Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.506
Filter
Add more filters

Publication year range
1.
Cell ; 187(10): 2411-2427.e25, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38608704

ABSTRACT

We set out to exhaustively characterize the impact of the cis-chromatin environment on prime editing, a precise genome engineering tool. Using a highly sensitive method for mapping the genomic locations of randomly integrated reporters, we discover massive position effects, exemplified by editing efficiencies ranging from ∼0% to 94% for an identical target site and edit. Position effects on prime editing efficiency are well predicted by chromatin marks, e.g., positively by H3K79me2 and negatively by H3K9me3. Next, we developed a multiplex perturbational framework to assess the interaction of trans-acting factors with the cis-chromatin environment on editing outcomes. Applying this framework to DNA repair factors, we identify HLTF as a context-dependent repressor of prime editing. Finally, several lines of evidence suggest that active transcriptional elongation enhances prime editing. Consistent with this, we show we can robustly decrease or increase the efficiency of prime editing by preceding it with CRISPR-mediated silencing or activation, respectively.


Subject(s)
CRISPR-Cas Systems , Chromatin , Epigenesis, Genetic , Gene Editing , Humans , Chromatin/metabolism , Chromatin/genetics , CRISPR-Cas Systems/genetics , Gene Editing/methods , Histones/metabolism , Transcription Factors/metabolism , Histone Code
2.
Cell ; 187(13): 3249-3261.e14, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38781968

ABSTRACT

Thermostable clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas9) enzymes could improve genome-editing efficiency and delivery due to extended protein lifetimes. However, initial experimentation demonstrated Geobacillus stearothermophilus Cas9 (GeoCas9) to be virtually inactive when used in cultured human cells. Laboratory-evolved variants of GeoCas9 overcome this natural limitation by acquiring mutations in the wedge (WED) domain that produce >100-fold-higher genome-editing levels. Cryoelectron microscopy (cryo-EM) structures of the wild-type and improved GeoCas9 (iGeoCas9) enzymes reveal extended contacts between the WED domain of iGeoCas9 and DNA substrates. Biochemical analysis shows that iGeoCas9 accelerates DNA unwinding to capture substrates under the magnesium-restricted conditions typical of mammalian but not bacterial cells. These findings enabled rational engineering of other Cas9 orthologs to enhance genome-editing levels, pointing to a general strategy for editing enzyme improvement. Together, these results uncover a new role for the Cas9 WED domain in DNA unwinding and demonstrate how accelerated target unwinding dramatically improves Cas9-induced genome-editing activity.


Subject(s)
CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Cryoelectron Microscopy , DNA , Gene Editing , Humans , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems/genetics , DNA/metabolism , DNA/genetics , Gene Editing/methods , Geobacillus stearothermophilus/genetics , Geobacillus stearothermophilus/metabolism , HEK293 Cells , Protein Domains , Genome, Human , Models, Molecular , Protein Structure, Tertiary , Nucleic Acid Conformation , Biocatalysis , Magnesium/chemistry , Magnesium/metabolism
3.
Cell ; 186(10): 2256-2272.e23, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37119812

ABSTRACT

Applications of prime editing are often limited due to insufficient efficiencies, and it can require substantial time and resources to determine the most efficient pegRNAs and prime editors (PEs) to generate a desired edit under various experimental conditions. Here, we evaluated prime editing efficiencies for a total of 338,996 pairs of pegRNAs including 3,979 epegRNAs and target sequences in an error-free manner. These datasets enabled a systematic determination of factors affecting prime editing efficiencies. Then, we developed computational models, named DeepPrime and DeepPrime-FT, that can predict prime editing efficiencies for eight prime editing systems in seven cell types for all possible types of editing of up to 3 base pairs. We also extensively profiled the prime editing efficiencies at mismatched targets and developed a computational model predicting editing efficiencies at such targets. These computational models, together with our improved knowledge about prime editing efficiency determinants, will greatly facilitate prime editing applications.


Subject(s)
Computer Simulation , Gene Editing , RNA, Guide, CRISPR-Cas Systems , CRISPR-Cas Systems , Gene Editing/methods , Knowledge , RNA, Guide, CRISPR-Cas Systems/chemistry , Organ Specificity , Datasets as Topic
4.
Cell ; 186(21): 4567-4582.e20, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37794590

ABSTRACT

CRISPR-Cas9 genome editing has enabled advanced T cell therapies, but occasional loss of the targeted chromosome remains a safety concern. To investigate whether Cas9-induced chromosome loss is a universal phenomenon and evaluate its clinical significance, we conducted a systematic analysis in primary human T cells. Arrayed and pooled CRISPR screens revealed that chromosome loss was generalizable across the genome and resulted in partial and entire loss of the targeted chromosome, including in preclinical chimeric antigen receptor T cells. T cells with chromosome loss persisted for weeks in culture, implying the potential to interfere with clinical use. A modified cell manufacturing process, employed in our first-in-human clinical trial of Cas9-engineered T cells (NCT03399448), reduced chromosome loss while largely preserving genome editing efficacy. Expression of p53 correlated with protection from chromosome loss observed in this protocol, suggesting both a mechanism and strategy for T cell engineering that mitigates this genotoxicity in the clinic.


Subject(s)
CRISPR-Cas Systems , Chromosome Aberrations , Gene Editing , T-Lymphocytes , Humans , Chromosomes , CRISPR-Cas Systems/genetics , DNA Damage , Gene Editing/methods , Clinical Trials as Topic
5.
Cell ; 185(15): 2806-2827, 2022 07 21.
Article in English | MEDLINE | ID: mdl-35798006

ABSTRACT

In vivo gene editing therapies offer the potential to treat the root causes of many genetic diseases. Realizing the promise of therapeutic in vivo gene editing requires the ability to safely and efficiently deliver gene editing agents to relevant organs and tissues in vivo. Here, we review current delivery technologies that have been used to enable therapeutic in vivo gene editing, including viral vectors, lipid nanoparticles, and virus-like particles. Since no single delivery modality is likely to be appropriate for every possible application, we compare the benefits and drawbacks of each method and highlight opportunities for future improvements.


Subject(s)
Gene Editing , Nanoparticles , CRISPR-Cas Systems/genetics , Gene Editing/methods , Genetic Therapy/methods , Genetic Vectors , Liposomes
6.
Nat Rev Mol Cell Biol ; 25(6): 464-487, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38308006

ABSTRACT

Our ability to edit genomes lags behind our capacity to sequence them, but the growing understanding of CRISPR biology and its application to genome, epigenome and transcriptome engineering is narrowing this gap. In this Review, we discuss recent developments of various CRISPR-based systems that can transiently or permanently modify the genome and the transcriptome. The discovery of further CRISPR enzymes and systems through functional metagenomics has meaningfully broadened the applicability of CRISPR-based editing. Engineered Cas variants offer diverse capabilities such as base editing, prime editing, gene insertion and gene regulation, thereby providing a panoply of tools for the scientific community. We highlight the strengths and weaknesses of current CRISPR tools, considering their efficiency, precision, specificity, reliance on cellular DNA repair mechanisms and their applications in both fundamental biology and therapeutics. Finally, we discuss ongoing clinical trials that illustrate the potential impact of CRISPR systems on human health.


Subject(s)
CRISPR-Cas Systems , Epigenome , Gene Editing , Transcriptome , Humans , Gene Editing/methods , CRISPR-Cas Systems/genetics , Epigenome/genetics , Animals , Transcriptome/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Genome/genetics
7.
Annu Rev Biochem ; 89: 77-101, 2020 06 20.
Article in English | MEDLINE | ID: mdl-32569517

ABSTRACT

DNA synthesis technology has progressed to the point that it is now practical to synthesize entire genomes. Quite a variety of methods have been developed, first to synthesize single genes but ultimately to massively edit or write from scratch entire genomes. Synthetic genomes can essentially be clones of native sequences, but this approach does not teach us much new biology. The ability to endow genomes with novel properties offers special promise for addressing questions not easily approachable with conventional gene-at-a-time methods. These include questions about evolution and about how genomes are fundamentally wired informationally, metabolically, and genetically. The techniques and technologies relating to how to design, build, and deliver big DNA at the genome scale are reviewed here. A fuller understanding of these principles may someday lead to the ability to truly design genomes from scratch.


Subject(s)
DNA/genetics , Gene Editing/methods , Gene Transfer Techniques , Genes, Synthetic , Genetic Engineering/methods , Genome , CRISPR-Cas Systems , DNA/chemistry , DNA/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Oligonucleotides/chemical synthesis , Oligonucleotides/metabolism , Plasmids/chemistry , Plasmids/metabolism , Poliovirus/genetics , Poliovirus/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Spheroplasts/genetics , Spheroplasts/metabolism
8.
Annu Rev Biochem ; 89: 309-332, 2020 06 20.
Article in English | MEDLINE | ID: mdl-32186918

ABSTRACT

Clustered regularly interspaced short palindromic repeats (CRISPR) together with their accompanying cas (CRISPR-associated) genes are found frequently in bacteria and archaea, serving to defend against invading foreign DNA, such as viral genomes. CRISPR-Cas systems provide a uniquely powerful defense because they can adapt to newly encountered genomes. The adaptive ability of these systems has been exploited, leading to their development as highly effective tools for genome editing. The widespread use of CRISPR-Cas systems has driven a need for methods to control their activity. This review focuses on anti-CRISPRs (Acrs), proteins produced by viruses and other mobile genetic elements that can potently inhibit CRISPR-Cas systems. Discovered in 2013, there are now 54 distinct families of these proteins described, and the functional mechanisms of more than a dozen have been characterized in molecular detail. The investigation of Acrs is leading to a variety of practical applications and is providing exciting new insight into the biology of CRISPR-Cas systems.


Subject(s)
CRISPR-Cas Systems/drug effects , Gene Editing/methods , Small Molecule Libraries/pharmacology , Viral Proteins/genetics , Viruses/genetics , Archaea/genetics , Archaea/immunology , Archaea/virology , Bacteria/genetics , Bacteria/immunology , Bacteria/virology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Coevolution , CRISPR-Associated Proteins/antagonists & inhibitors , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism , DNA/antagonists & inhibitors , DNA/chemistry , DNA/genetics , DNA/metabolism , DNA Cleavage/drug effects , Endodeoxyribonucleases/antagonists & inhibitors , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Humans , Models, Molecular , Multigene Family , Protein Binding , Protein Multimerization/drug effects , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , Viral Proteins/pharmacology , Viruses/metabolism , Viruses/pathogenicity
9.
Cell ; 181(1): 136-150, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32243786

ABSTRACT

The development of clustered regularly interspaced short-palindromic repeat (CRISPR)-based biotechnologies has revolutionized the life sciences and introduced new therapeutic modalities with the potential to treat a wide range of diseases. Here, we describe CRISPR-based strategies to improve human health, with an emphasis on the delivery of CRISPR therapeutics directly into the human body using adeno-associated virus (AAV) vectors. We also discuss challenges facing broad deployment of CRISPR-based therapeutics and highlight areas where continued discovery and technological development can further advance these revolutionary new treatments.


Subject(s)
CRISPR-Cas Systems , Dependovirus/genetics , Gene Editing/methods , Genetic Therapy/methods , Genetic Vectors/therapeutic use , Animals , Humans
10.
Cell ; 182(2): 463-480.e30, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32533916

ABSTRACT

Although base editors are widely used to install targeted point mutations, the factors that determine base editing outcomes are not well understood. We characterized sequence-activity relationships of 11 cytosine and adenine base editors (CBEs and ABEs) on 38,538 genomically integrated targets in mammalian cells and used the resulting outcomes to train BE-Hive, a machine learning model that accurately predicts base editing genotypic outcomes (R ≈ 0.9) and efficiency (R ≈ 0.7). We corrected 3,388 disease-associated SNVs with ≥90% precision, including 675 alleles with bystander nucleotides that BE-Hive correctly predicted would not be edited. We discovered determinants of previously unpredictable C-to-G, or C-to-A editing and used these discoveries to correct coding sequences of 174 pathogenic transversion SNVs with ≥90% precision. Finally, we used insights from BE-Hive to engineer novel CBE variants that modulate editing outcomes. These discoveries illuminate base editing, enable editing at previously intractable targets, and provide new base editors with improved editing capabilities.


Subject(s)
Gene Editing/methods , Machine Learning , Animals , Gene Library , Humans , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Point Mutation , RNA, Guide, Kinetoplastida/metabolism
11.
Cell ; 181(5): 955-960, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32470403

ABSTRACT

The first clinical studies utilizing RNA-guided endonucleases (RGENs) to therapeutically edit RNA and DNA in cancer patients were recently published. These groundbreaking technological advances promise to revolutionize genetic therapy and, as I discuss, represent the culmination of decades of innovative work to engineer RGENs for such editing applications.


Subject(s)
Gene Editing/methods , Gene Editing/trends , RNA Editing/genetics , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , DNA/genetics , Endonucleases/metabolism , Mutation , RNA/genetics , RNA Editing/physiology , RNA, Catalytic/genetics , RNA, Guide, Kinetoplastida/genetics
12.
Annu Rev Biochem ; 88: 191-220, 2019 06 20.
Article in English | MEDLINE | ID: mdl-30883196

ABSTRACT

Programmable nucleases and deaminases, which include zinc-finger nucleases, transcription activator-like effector nucleases, CRISPR RNA-guided nucleases, and RNA-guided base editors, are now widely employed for the targeted modification of genomes in cells and organisms. These gene-editing tools hold tremendous promise for therapeutic applications. Importantly, these nucleases and deaminases may display off-target activity through the recognition of near-cognate DNA sequences to their target sites, resulting in collateral damage to the genome in the form of local mutagenesis or genomic rearrangements. For therapeutic genome-editing applications with these classes of programmable enzymes, it is essential to measure and limit genome-wide off-target activity. Herein, we discuss the key determinants of off-target activity for these systems. We describe various cell-based and cell-free methods for identifying genome-wide off-target sites and diverse strategies that have been developed for reducing the off-target activity of programmable gene-editing enzymes.


Subject(s)
CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Editing/methods , Protein Engineering/methods , RNA, Guide, Kinetoplastida/genetics , APOBEC Deaminases/genetics , APOBEC Deaminases/metabolism , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Artifacts , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , CRISPR-Associated Protein 9/metabolism , Endonucleases/genetics , Endonucleases/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Transfer Techniques , Genome, Human , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , RNA, Guide, Kinetoplastida/metabolism , Software
13.
Cell ; 179(7): 1448-1450, 2019 Dec 12.
Article in English | MEDLINE | ID: mdl-31835025

ABSTRACT

Many targeted base transversions, insertions, and deletions remain challenging due to the lack of precise and efficient genome editing technologies. Recently, Anzalone et al. reported a versatile approach to achieve all types of genome edits, shedding new light on correcting most genetic variants associated with diseases.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , Animals , Genetic Therapy/methods , Humans
14.
Cell ; 176(1-2): 254-267.e16, 2019 01 10.
Article in English | MEDLINE | ID: mdl-30633905

ABSTRACT

The ability to engineer natural proteins is pivotal to a future, pragmatic biology. CRISPR proteins have revolutionized genome modification, yet the CRISPR-Cas9 scaffold is not ideal for fusions or activation by cellular triggers. Here, we show that a topological rearrangement of Cas9 using circular permutation provides an advanced platform for RNA-guided genome modification and protection. Through systematic interrogation, we find that protein termini can be positioned adjacent to bound DNA, offering a straightforward mechanism for strategically fusing functional domains. Additionally, circular permutation enabled protease-sensing Cas9s (ProCas9s), a unique class of single-molecule effectors possessing programmable inputs and outputs. ProCas9s can sense a wide range of proteases, and we demonstrate that ProCas9 can orchestrate a cellular response to pathogen-associated protease activity. Together, these results provide a toolkit of safer and more efficient genome-modifying enzymes and molecular recorders for the advancement of precision genome engineering in research, agriculture, and biomedicine.


Subject(s)
CRISPR-Cas Systems/physiology , Clustered Regularly Interspaced Short Palindromic Repeats/physiology , Gene Editing/methods , CRISPR-Associated Proteins/chemistry , DNA/chemistry , Genome , Models, Molecular , RNA/chemistry , RNA, Guide, Kinetoplastida/genetics
15.
Cell ; 177(4): 1067-1079.e19, 2019 05 02.
Article in English | MEDLINE | ID: mdl-31051099

ABSTRACT

The precise control of CRISPR-Cas9 activity is required for a number of genome engineering technologies. Here, we report a generalizable platform that provided the first synthetic small-molecule inhibitors of Streptococcus pyogenes Cas9 (SpCas9) that weigh <500 Da and are cell permeable, reversible, and stable under physiological conditions. We developed a suite of high-throughput assays for SpCas9 functions, including a primary screening assay for SpCas9 binding to the protospacer adjacent motif, and used these assays to screen a structurally diverse collection of natural-product-like small molecules to ultimately identify compounds that disrupt the SpCas9-DNA interaction. Using these synthetic anti-CRISPR small molecules, we demonstrated dose and temporal control of SpCas9 and catalytically impaired SpCas9 technologies, including transcription activation, and identified a pharmacophore for SpCas9 inhibition using structure-activity relationships. These studies establish a platform for rapidly identifying synthetic, miniature, cell-permeable, and reversible inhibitors against both SpCas9 and next-generation CRISPR-associated nucleases.


Subject(s)
CRISPR-Associated Protein 9/antagonists & inhibitors , CRISPR-Cas Systems/physiology , High-Throughput Screening Assays/methods , CRISPR-Associated Protein 9/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats/physiology , DNA/metabolism , Endonucleases/metabolism , Gene Editing/methods , Genome , Small Molecule Libraries , Streptococcus pyogenes/genetics , Substrate Specificity
16.
Cell ; 178(1): 122-134.e12, 2019 06 27.
Article in English | MEDLINE | ID: mdl-31230714

ABSTRACT

Epitranscriptomic regulation controls information flow through the central dogma and provides unique opportunities for manipulating cells at the RNA level. However, both fundamental studies and potential translational applications are impeded by a lack of methods to target specific RNAs with effector proteins. Here, we present CRISPR-Cas-inspired RNA targeting system (CIRTS), a protein engineering strategy for constructing programmable RNA control elements. We show that CIRTS is a simple and generalizable approach to deliver a range of effector proteins, including nucleases, degradation machinery, translational activators, and base editors to target transcripts. We further demonstrate that CIRTS is not only smaller than naturally occurring CRISPR-Cas programmable RNA binding systems but can also be built entirely from human protein parts. CIRTS provides a platform to probe fundamental RNA regulatory processes, and the human-derived nature of CIRTS provides a potential strategy to avoid immune issues when applied to epitranscriptome-modulating therapies.


Subject(s)
Gene Editing/methods , Protein Engineering/methods , RNA, Guide, Kinetoplastida/metabolism , RNA/metabolism , Transcription Activator-Like Effector Nucleases/metabolism , CRISPR-Cas Systems/genetics , Escherichia coli/genetics , Gene Knockdown Techniques , HEK293 Cells , Humans , Protein Biosynthesis , Proteolysis , RNA, Small Interfering , Transcription Activator-Like Effector Nucleases/genetics , Transfection
17.
Cell ; 175(3): 615-632, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30340033

ABSTRACT

The derivation of human embryonic stem cells (hESCs) and the stunning discovery that somatic cells can be reprogrammed into human induced pluripotent stem cells (hiPSCs) holds the promise to revolutionize biomedical research and regenerative medicine. In this Review, we focus on disorders of the central nervous system and explore how advances in human pluripotent stem cells (hPSCs) coincide with evolutions in genome engineering and genomic technologies to provide realistic opportunities to tackle some of the most devastating complex disorders.


Subject(s)
Central Nervous System Diseases/therapy , Gene Editing/methods , Stem Cell Transplantation/methods , Translational Research, Biomedical/methods , Animals , Central Nervous System Diseases/genetics , Humans
18.
Cell ; 173(6): 1311-1313, 2018 05 31.
Article in English | MEDLINE | ID: mdl-29856947

ABSTRACT

The power of CRISPR is undeniable, but where is the field heading? Cell's April Pawluk caught up with Jia Chen, Weizhi Ji, and Prashant Mali to discuss the successes and challenges we can expect in the coming years. Annotated excerpts from this conversation are presented below, and the full conversation is available with the article online.


Subject(s)
Gene Editing/methods , Gene Editing/trends , Genetic Therapy/methods , Genetic Therapy/trends , Genome, Human , Animals , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Humans
19.
Cell ; 175(2): 544-557.e16, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30245013

ABSTRACT

A major challenge in genetics is to identify genetic variants driving natural phenotypic variation. However, current methods of genetic mapping have limited resolution. To address this challenge, we developed a CRISPR-Cas9-based high-throughput genome editing approach that can introduce thousands of specific genetic variants in a single experiment. This enabled us to study the fitness consequences of 16,006 natural genetic variants in yeast. We identified 572 variants with significant fitness differences in glucose media; these are highly enriched in promoters, particularly in transcription factor binding sites, while only 19.2% affect amino acid sequences. Strikingly, nearby variants nearly always favor the same parent's alleles, suggesting that lineage-specific selection is often driven by multiple clustered variants. In sum, our genome editing approach reveals the genetic architecture of fitness variation at single-base resolution and could be adapted to measure the effects of genome-wide genetic variation in any screen for cell survival or cell-sortable markers.


Subject(s)
Gene Editing/methods , High-Throughput Nucleotide Sequencing/methods , Saccharomyces cerevisiae/genetics , CRISPR-Cas Systems , Chromosome Mapping , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Genetic Variation/genetics , Genetic Vectors , Genome , Yeasts/genetics
20.
Cell ; 175(5): 1405-1417.e14, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30318144

ABSTRACT

Programmable control of spatial genome organization is a powerful approach for studying how nuclear structure affects gene regulation and cellular function. Here, we develop a versatile CRISPR-genome organization (CRISPR-GO) system that can efficiently control the spatial positioning of genomic loci relative to specific nuclear compartments, including the nuclear periphery, Cajal bodies, and promyelocytic leukemia (PML) bodies. CRISPR-GO is chemically inducible and reversible, enabling interrogation of real-time dynamics of chromatin interactions with nuclear compartments in living cells. Inducible repositioning of genomic loci to the nuclear periphery allows for dissection of mitosis-dependent and -independent relocalization events and also for interrogation of the relationship between gene position and gene expression. CRISPR-GO mediates rapid de novo formation of Cajal bodies at desired chromatin loci and causes significant repression of endogenous gene expression over long distances (30-600 kb). The CRISPR-GO system offers a programmable platform to investigate large-scale spatial genome organization and function.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Editing/methods , Genome , Abscisic Acid/pharmacology , Cell Line, Tumor , Chromatin/genetics , Chromatin/metabolism , Coiled Bodies/genetics , Gene Expression Regulation , Genetic Loci , Humans , In Situ Hybridization, Fluorescence , S Phase Cell Cycle Checkpoints/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL