virus-like particle (VLP) vaccines have realized promising results when tested in both rodents and nonhuman primates. VLPs rely on the natural properties of the viral matrix protein (VP) 40 to drive budding of filamentous particles that can also incorporate ≥ 1 other filovirus protein, including GP, VP24, and nucleoprotein (NP). Filovirus VLP vaccines have used particles containing 2 or 3 (GP and VP40, with or without NP) viral proteins generated in either mammalian or insect cells. Early studies successfully demonstrated efficacy of bivalent VLP vaccines in rodents; more recent studies have shown the ability of the VLP vaccines containing GP, NP, and VP40 to confer complete homologous protection against Ebola virus and Marburg virus in a prophylactic setting against in macaques. This review will discuss published work to date regarding development of the VLP vaccines for prevention of lethal filovirus hemorrhagic fever.


Subject(s)
Filoviridae Infections/prevention & control , Filoviridae/immunology , Hemorrhagic Fevers, Viral/prevention & control , Vaccines, Virus-Like Particle/standards , Viral Vaccines/standards , Animals , Filoviridae/pathogenicity , Humans
SELECTION OF CITATIONS
SEARCH DETAIL