Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.013
Filter
Add more filters

Publication year range
1.
N Engl J Med ; 390(7): 589-600, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38354138

ABSTRACT

BACKGROUND: The CD40-CD40L costimulatory pathway regulates adaptive and innate immune responses and has been implicated in the pathogenesis of multiple sclerosis. Frexalimab is a second-generation anti-CD40L monoclonal antibody being evaluated for the treatment of multiple sclerosis. METHODS: In this phase 2, double-blind, randomized trial, we assigned, in a 4:4:1:1 ratio, participants with relapsing multiple sclerosis to receive 1200 mg of frexalimab administered intravenously every 4 weeks (with an 1800-mg loading dose), 300 mg of frexalimab administered subcutaneously every 2 weeks (with a 600-mg loading dose), or the matching placebos for each active treatment. The primary end point was the number of new gadolinium-enhancing T1-weighted lesions seen on magnetic resonance imaging at week 12 relative to week 8. Secondary end points included the number of new or enlarging T2-weighted lesions at week 12 relative to week 8, the total number of gadolinium-enhancing T1-weighted lesions at week 12, and safety. After 12 weeks, all the participants could receive open-label frexalimab. RESULTS: Of 166 participants screened, 129 were assigned to a trial group; 125 participants (97%) completed the 12-week double-blind period. The mean age of the participants was 36.6 years, 66% were women, and 30% had gadolinium-enhancing lesions at baseline. At week 12, the adjusted mean number of new gadolinium-enhancing T1-weighted lesions was 0.2 (95% confidence interval [CI], 0.1 to 0.4) in the group that received 1200 mg of frexalimab intravenously and 0.3 (95% CI, 0.1 to 0.6) in the group that received 300 mg of frexalimab subcutaneously, as compared with 1.4 (95% CI, 0.6 to 3.0) in the pooled placebo group. The rate ratios as compared with placebo were 0.11 (95% CI, 0.03 to 0.38) in the 1200-mg group and 0.21 (95% CI, 0.08 to 0.56) in the 300-mg group. Results for the secondary imaging end points were generally in the same direction as those for the primary analysis. The most common adverse events were coronavirus disease 2019 and headaches. CONCLUSIONS: In a phase 2 trial involving participants with multiple sclerosis, inhibition of CD40L with frexalimab had an effect that generally favored a greater reduction in the number of new gadolinium-enhancing T1-weighted lesions at week 12 as compared with placebo. Larger and longer trials are needed to determine the long-term efficacy and safety of frexalimab in persons with multiple sclerosis. (Funded by Sanofi; ClinicalTrials.gov number, NCT04879628.).


Subject(s)
Antibodies, Monoclonal , CD40 Antigens , CD40 Ligand , Multiple Sclerosis, Relapsing-Remitting , Adult , Female , Humans , Male , CD40 Ligand/antagonists & inhibitors , CD40 Ligand/immunology , Double-Blind Method , Gadolinium , Magnetic Resonance Imaging , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/drug therapy , Multiple Sclerosis/immunology , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/immunology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , CD40 Antigens/antagonists & inhibitors , CD40 Antigens/immunology , Administration, Intravenous , Injections, Subcutaneous
2.
Proc Natl Acad Sci U S A ; 121(42): e2407246121, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39374384

ABSTRACT

The glymphatic pathway was defined in rodents as a network of perivascular spaces (PVSs) that facilitates organized distribution of cerebrospinal fluid (CSF) into the brain parenchyma. To date, perivascular CSF and cerebral interstitial fluid exchange has not been shown in humans. Using intrathecal gadolinium contrast-enhanced MRI, we show that contrast-enhanced CSF moves through the PVS into the parenchyma, supporting the existence of a glymphatic pathway in humans.


Subject(s)
Cerebrospinal Fluid , Glymphatic System , Magnetic Resonance Imaging , Humans , Glymphatic System/physiology , Glymphatic System/diagnostic imaging , Cerebrospinal Fluid/physiology , Cerebrospinal Fluid/metabolism , Magnetic Resonance Imaging/methods , Male , Contrast Media , Adult , Female , Brain/diagnostic imaging , Brain/physiology , Gadolinium , Middle Aged
3.
N Engl J Med ; 387(8): 704-714, 2022 08 25.
Article in English | MEDLINE | ID: mdl-36001711

ABSTRACT

BACKGROUND: The monoclonal antibody ublituximab enhances antibody-dependent cellular cytolysis and produces B-cell depletion. Ublituximab is being evaluated for the treatment of relapsing multiple sclerosis. METHODS: In two identical, phase 3, double-blind, double-dummy trials (ULTIMATE I and II), participants with relapsing multiple sclerosis were randomly assigned in a 1:1 ratio to receive intravenous ublituximab (150 mg on day 1, followed by 450 mg on day 15 and at weeks 24, 48, and 72) and oral placebo or oral teriflunomide (14 mg once daily) and intravenous placebo. The primary end point was the annualized relapse rate. Secondary end points included the number of gadolinium-enhancing lesions on magnetic resonance imaging (MRI) by 96 weeks and worsening of disability. RESULTS: A total of 549 participants were enrolled in the ULTIMATE I trial, and 545 were enrolled in the ULTIMATE II trial; the median follow-up was 95 weeks. In the ULTIMATE I trial, the annualized relapse rate was 0.08 with ublituximab and 0.19 with teriflunomide (rate ratio, 0.41; 95% confidence interval [CI], 0.27 to 0.62; P<0.001); in the ULTIMATE II trial, the annualized relapse rate was 0.09 and 0.18, respectively (rate ratio, 0.51; 95% CI, 0.33 to 0.78; P = 0.002). The mean number of gadolinium-enhancing lesions was 0.02 in the ublituximab group and 0.49 in the teriflunomide group (rate ratio, 0.03; 95% CI, 0.02 to 0.06; P<0.001) in the ULTIMATE I trial and 0.01 and 0.25, respectively (rate ratio, 0.04; 95% CI, 0.02 to 0.06; P<0.001), in the ULTIMATE II trial. In the pooled analysis of the two trials, 5.2% of the participants in the ublituximab group and 5.9% in the teriflunomide group had worsening of disability at 12 weeks (hazard ratio, 0.84; 95% CI, 0.50 to 1.41; P = 0.51). Infusion-related reactions occurred in 47.7% of the participants in the ublituximab group. Serious infections occurred in 5.0% in the ublituximab group and in 2.9% in the teriflunomide group. CONCLUSIONS: Among participants with relapsing multiple sclerosis, ublituximab resulted in lower annualized relapse rates and fewer brain lesions on MRI than teriflunomide over a period of 96 weeks but did not result in a significantly lower risk of worsening of disability. Ublituximab was associated with infusion-related reactions. (Funded by TG Therapeutics; ULTIMATE I and II ClinicalTrials.gov numbers, NCT03277261 and NCT03277248.).


Subject(s)
Antibodies, Monoclonal , Multiple Sclerosis, Relapsing-Remitting , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antibodies, Monoclonal/therapeutic use , Crotonates , Double-Blind Method , Gadolinium/therapeutic use , Humans , Hydroxybutyrates , Immunosuppressive Agents/therapeutic use , Magnetic Resonance Imaging , Multiple Sclerosis/complications , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/drug therapy , Multiple Sclerosis/pathology , Multiple Sclerosis, Relapsing-Remitting/complications , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/pathology , Nitriles , Toluidines
4.
Proc Natl Acad Sci U S A ; 119(29): e2123527119, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35858309

ABSTRACT

A promising clinical trial utilizing gold-silica core-shell nanostructures coated with polyethylene glycol (PEG) has been reported for near-infrared (NIR) photothermal therapy (PTT) of prostate cancer. The next critical step for PTT is the visualization of therapeutically relevant nanoshell (NS) concentrations at the tumor site. Here we report the synthesis of PEGylated Gd2O3-mesoporous silica/gold core/shell NSs (Gd2O3-MS NSs) with NIR photothermal properties that also supply sufficient MRI contrast to be visualized at therapeutic doses (≥108 NSs per milliliter). The nanoparticles have r1 relaxivities more than three times larger than those of conventional T1 contrast agents, requiring less concentration of Gd3+ to observe an equivalent signal enhancement in T1-weighted MR images. Furthermore, Gd2O3-MS NS nanoparticles have r2 relaxivities comparable to those of existing T2 contrast agents, observed in agarose phantoms. This highly unusual combination of simultaneous T1 and T2 contrast allows for MRI enhancement through different approaches. As a rudimentary example, we demonstrate T1/T2 ratio MR images with sixfold contrast signal enhancement relative to its T1 MRI and induced temperature increases of 20 to 55 °C under clinical illumination conditions. These nanoparticles facilitate MRI-guided PTT while providing real-time temperature feedback through thermal MRI mapping.


Subject(s)
Contrast Media , Gadolinium , Gold , Magnetic Resonance Imaging , Nanoshells , Photothermal Therapy , Contrast Media/chemical synthesis , Gadolinium/chemistry , Gold/chemistry , Magnetic Resonance Imaging/methods , Nanoshells/chemistry , Photothermal Therapy/methods , Polyethylene Glycols/chemistry , Silicon Dioxide/chemistry
5.
Nano Lett ; 24(35): 11002-11011, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39166738

ABSTRACT

Early stage hepatocellular carcinoma (HCC) presents a formidable challenge in clinical settings due to its asymptomatic progression and the limitations of current imaging techniques in detecting micro-HCC lesions. Addressing this critical issue, we introduce a novel ultrathin gadolinium-oxide (Gd-oxide) nanosheet-based platform with heightened sensitivity for high-field MRI and as a therapeutic agent for HCC. Synthesized via a digestive ripening process, these Gd-oxide nanosheets exhibit an exceptional acid-responsive profile. The integration of the ultrathin Gd-oxide with an acid-responsive polymer creates an ultrasensitive high-field MRI probe, enabling the visualization of submillimeter-sized tumors with superior sensitivity. Our research underscores the ultrasensitive probe's efficacy in the treatment of orthotopic HCC. Notably, the ultrasensitive probe functions dually as a companion diagnostic tool, facilitating simultaneous imaging and therapy with real-time treatment monitoring capabilities. In conclusion, this study showcases an innovative companion diagnostic tool that holds promise for the early detection and effective treatment of micro-HCC.


Subject(s)
Carcinoma, Hepatocellular , Contrast Media , Gadolinium , Liver Neoplasms , Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/diagnosis , Liver Neoplasms/diagnostic imaging , Humans , Gadolinium/chemistry , Contrast Media/chemistry , Animals , Mice , Nanostructures/chemistry , Nanostructures/therapeutic use , Cell Line, Tumor
6.
J Am Chem Soc ; 146(30): 20788-20801, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39028837

ABSTRACT

NMR spectroscopy is an important tool for the measurement of the electrostatic properties of biomolecules. To this point, paramagnetic relaxation enhancements (PREs) of 1H nuclei arising from nitroxide cosolutes in biomolecular solutions have been used to measure effective near-surface electrostatic potentials (ϕENS) of proteins and nucleic acids. Here, we present a gadolinium (Gd)-based NMR method, exploiting Gd chelates with different net charges, for measuring ϕENS values and demonstrate its utility through applications to a number of biomolecular systems. The use of Gd-based cosolutes offers several advantages over nitroxides for ϕENS measurements. First, unlike nitroxide compounds, Gd chelates enable electrostatic potential measurements on oxidation-sensitive proteins that require reducing agents. Second, the large electron spin quantum number of Gd (7/2) results in notably larger PREs for Gd chelates when used at the same concentrations as nitroxide radicals. Thus, it is possible to measure ϕENS values exclusively from + and - charged compounds even for highly charged biomolecules, avoiding the use of neutral cosolutes that, as we further establish here, limits the accuracy of the measured electrostatic potentials. In addition, the smaller concentrations of cosolutes required minimize potential binding to sites on macromolecules. Fourth, the closer proximity of the paramagnetic center and charged groups within Gd chelates, in comparison to the corresponding nitroxide compounds, enables more accurate predictions of ϕENS potentials for cross-validation of the experimental results. The Gd-based method described here, thus, broadens the applicability of studies of biomolecular electrostatics using solution NMR spectroscopy.


Subject(s)
Gadolinium , Static Electricity , Gadolinium/chemistry , Proteins/chemistry , Surface Properties , Nuclear Magnetic Resonance, Biomolecular , Chelating Agents/chemistry , Magnetic Resonance Spectroscopy/methods
7.
J Am Chem Soc ; 146(1): 134-144, 2024 01 10.
Article in English | MEDLINE | ID: mdl-38152996

ABSTRACT

Gd-L1 is a macrocyclic Gd-HPDO3A derivative functionalized with a short spacer to a trisulfonated pyrene. When compared to Gd-HPDO3A, the increased relaxivity appears to be determined by both the higher molecular weight and the occurrence of an intramolecularly catalyzed prototropic exchange of the coordinated OH moiety. In water, Gd-L1 displayed a relaxivity of 7.1 mM-1 s-1 (at 298 K and 0.5 T), slightly increasing with the concentration likely due to the onset of intermolecular aggregation. A remarkably high and concentration-dependent relaxivity was measured in human serum (up to 26.5 mM-1 s-1 at the lowest tested concentration of 0.005 mM). The acquisition of 1H-nuclear magnetic relaxation dispersion (NMRD) and 17O-R2 vs T profiles allowed to get an in-depth characterization of the system. In vitro experiments in the presence of human serum albumin, γ-globulins, and polylysine, as well as using media mimicking the extracellular matrix, provided strong support to the view that the trisulfonated pyrene fosters binding interactions with the exposed positive groups on the surface of proteins, responsible for a remarkable in vivo hyperintensity in T1w MR images. The in vivo MR images of the liver, kidneys, and spleen showed a marked contrast enhancement in the first 10 min after the i.v. injection of Gd-L1, which was 2-6-fold higher than that for Gd-HPDO3A, while maintaining a very similar excretion behavior. These findings may pave the way to an improved design of MRI GBCAs, for the first time, based on the setup of weak and dynamic interactions with abundant positive groups on serum and ECM proteins.


Subject(s)
Contrast Media , Heterocyclic Compounds , Organometallic Compounds , Humans , Contrast Media/chemistry , Static Electricity , Magnetic Resonance Imaging/methods , Organometallic Compounds/chemistry , Pyrenes , Gadolinium
8.
Anal Chem ; 96(28): 11334-11342, 2024 07 16.
Article in English | MEDLINE | ID: mdl-38943569

ABSTRACT

Detecting harmful pathogens in food is not only a crucial aspect of food quality management but also an effective way to ensure public health. In this paper, a complete nuclear magnetic resonance biosensor based on a novel gadolinium (Gd)-targeting molecular probe was developed for the detection of Salmonella in milk. First, streptavidin was conjugated to the activated macromolecular polyaspartic acid (PASP) via an amide reaction to generate SA-PASP. Subsequently, the strong chelating and adsorption properties of PASP toward the lanthanide metal gadolinium ions were exploited to generate the magnetic complex (SA-PASP-Gd). Finally, the magnetic complex was linked to biotinylated antibodies to obtain the bioprobe and achieve the capture of Salmonella. Under optimal experimental conditions, the sensor we have constructed can achieve a rapid detection of Salmonella within 1.5 h, with a detection limit of 7.1 × 103 cfu mL-1.


Subject(s)
Biosensing Techniques , Gadolinium , Milk , Salmonella , Milk/microbiology , Milk/chemistry , Gadolinium/chemistry , Animals , Salmonella/isolation & purification , Biosensing Techniques/methods , Magnetic Resonance Spectroscopy , Limit of Detection , Immunoassay/methods
9.
Anal Chem ; 96(26): 10738-10747, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38898770

ABSTRACT

Herein, CsPbBr3 perovskite quantum dots (CPB PQDs)@poly(methyl methacrylate) (PMMA) (CPB@PMMA) nanospheres were used as energy donors with high Förster resonance energy transfer (FRET) efficiency and exceptional biocompatibility for ultrasensitive dynamic imaging of tiny amounts of microRNAs in living cells. Impressively, compared with traditional homogeneous single QDs as energy donors, CPB@PMMA obtained by encapsulating numerous CPB PQDs into PMMA as energy donors could not only significantly increase the efficiency of FRET via improving the local concentration of CPB PQDs but also distinctly avoid the problem of cytotoxicity caused by divulged heavy metal ions entering living cells. Most importantly, in the presence of target miRNA-21, DNA dendrimer-like nanostructures labeled with 6-carboxy-tetramethylrhodamine (TAMRA) were generated by the exposed tether interhybridization of the Y-shape structure, which could wrap around the surface of CPB@PMMA nanospheres to remarkably bridge the distance of FRET and increase the opportunity for effective energy transfer, resulting in excellent precision and accuracy for ultrasensitive and dynamic imaging of miRNAs. As proof of concept, the proposed strategy exhibited ultrahigh sensitivity with a detection limit of 45.3 aM and distinctly distinguished drug-irritative miRNA concentration abnormalities with living cells. Hence, the proposed enzyme-free CPB@PMMA biosensor provides convincing evidence for supplying accurate information, which could be expected to be a powerful tool for bioanalysis, diagnosis, and prognosis of human diseases.


Subject(s)
Fluorescence Resonance Energy Transfer , MicroRNAs , Oxides , Quantum Dots , Titanium , Quantum Dots/chemistry , MicroRNAs/analysis , Humans , Titanium/chemistry , Oxides/chemistry , Calcium Compounds/chemistry , Polymethyl Methacrylate/chemistry , Lead/chemistry , Lead/analysis , Gadolinium/chemistry
10.
Anal Chem ; 96(29): 11742-11750, 2024 07 23.
Article in English | MEDLINE | ID: mdl-38980807

ABSTRACT

Stroke is an acute injury of the central nervous system caused by the disorders of cerebral blood circulation, which has become one of the major causes of disability and death. Hemorrhage, particularly subarachnoid hemorrhage (SAH), is one of the poorest prognostic factors in stroke, which is related to the thrombolytic therapy, and has been considered very dangerous. In this context, the MR angiography with high sensitivity and resolution has been developed based on biocompatible paramagnetic ultrasmall NaGdF4 nanoprobes. Owing to the appropriate hydrodynamic diameter, the nanoprobe can be confined inside the blood vessels and it only extravasates at the vascular injury site when the bleeding occurs. Relying on this property, the three-dimensional (3D) anatomic structures of artery occlusion of stroke rat can be precisely visualized; reperfusion-related SAH has been successfully visualized and identified. Benefiting from the long blood half-life of the nanoprobe, the observation window of MR angiography can last for the whole period of reperfusion, thereby monitoring the probable SAH in real time during thrombolytic therapy. More importantly, through reconstruction of multiparametric MRI, the arterial occlusion, cerebral ischemic region, and SAH can be simultaneously visualized in vivo in a 3D manner for the first time. Therefore, the current study provides a novel approach for both noninvasive 3D vascular visualization and hemorrhage alert, which possesses great prospects for clinical translation.


Subject(s)
Ischemic Stroke , Magnetic Resonance Angiography , Subarachnoid Hemorrhage , Animals , Subarachnoid Hemorrhage/diagnostic imaging , Rats , Ischemic Stroke/diagnostic imaging , Rats, Sprague-Dawley , Male , Gadolinium/chemistry , Reperfusion
11.
Anal Chem ; 96(19): 7697-7705, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38697043

ABSTRACT

Dual/multimodal imaging strategies are increasingly recognized for their potential to provide comprehensive diagnostic insights in cancer imaging by harnessing complementary data. This study presents an innovative probe that capitalizes on the synergistic benefits of afterglow luminescence and magnetic resonance imaging (MRI), effectively eliminating autofluorescence interference and delivering a superior signal-to-noise ratio. Additionally, it facilitates deep tissue penetration and enables noninvasive imaging. Despite the advantages, only a limited number of probes have demonstrated the capability to simultaneously enhance afterglow luminescence and achieve high-resolution MRI and afterglow imaging. Herein, we introduce a cutting-edge imaging platform based on semiconducting polymer nanoparticles (PFODBT) integrated with NaYF4@NaGdF4 (Y@Gd@PFO-SPNs), which can directly amplify afterglow luminescence and generate MRI and afterglow signals in tumor tissues. The proposed mechanism involves lanthanide nanoparticles producing singlet oxygen (1O2) upon white light irradiation, which subsequently oxidizes PFODBT, thereby intensifying afterglow luminescence. This innovative platform paves the way for the development of high signal-to-background ratio imaging modalities, promising noninvasive diagnostics for cancer.


Subject(s)
Lanthanoid Series Elements , Magnetic Resonance Imaging , Nanoparticles , Polymers , Semiconductors , Magnetic Resonance Imaging/methods , Animals , Lanthanoid Series Elements/chemistry , Polymers/chemistry , Nanoparticles/chemistry , Mice , Humans , Gadolinium/chemistry , Luminescence , Singlet Oxygen/chemistry , Yttrium/chemistry , Fluorides/chemistry , Mice, Nude
12.
BMC Biotechnol ; 24(1): 53, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107760

ABSTRACT

Chemotherapy as a cornerstone of cancer treatment is slowly being edged aside owing to its severe side effects and systemic toxicity. In this case, nanomedicine has emerged as an effective tool to address these drawbacks. Herein, a biocompatible carrier based on bovine serum albumin (BSA) coated gadolinium oxide nanoparticles (Gd2O3@BSA) was fabricated for curcumin (CUR) delivery and its physicochemical features along with its potential anticancer activity against nasal squamous cell carcinoma were also investigated. It was found that the fabricated Gd2O3@BSA containing CUR (Gd2O3@BSA-CUR) had spherical morphology with hydrodynamic size of nearly 26 nm, zeta-potential of -36 mV and high drug (CUR) loading capacity. Drug release profile disclosed that the release of CUR from the prepared Gd2O3@BSA-CUR nanoparticles occurred in a sustained- and pH-dependent manner. Also, in vitro cytotoxicity analysis revealed that the fabricated Gd2O3@BSA nanoparticles possessed excellent biosafety toward HFF2 normal cells, while Gd2O3@BSA-CUR appeared to display the greatest anticancer potential against RPMI 2650 and CNE-1 cancer cell lines. The results also show that the Gd2O3@BSA nanoparticles were compatible with the blood cells with minor hemolytic effect (< 3%). The manufactured NPs were found to be completely safe for biological applications in an in vivo subacute toxicity study. Taken together, these finding substantiate the potential anticancer activity of Gd2O3@BSA-CUR nanoparticles against nasal squamous cell carcinoma, but the results obtained demand further studies to assess their full potential.


Subject(s)
Antineoplastic Agents , Carcinoma, Squamous Cell , Gadolinium , Serum Albumin, Bovine , Gadolinium/chemistry , Gadolinium/pharmacology , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Carcinoma, Squamous Cell/drug therapy , Serum Albumin, Bovine/chemistry , Cell Line, Tumor , Animals , Curcumin/pharmacology , Curcumin/chemistry , Nose Neoplasms/drug therapy , Nanoparticles/chemistry , Metal Nanoparticles/chemistry , Cell Survival/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Drug Liberation , Hemolysis/drug effects
13.
BMC Plant Biol ; 24(1): 877, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39313798

ABSTRACT

BACKGROUND: Gadolinium (Gd) is an increasingly found lanthanide element in soil; thus, understanding its impact on plant physiology, biochemistry, and molecular responses is crucial. Here, we aimed to provide a comprehensive understanding of Gd (150 mg kg- 1) impacts on guar (Cyamopsis tetragonoloba L.) plant yield and metabolism and whether the symbiotic relationship with arbuscular mycorrhizal fungi (AMF) can mitigate Gd toxicity of soil contamination. RESULTS: AMF treatment improved mineral nutrient uptake and seed yield by 38-41% under Gd stress compared to non-inoculated stressed plants. Metabolic analysis unveiled the defense mechanisms adopted by AMF-treated plants, revealing carbon and nitrogen metabolism adaptations to withstand Gd contamination. This included an increase in the synthesis of primary metabolites, such as total sugar (+ 39% compared to control), soluble sugars (+ 29%), starch (+ 30%), and some main amino acids like proline (+ 57%) and phenylalanine (+ 87%) in the seeds of AMF-treated plants grown under Gd contamination. Furthermore, fatty acid and organic acid profile changes were accompanied by the production of secondary metabolites, including tocopherols, polyamines, phenolic acids, flavones, and anthocyanins. CONCLUSIONS: Overall, the coordinated synthesis of these compounds underscores the intricate regulatory mechanisms underlying plant-AMF interactions and highlights the potential of AMF to modulate plant secondary metabolism for enhanced Gd stress tolerance.


Subject(s)
Cyamopsis , Gadolinium , Mycorrhizae , Symbiosis , Mycorrhizae/physiology , Cyamopsis/metabolism , Soil Pollutants/toxicity , Soil Pollutants/metabolism , Seeds/microbiology , Seeds/drug effects
14.
Radiology ; 311(1): e240020, 2024 04.
Article in English | MEDLINE | ID: mdl-38652027

ABSTRACT

Gadolinium-based contrast agents (GBCAs) have augmented the capabilities of MRI, which has led to their widespread and increasing use in radiology practice. GBCAs are introduced into the environment through disposal of unused product and elimination after intravenous injection, both primarily via liquid dispersion into the environment. This human introduction of gadolinium into the environment, referred to as anthropogenic gadolinium, is associated with the detection of gadolinium in water systems, raising concerns for potential adverse impact and prompting certain mitigation actions. This article summarizes the existing knowledge and problem scope, conveys the relevant underlying chemical principles of chelate dissociation, and offers an inferred perspective that the magnitude of the problem is most unlikely to cause human harm. The merits and limitations regarding possible mitigation tactics, such as collecting urine after GBCA administration, use of lower-dose high-relaxivity macrocyclic GBCAs, and the option for virtual contrast-enhanced examinations, will be discussed. Finally, the potential for monitoring gadolinium uptake in bone will be presented, and recommendations for future research will be offered. © RSNA, 2024 See also the article by Ibrahim et al in this issue. See also the article by McKee et al in this issue.


Subject(s)
Contrast Media , Gadolinium , Water Pollution, Chemical , Magnetic Resonance Imaging
15.
Radiology ; 310(1): e231984, 2024 01.
Article in English | MEDLINE | ID: mdl-38226877

ABSTRACT

Background The presence of gadolinium traces in the skin after administration of gadolinium-based contrast agents (GBCAs) raised safety concerns regarding a potential association with small fiber neuropathy (SFN). Purpose To investigate signs of SFN in rat foot pads by quantification of the intraepidermal nerve fiber density (IENFD) after multiple GBCA administrations and to evaluate gadolinium concentration, chemical species, and clearance. Materials and Methods Fifty rats received eight intravenous injections of either gadodiamide, gadobutrol, gadoterate, gadoteridol (8 × 0.6 mmol per kilogram of body weight), or saline (1.2 mL per kilogram of body weight), within 2 weeks and were sacrificed 5 days or 5 weeks after the last injection. IENFD was determined with protein gene product (PGP) 9.5 immunofluorescent staining and blinded and automated image analysis. The gadolinium and GBCA concentrations were measured with inductively coupled plasma mass spectrometry (ICP-MS), laser ablation ICP-MS, and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI). P values were calculated using linear contrasts of model analysis. Results The IENFD (measured as geometric mean [SD] and in number of nerve fibers per millimeter of epidermis) was not significantly altered after 5 days (saline, 8.4 [1.1]; gadobutrol, 9.7 [1.2]; gadoterate, 9.2 [1.2]; gadoteridol, 9.9 [1.3]; gadodiamide, 10.5 [1.2]) or 5 weeks (saline, 19.7 [1.4]; gadobutrol, 16.4 [1.6]; gadoterate, 14.3 [1.6]; gadoteridol, 22.2 [1.8]; gadodiamide, 17.9 [1.4]). Gadolinium skin concentrations were highest for gadodiamide after 5 days (16.0 nmol/g [1.1]) and 5 weeks (10.6 nmol/g [1.2], -33%). Macrocyclic agents were lower at 5 days (gadoteridol, 2.6 nmol/g [1.2]; gadobutrol, 2.7 nmol/g [1.1]; and gadoterate, 2.3 nmol/g [1.2]) and efficiently cleared after 5 weeks (gadoteridol, -95%; gadobutrol and gadoterate, -96%). The distribution of gadolinium and IENF did not visually overlap. For macrocyclic agents, gadolinium was found in sweat glands and confirmed to be intact chelate. Conclusion There were no signs of SFN in rat foot pads using multiple dosing regimens at two time points after administration of GBCAs. Macrocyclic GBCAs exhibited lower levels of gadolinium in the skin and were effectively eliminated within 5 weeks compared with linear gadodiamide, and intact macrocyclic GBCA was detected in sweat glands. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Clement in this issue.


Subject(s)
Gadolinium DTPA , Gadolinium , Heterocyclic Compounds , Organometallic Compounds , Small Fiber Neuropathy , Animals , Rats , Contrast Media , Body Weight
16.
Radiology ; 310(2): e230793, 2024 02.
Article in English | MEDLINE | ID: mdl-38319162

ABSTRACT

Gadolinium-based contrast agents (GBCAs) form the cornerstone of current primary brain tumor MRI protocols at all stages of the patient journey. Though an imperfect measure of tumor grade, GBCAs are repeatedly used for diagnosis and monitoring. In practice, however, radiologists will encounter situations where GBCA injection is not needed or of doubtful benefit. Reducing GBCA administration could improve the patient burden of (repeated) imaging (especially in vulnerable patient groups, such as children), minimize risks of putative side effects, and benefit costs, logistics, and the environmental footprint. On the basis of the current literature, imaging strategies to reduce GBCA exposure for pediatric and adult patients with primary brain tumors will be reviewed. Early postoperative MRI and fixed-interval imaging of gliomas are examples of GBCA exposure with uncertain survival benefits. Half-dose GBCAs for gliomas and T2-weighted imaging alone for meningiomas are among options to reduce GBCA use. While most imaging guidelines recommend using GBCAs at all stages of diagnosis and treatment, non-contrast-enhanced sequences, such as the arterial spin labeling, have shown a great potential. Artificial intelligence methods to generate synthetic postcontrast images from decreased-dose or non-GBCA scans have shown promise to replace GBCA-dependent approaches. This review is focused on pediatric and adult gliomas and meningiomas. Special attention is paid to the quality and real-life applicability of the reviewed literature.


Subject(s)
Brain Neoplasms , Glioma , Meningeal Neoplasms , Meningioma , Adult , Humans , Child , Contrast Media , Gadolinium , Fantasy , Artificial Intelligence , Magnetic Resonance Imaging , Brain Neoplasms/diagnostic imaging , Glioma/diagnostic imaging
17.
BMC Med ; 22(1): 329, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39135199

ABSTRACT

BACKGROUND: Hypersensitivity reactions (HSRs) can occur unexpectedly and be life-threatening when gadolinium-based contrast agents (GBCAs) are used. Gadolinium deposition disease (GDD) and symptoms associated with gadolinium exposure (SAGE) have been controversial for a long time. However, similar studies are currently incomplete or outdated. Therefore, comparing the safety of different GBCAs in terms of HSRs and GDD/SAGE using the latest post-marketing safety data should yield further insights into safely using GBCAs. METHODS: The safety differences between all GBCAs to GDD and the spectrum of GBCA-related HSRs were all compared and analyzed by using the World Health Organization database VigiBase and the FDA Adverse Event Reporting System (FAERS) database in this study. A further analysis of SAGE was also conducted using FAERS data. The lower limit of the reporting odds ratio (ROR) 95% confidence interval was used for signal detection. Moreover, the frequency of HSRs was calculated by dividing the number of reports in VigiBase by the total sales volume (measured in millions) from 2008 to 2022 in the IQVIA Multinational Integrated Data Analysis System. All adverse events were standardized using the Medical Dictionary for Drug Regulatory Activities (MedDRA) 26.0. RESULTS: This study shows that all GBCAs have the potential to induce HSRs, with nonionic linear GBCAs exhibiting a comparatively lower signal. According to standardized MedDRA query stratification analysis, gadobutrol had a greater ROR025 for angioedema. The ROR025 of gadobenate dimeglumine and gadoteridol is larger for anaphylactic/anaphylactoid shock conditions. Regarding severe cutaneous adverse reactions, only gadoversetamide and gadodiamide showed signals in FAERS and VigiBase. There were also differences in the frequency of HSRs between regions. Regarding GDD, gadoterate meglumine, and gadoteridol had a lower ROR025. An analysis of the 29 preferred terms linked to SAGE indicated that special consideration should be given to the risk of skin induration associated with gadoversetamide, gadopentetate dimeglumine, gadobenate dimeglumine, gadodiamide, and gadoteridol. Additionally, gadodiamide and gadoteridol pose a greater risk of skin tightness compared to other GBCAs. CONCLUSIONS: The risk differences among GBCAs using data from several sources were compared in this study. However, as a hypothesis-generating method, a clear causal relationship would require further research and validation.


Subject(s)
Contrast Media , Databases, Factual , Drug Hypersensitivity , Gadolinium , Humans , Gadolinium/adverse effects , Contrast Media/adverse effects , Drug Hypersensitivity/epidemiology , Adverse Drug Reaction Reporting Systems , United States , World Health Organization
18.
BMC Med ; 22(1): 86, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413945

ABSTRACT

BACKGROUND: Myocardial bridging (MB) is common in patients with hypertrophic cardiomyopathy (HCM). There are sparse data on the impact of MB on myocardial fibrosis in HCM. This study was designed to evaluate the relationship between MB and myocardial fibrosis in patients with obstructive HCM. METHODS: In this cohort study, retrospective data were collected from a high-volume HCM center. Patients with obstructive HCM who underwent septal myectomy and preoperative cardiac magnetic resonance (CMR) were screened from 2011 to 2018. RESULTS: Finally, 492 patients were included in this study, with an average age of 45.7 years. Of these patients, 76 patients had MB. MB occurred mostly in the left anterior descending artery (73/76). The global extent of late gadolinium enhancement (LGE) was correlated with the degree of systolic compression (r = 0.33, p = 0.003). Multivariable linear regression analysis revealed that the degree of systolic compression was an independent risk factor for LGE (ß = 0.292, p = 0.007). The LGE fraction of basal and mid anteroseptal segments in patients with severe MB (compression ratio ≥ 80%) was significantly greater than that in patients with mild to moderate MB (compression ratio < 80%). During a median follow-up of 28 (IQR: 15-52) months, 15 patients died. Kaplan-Meier analysis did not identify differences in all-cause death (log-rank p = 0.63) or cardiovascular death (log-rank p = 0.72) between patients undergoing MB-related surgery and those without MB. CONCLUSIONS: MB with severe systolic compression was significantly associated with a high extent of fibrosis in patients with obstructive HCM. Concomitant myotomy or coronary artery bypass grafting might provide excellent survival similar to that of patients without MB. Identification of patients with severe MB and providing comprehensive management might help improve the prognosis of patients with HCM.


Subject(s)
Cardiomyopathy, Hypertrophic , Myocardial Bridging , Humans , Middle Aged , Myocardium/pathology , Contrast Media , Retrospective Studies , Cohort Studies , Myocardial Bridging/complications , Myocardial Bridging/diagnostic imaging , Myocardial Bridging/pathology , Gadolinium , Cardiomyopathy, Hypertrophic/complications , Cardiomyopathy, Hypertrophic/diagnostic imaging , Cardiomyopathy, Hypertrophic/surgery , Fibrosis , Risk Factors
19.
Small ; 20(14): e2308547, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37988646

ABSTRACT

Magnetic resonance imaging contrast agents are frequently used in clinics to enhance the contrast between diseased and normal tissues. The previously reported poly(acrylic acid) stabilized exceedingly small gadolinium oxide nanoparticles (ES-GdON-PAA) overcame the problems of commercial Gd chelates, but limitations still exist, i.e., high r2/r1 ratio, long blood circulation half-life, and no data for large scale synthesis and formulation optimization. In this study, polymaleic acid (PMA) is found to be an ideal stabilizer to synthesize ES-GdONs. Compared with ES-GdON-PAA, the PMA-stabilized ES-GdON (ES-GdON-PMA) has a lower r2/r1 ratio (2.05, 7.0 T) and a lower blood circulation half-life (37.51 min). The optimized ES-GdON-PMA-9 has an exceedingly small particle size (2.1 nm), excellent water dispersibility, and stability. A facile, efficient, and environmental friendly synthetic method is developed for large-scale synthesis of the ES-GdONs-PMA. The weight of the optimized freeze-dried ES-GdON-PMA-26 synthesized in a 20 L of reactor reaches the kilogram level. The formulation optimization is also finished, and the concentrated ES-GdON-PMA-26 formulation (CGd = 100 mm) after high-pressure steam sterilization possesses eligible physicochemical properties (i.e., pH value, osmolality, viscosity, and density) for investigational new drug application.


Subject(s)
Contrast Media , Nanoparticles , Contrast Media/chemistry , Magnetic Resonance Imaging/methods , Gadolinium/chemistry , Nanoparticles/chemistry
20.
Am Heart J ; 267: 101-115, 2024 01.
Article in English | MEDLINE | ID: mdl-37956921

ABSTRACT

BACKGROUND: Since the onset of widespread COVID-19 vaccination, increased incidence of COVID-19 vaccine-associated myocarditis (VA-myocarditis) has been noted, particularly in male adolescents. METHODS: Patients <18 years with suspected myocarditis following COVID-19 vaccination within 21 days were enrolled in the PedMYCVAC cohort, a substudy within the prospective multicenter registry for pediatric myocarditis "MYKKE." Clinical data at initial admission, 3- and 9-months follow-up were monitored and compared to pediatric patients with confirmed non-vaccine-associated myocarditis (NVA-myocarditis) adjusting for various baseline characteristics. RESULTS: From July 2021 to December 2022, 56 patients with VA-myocarditis across 15 centers were enrolled (median age 16.3 years, 91% male). Initially, 11 patients (20%) had mildly reduced left ventricular ejection fraction (LVEF; 45%-54%). No incidents of severe heart failure, transplantation or death were observed. Of 49 patients at 3-months follow-up (median (IQR) 94 (63-118) days), residual symptoms were registered in 14 patients (29%), most commonly atypical intermittent chest pain and fatigue. Diagnostic abnormalities remained in 23 patients (47%). Of 21 patients at 9-months follow-up (259 (218-319) days), all were free of symptoms and diagnostic abnormalities remained in 9 patients (43%). These residuals were mostly residual late gadolinium enhancement in magnetic resonance imaging. Patients with NVA-myocarditis (n=108) more often had symptoms of heart failure (P = .003), arrhythmias (P = .031), left ventricular dilatation (P = .045), lower LVEF (P < .001) and major cardiac adverse events (P = .102). CONCLUSIONS: Course of COVID-19 vaccine-associated myocarditis in pediatric patients seems to be mild and differs from non-vaccine-associated myocarditis. Due to a considerable number of residual symptoms and diagnostic abnormalities at follow-up, further studies are needed to define its long-term implications.


Subject(s)
COVID-19 Vaccines , COVID-19 , Heart Failure , Myocarditis , Adolescent , Child , Female , Humans , Male , Contrast Media , COVID-19/complications , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Disease Progression , Follow-Up Studies , Gadolinium , Heart Failure/complications , Prospective Studies , Registries , Stroke Volume , Ventricular Function, Left
SELECTION OF CITATIONS
SEARCH DETAIL