Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 244
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 33: 227-56, 2015.
Article in English | MEDLINE | ID: mdl-25581310

ABSTRACT

The diverse microbial populations constituting the intestinal microbiota promote immune development and differentiation, but because of their complex metabolic requirements and the consequent difficulty culturing them, they remained, until recently, largely uncharacterized and mysterious. In the last decade, deep nucleic acid sequencing platforms, new computational and bioinformatics tools, and full-genome characterization of several hundred commensal bacterial species facilitated studies of the microbiota and revealed that differences in microbiota composition can be associated with inflammatory, metabolic, and infectious diseases, that each human is colonized by a distinct bacterial flora, and that the microbiota can be manipulated to reduce and even cure some diseases. Different bacterial species induce distinct immune cell populations that can play pro- and anti-inflammatory roles, and thus the composition of the microbiota determines, in part, the level of resistance to infection and susceptibility to inflammatory diseases. This review summarizes recent work characterizing commensal microbes that contribute to the antimicrobial defense/inflammation axis.


Subject(s)
Disease Resistance/immunology , Gastroenteritis/immunology , Gastroenteritis/microbiology , Gastrointestinal Microbiome/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Adaptive Immunity , Animals , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Autoimmune Diseases/microbiology , Computational Biology , Diet , Disease Susceptibility , Gastroenteritis/metabolism , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Immunity, Mucosal , Intestinal Mucosa/metabolism , Metabolome , Neoplasms/etiology , Vitamins/metabolism
2.
Nat Immunol ; 18(10): 1084-1093, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28846084

ABSTRACT

Interferon-λ (IFN-λ) is a central regulator of mucosal immunity; however, its signaling specificity relative to that of type I interferons is poorly defined. IFN-λ can induce antiviral interferon-stimulated genes (ISGs) in epithelia, while the effect of IFN-λ in non-epithelial cells remains unclear. Here we report that neutrophils responded to IFN-λ. We found that in addition to inducing ISG transcription, IFN-λ (but not IFN-ß) specifically activated a translation-independent signaling pathway that diminished the production of reactive oxygen species and degranulation in neutrophils. In mice, IFN-λ was elicited by enteric viruses and acted on neutrophils to decrease oxidative stress and intestinal damage. Thus, IFN-λ acted as a unique immunomodulatory agent by modifying transcriptional and non-translational neutrophil responses, which might permit a controlled development of the inflammatory process.


Subject(s)
Gastroenteritis/etiology , Gastroenteritis/metabolism , Interferon-gamma/metabolism , Intestinal Mucosa/metabolism , Intestines/immunology , Neutrophils/immunology , Neutrophils/metabolism , Animals , Cluster Analysis , Disease Models, Animal , Gastroenteritis/pathology , Gene Expression , Gene Expression Profiling , Gene Expression Regulation , Genetic Predisposition to Disease , Humans , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Intestines/pathology , Mice , Mice, Knockout , Microbiota , Oxidative Stress , Receptors, Cytokine/genetics , Receptors, Cytokine/metabolism
3.
Nat Immunol ; 17(11): 1244-1251, 2016 Oct 19.
Article in English | MEDLINE | ID: mdl-27760104

ABSTRACT

Intestinal epithelial cells apically express glycans, especially α1,2-fucosyl linkages, which work as a biological interface for the host-microbe interaction. Emerging studies have shown that epithelial α1,2-fucosylation is regulated by microbes and by group 3 innate lymphoid cells (ILC3s). Dysregulation of the gene (FUT2) encoding fucosyltransferase 2, an enzyme governing epithelial α1,2-fucosylation, is associated with various human disorders, including infection and chronic inflammatory diseases. This suggests a critical role for an interaction between microbes, epithelial cells and ILC3s mediated via glycan residues. In this Review, using α1,2-fucose and Fut2 gene expression as an example, we describe how epithelial glycosylation is controlled by immune cells and luminal microbes. We also address the pathophysiological contribution of epithelial α1,2-fucosylation to pathogenic and commensal microbes as well as the potential of α1,2-fucose and its regulatory pathway as previously unexploited targets in the development of new therapeutic approaches for human diseases.


Subject(s)
Gastroenteritis/metabolism , Homeostasis , Intestinal Mucosa/metabolism , Animals , Carbohydrate Metabolism , Carbohydrates , Fucose/metabolism , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Gastroenteritis/genetics , Gastroenteritis/immunology , Gastroenteritis/microbiology , Genetic Predisposition to Disease , Glycosylation , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Immunity, Mucosal , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Lymphocytes/immunology , Lymphocytes/metabolism , Polymorphism, Genetic , Galactoside 2-alpha-L-fucosyltransferase
4.
Immunity ; 50(6): 1365-1379, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31216461

ABSTRACT

The mammalian intestine is colonized by a wealth of microorganisms-including bacteria, viruses, protozoa, and fungi-that are all integrated into a functional trans-kingdom community. Characterization of the composition of the fungal community-the mycobiota-has advanced further than the much-needed mechanistic studies. Recent findings have revealed roles for the gut mycobiota in the regulation of host immunity and in the development and progression of human diseases of inflammatory origin. We review these findings here while placing them in the context of the current understanding of the pathways and cellular networks that induce local and systemic immune responses to fungi in the gastrointestinal tract. We discuss gaps in knowledge and argue for the importance of considering bacteria-fungal interactions as we aim to define the roles of mycobiota in immune homeostasis and immune-associated pathologies.


Subject(s)
Disease Susceptibility , Gastroenteritis/etiology , Gastrointestinal Microbiome/immunology , Immunity , Adaptive Immunity , Animals , Disease Susceptibility/immunology , Gastroenteritis/metabolism , Homeostasis , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate
5.
Gastroenterology ; 160(5): 1647-1661, 2021 04.
Article in English | MEDLINE | ID: mdl-33307034

ABSTRACT

BACKGROUND & AIMS: Gastrointestinal (GI) manifestations have been increasingly reported in patients with coronavirus disease 2019 (COVID-19). However, the roles of the GI tract in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are not fully understood. We investigated how the GI tract is involved in SARS-CoV-2 infection to elucidate the pathogenesis of COVID-19. METHODS: Our previously established nonhuman primate (NHP) model of COVID-19 was modified in this study to test our hypothesis. Rhesus monkeys were infected with an intragastric or intranasal challenge with SARS-CoV-2. Clinical signs were recorded after infection. Viral genomic RNA was quantified by quantitative reverse transcription polymerase chain reaction. Host responses to SARS-CoV-2 infection were evaluated by examining inflammatory cytokines, macrophages, histopathology, and mucin barrier integrity. RESULTS: Intranasal inoculation with SARS-CoV-2 led to infections and pathologic changes not only in respiratory tissues but also in digestive tissues. Expectedly, intragastric inoculation with SARS-CoV-2 resulted in the productive infection of digestive tissues and inflammation in both the lung and digestive tissues. Inflammatory cytokines were induced by both types of inoculation with SARS-CoV-2, consistent with the increased expression of CD68. Immunohistochemistry and Alcian blue/periodic acid-Schiff staining showed decreased Ki67, increased cleaved caspase 3, and decreased numbers of mucin-containing goblet cells, suggesting that the inflammation induced by these 2 types of inoculation with SARS-CoV-2 impaired the GI barrier and caused severe infections. CONCLUSIONS: Both intranasal and intragastric inoculation with SARS-CoV-2 caused pneumonia and GI dysfunction in our rhesus monkey model. Inflammatory cytokines are possible connections for the pathogenesis of SARS-CoV-2 between the respiratory and digestive systems.


Subject(s)
COVID-19/transmission , Gastroenteritis/pathology , Gastrointestinal Tract/pathology , Lung/pathology , Animals , Bronchi/metabolism , Bronchi/pathology , COVID-19/immunology , COVID-19/metabolism , COVID-19/pathology , COVID-19 Nucleic Acid Testing , Caspase 3/metabolism , Cytokines/immunology , Disease Models, Animal , Gastric Mucosa , Gastroenteritis/metabolism , Gastroenteritis/virology , Gastrointestinal Tract/immunology , Gastrointestinal Tract/metabolism , Goblet Cells/pathology , Intestine, Small/metabolism , Intestine, Small/pathology , Ki-67 Antigen/metabolism , Lung/diagnostic imaging , Lung/immunology , Lung/metabolism , Macaca mulatta , Nasal Mucosa , RNA, Viral/isolation & purification , Random Allocation , Rectum/metabolism , Rectum/pathology , SARS-CoV-2 , Trachea/metabolism , Trachea/pathology
6.
J Virol ; 95(3)2021 01 13.
Article in English | MEDLINE | ID: mdl-33115870

ABSTRACT

Human noroviruses are the most common nonbacterial cause of gastroenteritis outbreaks, with new variants and genotypes frequently emerging. The origin of these new viruses is unknown; however, animals have been proposed as a potential source, as human noroviruses have been detected in animal species. Here, we investigated the potential of animals to serve as a reservoir of human noroviruses by testing norovirus attachment to formalin-fixed intestinal tissues of a range of potential reservoir animals. We set up a novel method to study norovirus binding using fluorescein isothiocyanate (FITC)-labeled virus-like particles (VLPs). In humans, noroviruses interact with histo-blood group antigens (HBGAs), carbohydrates that are expressed, among others, on the epithelial lining of the gastrointestinal tract. In animals, this interaction is not well understood. To test if virus binding depends on HBGAs, we characterized the HBGA phenotype in animal tissues by immunohistochemistry. With the exception of the black-headed gull and the straw-colored fruitbat, we observed the attachment of several human norovirus genotypes to the intestinal epithelium of all tested animal species. However, we did not find an association between the expression of a specific HBGA phenotype and virus-like particle (VLP) attachment. We show that selected human noroviruses can attach to small-intestinal tissues across species, supporting the hypothesis that human noroviruses can reside in an animal reservoir. However, whether this attachment can subsequently lead to infection needs to be further assessed.IMPORTANCE Noroviruses are a major cause of acute gastroenteritis in humans. New norovirus variants and recombinants (re)emerge regularly in the human population. From animal experiments and surveillance studies, it has become clear that at least seven animal models are susceptible to infection with human strains and that domesticated and wild animals shed human noroviruses in their feces. As virus attachment is an important first step for infection, we used a novel method utilizing FITC-labeled VLPs to test for norovirus attachment to intestinal tissues of potential animal hosts. We further characterized these tissues with regard to their HBGA expression, a well-studied norovirus susceptibility factor in humans. We found attachment of several human strains to a variety of animal species independent of their HBGA phenotype. This supports the hypothesis that human strains could reside in an animal reservoir.


Subject(s)
Blood Group Antigens/metabolism , Caliciviridae Infections/virology , Disease Models, Animal , Gastroenteritis/virology , Intestinal Mucosa/virology , Norovirus/physiology , Virus Attachment , Amino Acid Sequence , Animals , Caliciviridae Infections/metabolism , Caliciviridae Infections/pathology , Feces/virology , Gastroenteritis/metabolism , Gastroenteritis/pathology , Humans , Intestinal Mucosa/metabolism , Sequence Homology
7.
Int Arch Allergy Immunol ; 183(1): 80-92, 2022.
Article in English | MEDLINE | ID: mdl-34515121

ABSTRACT

INTRODUCTION: The increase in high-fat diet (HFD)-induced obesity and food allergy leads to an assumption that the 2 are related. This study aims to (1) systematic verification of HFD-induced obesity aggravates food allergy and (2) explore the correlation and molecular mechanisms of HFD-induced obesity promotes food allergy. METHODS: Female BALB/c mice are divided into the control group (control), the ovalbumin (OVA)-sensitized group (OVA), the HFD-induced obesity group (HFD), and HFD-induced allergic obesity group (HFD + OVA). RESULTS: In vivo data showed that HFD feed enhance clinical symptoms and intestinal mucosa villi shed on allergic mice. Moreover, we found that HFD and OVA irritation enhanced levels of mast cell degranulation and Th2 humoral response. Additionally, Western blot analysis showed the potentiation of peroxisome proliferator-activated receptor γ (PPAR γ) remarkably reduced on intestinal in HFD and OVA group, thereby inhibiting the expression of nuclear factor kappa B (NF-κB)/PPAR γ signal the phosphorylation of NF-κB P65. CONCLUSIONS: Overall, our results suggest that HFD-induced obesity is a potential risk factor for food allergy, which related to intestinal barrier destruction and inflammation through the PPAR γ/NF-κB signaling pathway.


Subject(s)
Food Hypersensitivity/etiology , Food Hypersensitivity/metabolism , Gastroenteritis/etiology , Gastroenteritis/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Obesity/complications , Animals , Biomarkers , Cytokines/metabolism , Diet, High-Fat , Disease Models, Animal , Disease Susceptibility , Female , Food Hypersensitivity/pathology , Gastroenteritis/pathology , Immunohistochemistry , Intestinal Mucosa/pathology , Mice , NF-kappa B/metabolism , Obesity/etiology , PPAR gamma , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
8.
J Virol ; 94(13)2020 06 16.
Article in English | MEDLINE | ID: mdl-32321816

ABSTRACT

Human norovirus frequently causes outbreaks of acute gastroenteritis. Although discovered more than five decades ago, antiviral development has, until recently, been hampered by the lack of a reliable human norovirus cell culture system. Nevertheless, a lot of pathogenesis studies were accomplished using murine norovirus (MNV), which can be grown routinely in cell culture. In this study, we analyzed a sizeable library of nanobodies that were raised against the murine norovirus virion with the main purpose of developing nanobody-based inhibitors. We discovered two types of neutralizing nanobodies and analyzed the inhibition mechanisms using X-ray crystallography, cryo-electron microscopy (cryo-EM), and cell culture techniques. The first type bound on the top region of the protruding (P) domain. Interestingly, this nanobody binding region closely overlapped the MNV receptor-binding site and collectively shared numerous P domain-binding residues. In addition, we showed that these nanobodies competed with the soluble receptor, and this action blocked virion attachment to cultured cells. The second type bound at a dimeric interface on the lower side of the P dimer. We discovered that these nanobodies disrupted a structural change in the capsid associated with binding cofactors (i.e., metal cations/bile acid). Indeed, we found that capsids underwent major conformational changes following addition of Mg2+ or Ca2+ Ultimately, these nanobodies directly obstructed a structural modification reserved for a postreceptor attachment stage. Altogether, our new data show that nanobody-based inhibition could occur by blocking functional and structural capsid properties.IMPORTANCE This research discovered and analyzed two different types of MNV-neutralizing nanobodies. The top-binding nanobodies sterically inhibited the receptor-binding site, whereas the dimeric-binding nanobodies interfered with a structural modification associated with cofactor binding. Moreover, we found that the capsid contained a number of vulnerable regions that were essential for viral replication. In fact, the capsid appeared to be organized in a state of flux, which could be important for cofactor/receptor-binding functions. Blocking these capsid-binding events with nanobodies directly inhibited essential capsid functions. Moreover, a number of MNV-specific nanobody binding epitopes were comparable to human norovirus-specific nanobody inhibitors. Therefore, this additional structural and inhibition information could be further exploited in the development of human norovirus antivirals.


Subject(s)
Caliciviridae Infections/therapy , Norovirus/genetics , Single-Domain Antibodies/pharmacology , Binding Sites/genetics , Capsid/metabolism , Capsid Proteins/metabolism , Cryoelectron Microscopy/methods , Crystallography, X-Ray/methods , Epitopes/metabolism , Gastroenteritis/metabolism , Norovirus/immunology , Norovirus/pathogenicity , Protein Binding/genetics , Protein Conformation , Protein Domains/genetics , Single-Domain Antibodies/immunology , Single-Domain Antibodies/metabolism , Virion/metabolism
9.
PLoS Pathog ; 15(4): e1007745, 2019 04.
Article in English | MEDLINE | ID: mdl-31009517

ABSTRACT

The mechanisms by which the gut luminal environment is disturbed by the immune system to foster pathogenic bacterial growth and survival remain incompletely understood. Here, we show that STAT2 dependent type I IFN signaling contributes to the inflammatory environment by disrupting hypoxia enabling the pathogenic S. Typhimurium to outgrow the microbiota. Stat2-/- mice infected with S. Typhimurium exhibited impaired type I IFN induced transcriptional responses in cecal tissue and reduced bacterial burden in the intestinal lumen compared to infected wild-type mice. Although inflammatory pathology was similar between wild-type and Stat2-/- mice, we observed decreased hypoxia in the gut tissue of Stat2-/- mice. Neutrophil numbers were similar in wild-type and Stat2-/- mice, yet Stat2-/- mice showed reduced levels of myeloperoxidase activity. In vitro, the neutrophils from Stat2-/- mice produced lower levels of superoxide anion upon stimulation with the bacterial ligand N-formylmethionyl-leucyl-phenylalanine (fMLP) in the presence of IFNα compared to neutrophils from wild-type mice, indicating that the neutrophils were less functional in Stat2-/- mice. Cytochrome bd-II oxidase-mediated respiration enhances S. Typhimurium fitness in wild-type mice, while in Stat2-/- deficiency, this respiratory pathway did not provide a fitness advantage. Furthermore, luminal expansion of S. Typhimurium in wild-type mice was blunted in Stat2-/- mice. Compared to wild-type mice which exhibited a significant perturbation in Bacteroidetes abundance, Stat2-/- mice exhibited significantly less perturbation and higher levels of Bacteroidetes upon S. Typhimurium infection. Our results highlight STAT2 dependent type I IFN mediated inflammation in the gut as a novel mechanism promoting luminal expansion of S. Typhimurium.


Subject(s)
Dysbiosis/immunology , Gastroenteritis/immunology , Inflammation/immunology , Interferon Type I/immunology , STAT2 Transcription Factor/physiology , Salmonella Infections/immunology , Salmonella typhimurium/immunology , Animals , Cells, Cultured , Dysbiosis/metabolism , Dysbiosis/pathology , Female , Gastroenteritis/metabolism , Gastroenteritis/microbiology , Gastroenteritis/pathology , Inflammation/metabolism , Inflammation/microbiology , Inflammation/pathology , Interferon Type I/metabolism , Intestines/immunology , Intestines/microbiology , Intestines/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/microbiology , Neutrophils/pathology , STAT1 Transcription Factor/physiology , Salmonella Infections/metabolism , Salmonella Infections/microbiology , Salmonella Infections/pathology
10.
Food Microbiol ; 92: 103594, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32950136

ABSTRACT

Human noroviruses (HuNoVs) are a main cause of acute gastroenteritis worldwide. They are frequently involved in foodborne and waterborne outbreaks. Environmental transmission of the virus depends on two main factors: the ability of viral particles to remain infectious and their adhesion capacity onto different surfaces. Until recently, adhesion of viral particles to food matrices was mainly investigated by considering non-specific interactions (e.g. electrostatic, hydrophobic) and there was only limited information about infectious HuNoVs because of the absence of a reliable in vitro HuNoV cultivation system. Many HuNoV strains have now been described as having specific binding interactions with human Histo-Blood Group Antigens (HBGAs) and non-HBGA ligands found in food and the environment. Relevant approaches to the in vitro replication of HuNoVs were also proposed recently. On the basis of the available literature data, this review discusses the opportunities to use this new knowledge to obtain a better understanding of HuNoV transmission to human populations and better evaluate the hazard posed by HuNoVs in foodstuffs and the environment.


Subject(s)
Blood Group Antigens/metabolism , Caliciviridae Infections/metabolism , Gastroenteritis/metabolism , Norovirus/metabolism , Animals , Blood Group Antigens/genetics , Caliciviridae Infections/therapy , Caliciviridae Infections/transmission , Caliciviridae Infections/virology , Gastroenteritis/genetics , Gastroenteritis/therapy , Gastroenteritis/virology , Humans , Norovirus/genetics , Norovirus/isolation & purification , Norovirus/physiology , Protein Binding , Viral Proteins/genetics , Viral Proteins/metabolism
11.
Allergy ; 74(9): 1748-1759, 2019 09.
Article in English | MEDLINE | ID: mdl-30897213

ABSTRACT

BACKGROUND: The vagus nerve has emerged as an important modulator of the intestinal immune system. Its anti-inflammatory properties have been previously shown in innate and Th1/Th17 predominant inflammatory models. To what extent the vagus nerve is of importance in Th2 inflammatory responses like food allergy is still unclear. In this study, we therefore aimed to investigate the effect of vagotomy (VGX) and vagus nerve stimulation (VNS), on the development and severity of experimental food allergy. METHODS: Balb/C mice were first sensitized with ovalbumin (OVA) in the presence of alum. Prior to oral challenges with OVA, mice were subjected to VGX or VNS. Disease severity was determined by assessing severity and onset of diarrhoea, OVA-specific antibody production, mast cell number and activity, inflammatory gene expression in duodenal tissue and lamina propria immune cells by flow cytometry analysis. RESULTS: When compared to control mice, VGX did not significantly affect the development and severity of the disease in our model of food allergy. VNS, on the other hand, resulted in a significant amelioration of the different inflammatory parameters assessed. This effect was independent of α7nAChR and is possibly mediated through the dampening of mast cells and increased phagocytosis of OVA by CX3CR1hi macrophages. CONCLUSIONS: These results underscore the anti-inflammatory properties of the vagus nerve and the potential of neuro-immune interactions in the intestine. Further insight into the underlying mechanisms could ultimately lead to novel therapeutic approaches in the treatment of not only food allergy but also other immune-mediated diseases.


Subject(s)
Food Hypersensitivity/etiology , Food Hypersensitivity/metabolism , Gastroenteritis/etiology , Gastroenteritis/metabolism , Vagus Nerve Stimulation , Allergens , Animals , Biomarkers , Cell Membrane Permeability , Disease Models, Animal , Food Hypersensitivity/diagnosis , Gastroenteritis/pathology , Immunophenotyping , Macrophages/immunology , Macrophages/metabolism , Mast Cells/immunology , Mast Cells/metabolism , Mastocytosis , Mice , Mice, Knockout , Neutrophil Infiltration/immunology , Ovalbumin/immunology , Severity of Illness Index , Vagotomy , alpha7 Nicotinic Acetylcholine Receptor/genetics , alpha7 Nicotinic Acetylcholine Receptor/metabolism
12.
Arch Toxicol ; 93(8): 2127-2139, 2019 08.
Article in English | MEDLINE | ID: mdl-31309260

ABSTRACT

Chronic exposure to inorganic arsenic (As) [As(III) + As(V)], which affects millions of people, increases the incidence of some kinds of cancer and other non-carcinogenic pathologies. Although the oral pathway is the main form of exposure, in vivo studies have not been conducted to verify the intestinal toxicity of this metalloid. The aim of this study is to perform an in vivo evaluation of the intestinal toxicity of inorganic As, using female BALB/c mice exposed through drinking water to various concentrations of As(III) (20, 50, and 80 mg/L) for 2 months. An increase was observed in oxygen and/or nitrogen reactive species, and in gene and protein expression of pro-inflammatory cytokines (IL-1ß, IL-2, IL-6) at concentrations equal to or greater than 50 mg/L. These changes were accompanied by a profound remodeling of the intestinal microbial profile in terms of diversity and global composition, which could be at the basis or exacerbate As(III) toxic effects. The histological study showed that there was moderate inflammation of the mucosa and submucosa, accompanied by hyperplasia of crypts at the highest administered dose. In addition, all the treatments with As(III) resulted in a decreased expression of Muc2, which encodes one of the main components of the intestinal layer of mucus. The effects described are compatible with the increased intestinal permeability observed at concentrations equal to or greater than 50 mg/L, indicative of loss of barrier function.


Subject(s)
Arsenites/toxicity , Gastrointestinal Microbiome/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Animals , Arsenites/administration & dosage , Cytokines/genetics , Female , Gastroenteritis/chemically induced , Gastroenteritis/metabolism , Gastroenteritis/pathology , Mice, Inbred BALB C , Mucin-2/genetics , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Tight Junction Proteins/genetics , Tight Junction Proteins/metabolism , Toxicity Tests, Subchronic
13.
Article in English | MEDLINE | ID: mdl-30104275

ABSTRACT

Norovirus is the main cause of viral gastroenteritis worldwide. Although norovirus gastroenteritis is self-limiting in immunocompetent individuals, chronic infections with debilitating and life-threatening complications occur in immunocompromised patients. Nitazoxanide (NTZ) has been used empirically in the clinic and has demonstrated effectiveness against norovirus gastroenteritis. In this study, we aimed at uncovering the antiviral potential and mechanisms of action of NTZ and its active metabolite, tizoxanide (TIZ), using a human norovirus (HuNV) replicon. NTZ and TIZ, collectively referred to as thiazolides (TZD), potently inhibited replication of HuNV and a norovirus surrogate, feline calicivirus. Mechanistic studies revealed that TZD activated cellular antiviral response and stimulated the expression of a subset of interferon-stimulated genes (ISGs), particularly interferon regulatory factor 1 (IRF-1), not only in a Huh7 cell-based HuNV replicon, but also in naive Huh7 and Caco-2 cells and novel human intestinal organoids. Overexpression of exogenous IRF-1 inhibited HuNV replication, whereas knockdown of IRF-1 largely attenuated the antiviral activity of TZD, suggesting that IRF-1 mediated TZD inhibition of HuNV. By using a Janus kinase (JAK) inhibitor, CP-690550, and a STAT1 knockout approach, we found that TZD induced antiviral response independently of the classical JAK-signal transducers and activators of transcription (JAK-STAT) pathway. Furthermore, TZD and ribavirin synergized to inhibit HuNV replication and completely depleted the replicons from host cells after long-term treatment. In summary, our results demonstrated that TZD combated HuNV replication through activation of cellular antiviral response, in particular by inducing a prominent antiviral effector, IRF-1. NTZ monotherapy or combination with ribavirin represent promising options for treating norovirus gastroenteritis, especially in immunocompromised patients.


Subject(s)
Antiviral Agents/pharmacology , Norovirus/drug effects , Ribavirin/pharmacology , Thiazoles/pharmacology , Virus Replication/drug effects , Caco-2 Cells , Caliciviridae Infections/drug therapy , Caliciviridae Infections/metabolism , Caliciviridae Infections/virology , Cell Line , Cell Line, Tumor , Drug Synergism , Gastroenteritis/drug therapy , Gastroenteritis/metabolism , Gastroenteritis/virology , HEK293 Cells , Humans , Interferon Regulatory Factor-1/metabolism , Intestines/virology , Janus Kinases/metabolism , Nitro Compounds , Organoids/drug effects , Organoids/metabolism , Organoids/virology , Replicon/drug effects , STAT1 Transcription Factor/metabolism
14.
Mov Disord ; 33(5): 793-804, 2018 05.
Article in English | MEDLINE | ID: mdl-29572994

ABSTRACT

BACKGROUND: Gastrointestinal symptoms are common in Parkinson's disease and frequently precede the development of motor impairments. Intestinal inflammation has been proposed as a driver of disease pathology, and evaluation of inflammatory mediators in stool could possibly identify valuable early-stage biomarkers. We measured immune- and angiogenesis-related proteins in human stool to examine inflammatory profiles associated with Parkinson's disease. METHODS: Stool samples and subjects' self-reported metadata were obtained from 156 individuals with Parkinson's disease and 110 without, including spouse and nonhousehold controls. Metadata were probed for disease-associated differences, and levels of 37 immune and angiogenesis factors in stool homogenates were measured by multiplexed immunoassay and compared across experimental groups. RESULTS: Parkinson's disease patients reported greater incidence of intestinal disease and digestive problems than controls. Direct comparison of levels of stool analytes in patients and controls revealed elevated vascular endothelial growth factor receptor 1, interleukin-1α, and CXCL8 in patients' stool. Paired comparison of patients and spouses suggested higher levels of multiple factors in patients, but this was complicated by sex differences. Sex, body mass index, a history of smoking, and use of probiotics were found to strongly influence levels of stool analytes. Multivariate analysis accounting for these and other potential confounders confirmed elevated levels of interleukin-1α and CXCL8 and also revealed increased interleukin-1ß and C-reactive protein in stool in Parkinson's disease. These differences were not dependent on subject age or disease duration. CONCLUSIONS: Levels of stool immune factors indicate that intestinal inflammation is present in patients with Parkinson's disease. © 2018 International Parkinson and Movement Disorder Society.


Subject(s)
Cytokines/metabolism , Feces/chemistry , Gastroenteritis/etiology , Gastroenteritis/metabolism , Parkinson Disease/complications , Adult , Aged , Aged, 80 and over , Angiogenesis Inducing Agents/metabolism , C-Reactive Protein/metabolism , Female , Humans , Male , Middle Aged , Mood Disorders/etiology , Parkinson Disease/psychology , Sex Characteristics
15.
Arch Virol ; 163(12): 3265-3273, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30143876

ABSTRACT

GII.3 and GII.6 noroviruses (NoVs) are similar in several aspects, including the presence of a short sequence insertion in the P2 domain of the major capsid protein (VP1) and trypsin susceptibility of VP1-containing virus-like particles (VLPs). In this study, we generated two constructs with the S or P domains of VP1 from GII.3 and GII.6 NoV strains exchanged (GII.3S/GII.6P and GII.6S/GII.3P), and the resultant chimeric capsid proteins were expressed from recombinant baculoviruses. The assembly of VLPs was confirmed by electron microscopy, and the susceptibility of assembled VLPs to trypsin digestion was analyzed by SDS-PAGE. Salivary histo-blood group antigen (HBGA) binding and binding blockade assays were performed to determine the binding characteristics of chimeric VP1-containing VLPs with and without trypsin digestion. Our results indicated that both expressed GII.3S/GII.6P and GII.6S/GII.3P chimeric proteins successfully assembled into VLPs. Trypsin digestion of VLPs assembled from both chimeric proteins led to the generation of two fragments with molecular sizes similar to those of wild-type VP1-containing VLPs. An in vitro salivary HBGA binding assay demonstrated that VLPs assembled from both chimeric proteins exhibited enhanced binding after trypsin cleavage. An HBGA binding blockade assay indicated that the binding of GII.3S/GII.6P and GII.6S/GII.3P VLPs against salivary HBGAs could only be blocked by GII.3 and GII.6 NoV VLP-specific hyperimmune sera, respectively. For GII.6 and GII.3S/GII.6P VLPs, a difference in binding enhancement after trypsin cleavage was observed. Our results demonstrate that the S domains of GII.3 and GII.6 NoV VP1 are interchangeable and that the S domain affects the binding of the P domain to HBGAs.


Subject(s)
Blood Group Antigens/metabolism , Caliciviridae Infections/metabolism , Caliciviridae Infections/virology , Capsid Proteins/metabolism , Norovirus/metabolism , Caliciviridae Infections/genetics , Capsid/chemistry , Capsid/metabolism , Capsid Proteins/chemistry , Capsid Proteins/genetics , Gastroenteritis/genetics , Gastroenteritis/metabolism , Gastroenteritis/virology , Genotype , Humans , Norovirus/chemistry , Norovirus/genetics , Norovirus/ultrastructure , Protein Binding , Protein Domains , Trypsin/chemistry
16.
J Pept Sci ; 24(3)2018 Mar.
Article in English | MEDLINE | ID: mdl-29542263

ABSTRACT

The human gut barrier is the tissue exposed to the highest load of microorganisms, harbouring 100 trillion bacteria. In addition, the gut's renewal rate outruns that of any other human tissue. Antimicrobial peptides (AMPs) are highly optimized defense molecules in the intestinal barrier optimized to maintain gastrointestinal homeostasis. Alterations in AMPs activity can lead to or result from human gastrointestinal diseases. In this review, unique, conserved, or otherwise regular alterations in the expression patterns of human AMPs across gastrointestinal inflammatory and infectious diseases were analyzed for pattern elucidation. Human gastrointestinal diseases are associated with alterations in gut AMPs' expression patterns in a peptide-specific, disease-specific, and pathogen-specific way, modulating human gastrointestinal functioning. Across diseases, there is a (i) marked reduction in otherwise constitutively expressed AMPs, leading to increased disease susceptibility, and a (ii) significant increase in the expression of inducible AMPs, leading to tissue damage and disease severity. Infections and inflammatory conditions are associated with altered gene expression in the gut, whose patterns may favour cellular metaplasia, mucosal dysfunction, and disease states. Altered expression of AMPs can thus thrive disease severity and evolution since its early stages. Nevertheless, the modulation of AMP expression patterns unveils promising therapeutic targets.


Subject(s)
Antimicrobial Cationic Peptides/genetics , Gastrointestinal Diseases/metabolism , Gastrointestinal Tract/metabolism , Antimicrobial Cationic Peptides/metabolism , Communicable Diseases/genetics , Communicable Diseases/metabolism , Gastroenteritis/genetics , Gastroenteritis/metabolism , Gastrointestinal Diseases/genetics , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/metabolism , Gene Expression Regulation , Genetic Predisposition to Disease , Humans
17.
Int J Mol Sci ; 19(3)2018 Feb 27.
Article in English | MEDLINE | ID: mdl-29495535

ABSTRACT

Disruption of the epithelial barrier function has been recently associated with a variety of diseases, mainly at intestinal level, but also affecting the respiratory epithelium and other mucosal barriers. Non-pharmacological approaches such as xyloglucan, with demonstrated protective barrier properties, are proposed as new alternatives for the management of a wide range of diseases, for which mucosal disruption and, particularly, tight junction alterations, is a common characteristic. Xyloglucan, a natural polysaccharide derived from tamarind seeds, possesses a "mucin-like" molecular structure that confers mucoadhesive properties, allowing xyloglucan formulations to act as a barrier capable of reducing bacterial adherence and invasion and to preserve tight junctions and paracellular flux, as observed in different in vitro and in vivo studies. In clinical trials, xyloglucan has been seen to reduce symptoms of gastroenteritis in adults and children, nasal disorders and dry eye syndrome. Similar mucosal protectors containing reticulated proteins have also been useful for the treatment of irritable bowel syndrome and urinary tract infections. The role of xyloglucan in other disorders with mucosal disruption, such as dermatological or other infectious diseases, deserves further research. In conclusion, xyloglucan, endowed with film-forming protective barrier properties, is a safe non-pharmacological alternative for the management of different diseases, such as gastrointestinal and nasal disorders.


Subject(s)
Glucans/pharmacology , Mucous Membrane/drug effects , Mucous Membrane/metabolism , Phytochemicals/pharmacology , Polymers/pharmacology , Protective Agents/pharmacology , Xylans/pharmacology , Animals , Clinical Studies as Topic , Disease Models, Animal , Disease Susceptibility , Epithelial Cells/drug effects , Epithelial Cells/immunology , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Gastroenteritis/drug therapy , Gastroenteritis/etiology , Gastroenteritis/metabolism , Gastroenteritis/pathology , Glucans/chemistry , Glucans/therapeutic use , Host-Pathogen Interactions , Humans , Mucins/metabolism , Mucous Membrane/cytology , Mucous Membrane/immunology , Phytochemicals/chemistry , Phytochemicals/therapeutic use , Polymers/chemistry , Polymers/therapeutic use , Protective Agents/chemistry , Protective Agents/therapeutic use , Urinary Tract Infections/drug therapy , Urinary Tract Infections/etiology , Urinary Tract Infections/metabolism , Xylans/chemistry , Xylans/therapeutic use
18.
J Virol ; 90(21): 9758-9765, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27535055

ABSTRACT

Rotaviruses (RVs) of species A (RVA) are a major causative agent of acute gastroenteritis. Recently, histo-blood group antigens (HBGAs) have been reported to interact with human RVA VP8* proteins. Human P[19] is a rare P genotype of porcine origin that infects humans sporadically. The functional and structural characteristics of P[19] VP8* interaction with HBGAs are unknown. In this study, we expressed and purified the VP8* proteins of human and porcine P[19] RVs. In oligosaccharide and saliva binding assays, P[19] VP8* proteins showed obvious binding to A-, B-, and O-type saliva samples irrespective of the secretor status, implying broad binding patterns. However, they did not display specific binding to any of the oligosaccharides tested. In addition, we solved the structure of human P[19] VP8* at 2.4 Å, which revealed a typical galectin-like fold. The structural alignment demonstrated that P[19] VP8* was most similar to that of P[8], which was consistent with the phylogenetic analysis. Structure superimposition revealed the basis for the lack of binding to the oligosaccharides. Our study indicates that P[19] RVs may bind to other oligosaccharides or ligands and may have the potential to spread widely among humans. Thus, it is necessary to place the prevalence and evolution of P[19] RVs under surveillance. IMPORTANCE: Human P[19] is a rare P genotype of porcine origin. Based on phylogenetic analysis of VP8* sequences, P[19] was classified in the P[II] genogroup, together with P[4], P[6], and P[8], which have been reported to interact with HBGAs in a genotype-dependent manner. In this study, we explored the functional and structural characteristics of P[19] VP8* interaction with HBGAs. P[19] VP8* showed binding to A-, B-, and O-type saliva samples, as well as saliva of nonsecretors. This implies that P[19] has the potential to spread among humans with a broad binding range. Careful attention should be paid to the evolution and prevalence of P[19] RVs. Furthermore, we solved the structure of P[19] VP8*. Structure superimposition indicated that P[19] may bind to other oligosaccharides or ligands using potential binding sites, suggesting that further investigation of the specific cell attachment factors is warranted.


Subject(s)
Blood Group Antigens/metabolism , RNA-Binding Proteins/metabolism , Rotavirus Infections/metabolism , Rotavirus/metabolism , Viral Nonstructural Proteins/metabolism , Amino Acid Sequence , Animals , Binding Sites , Capsid Proteins/metabolism , Gastroenteritis/metabolism , Gastroenteritis/virology , Genotype , Humans , Oligosaccharides/metabolism , Phylogeny , Rotavirus Infections/virology , Sequence Alignment , Swine , Virus Attachment
19.
FASEB J ; 30(5): 1724-32, 2016 05.
Article in English | MEDLINE | ID: mdl-26740263

ABSTRACT

T-cell lymphopenia is a major risk factor for autoimmunity. Here we describe congenic Lewis (LEW) rats with a loss-of-function mutation in the Gimap5 gene, leading to a 92% reduction in peripheral T-cell numbers. Gimap5-deficient LEW rats developed eosinophilic autoimmune gastroenteritis accompanied by a 40-fold increase in IgE serum levels. This phenotype was ameliorated by antibiotic treatment, indicating a critical role of the microbial flora in the development of inflammatory bowel disease. Interestingly, Gimap5-deficient LEW rats showed strongly aggravated experimental autoimmune encephalomyelitis (EAE) after immunization with guinea pig myelin basic protein. This phenotype, however, persisted after antibiosis, confirming that the enhanced CNS autoimmune response in T-cell lymphopenic Gimap5-deficient LEW rats was unrelated to the composition of the microbial flora. Rather, it seems that it was caused by the 7-fold increase in the percentage of activated T cells producing IL-17 and IFN-γ, and the skewed T-cell receptor (TCR) repertoire, both of which were the result of T-cell lymphopenia and not affected by antibiosis. This notion was supported by the observation that adoptive T-cell transfer corrected the TCR repertoire and improved EAE. Collectively, our findings confirm a critical albeit differential role of T-cell lymphopenia in the susceptibility to organ-specific autoimmune responses.-Fischer, H. J., Witte, A.-K., Walter, L., Gröne, H.-J., van den Brandt, J., Reichardt, H. M. Distinct roles of T-cell lymphopenia and the microbial flora for gastrointestinal and CNS autoimmunity.


Subject(s)
Autoimmune Diseases/microbiology , Central Nervous System/microbiology , GTP-Binding Proteins/metabolism , Gastrointestinal Tract/immunology , Lymphopenia , T-Lymphocytes/physiology , Adoptive Transfer , Animals , Autoimmune Diseases/metabolism , Central Nervous System/immunology , Central Nervous System Diseases/genetics , Central Nervous System Diseases/metabolism , GTP-Binding Proteins/genetics , Gastroenteritis/genetics , Gastroenteritis/metabolism , Gastroenteritis/microbiology , Gastrointestinal Tract/microbiology , Gene Expression Regulation/immunology , Point Mutation , Rats
20.
Physiology (Bethesda) ; 30(3): 241-50, 2015 May.
Article in English | MEDLINE | ID: mdl-25933824

ABSTRACT

The NOD-like receptors (NLRs) are cytosolic pattern-recognition receptors, which are critically involved in mucosal immune defense. The association of the NLR, NOD2, with inflammatory bowel disease first pointed to the NLRs potential function as guardians of the intestinal barrier. Since then, several studies have emphasized the importance of NLRs in maintaining gut homeostasis and intestinal infections, and in shaping the microbiota. In this review, we will highlight the function of NLRs in intestinal inflammation.


Subject(s)
Bacteria/metabolism , Bacterial Infections/metabolism , Bacterial Translocation , Gastroenteritis/metabolism , Intestinal Mucosa/metabolism , Nod Signaling Adaptor Proteins/metabolism , Signal Transduction , Animals , Bacteria/immunology , Bacterial Infections/immunology , Bacterial Infections/microbiology , Gastroenteritis/immunology , Gastroenteritis/microbiology , Host-Pathogen Interactions , Humans , Immunity, Mucosal , Inflammasomes/immunology , Inflammasomes/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Nod Signaling Adaptor Proteins/immunology , Permeability
SELECTION OF CITATIONS
SEARCH DETAIL