Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26.708
Filter
Add more filters

Uruguay Oncology Collection
Publication year range
1.
Annu Rev Immunol ; 37: 145-171, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30526160

ABSTRACT

Genetically engineered T cells are powerful new medicines, offering hope for curative responses in patients with cancer. Chimeric antigen receptor (CAR) T cells were recently approved by the US Food and Drug Administration and are poised to enter the practice of medicine for leukemia and lymphoma, demonstrating that engineered immune cells can serve as a powerful new class of cancer therapeutics. The emergence of synthetic biology approaches for cellular engineering provides a broadly expanded set of tools for programming immune cells for enhanced function. Advances in T cell engineering, genetic editing, the selection of optimal lymphocytes, and cell manufacturing have the potential to broaden T cell-based therapies and foster new applications beyond oncology, in infectious diseases, organ transplantation, and autoimmunity.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Immunotherapy, Adoptive/trends , Neoplasms/therapy , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes/physiology , Animals , Genetic Engineering , Humans , Neoplasms/immunology , T-Lymphocytes/transplantation , United States , United States Food and Drug Administration
2.
Annu Rev Immunol ; 36: 695-715, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29490163

ABSTRACT

The unique class of heavy chain-only antibodies, present in Camelidae, can be shrunk to just the variable region of the heavy chain to yield VHHs, also called nanobodies. About one-tenth the size of their full-size counterparts, nanobodies can serve in applications similar to those for conventional antibodies, but they come with a number of signature advantages that find increasing application in biology. They not only function as crystallization chaperones but also can be expressed inside cells as such, or fused to other proteins to perturb the function of their targets, for example, by enforcing their localization or degradation. Their small size also affords advantages when applied in vivo, for example, in imaging applications. Here we review such applications, with particular emphasis on those areas where conventional antibodies would face a more challenging environment.


Subject(s)
Single-Domain Antibodies/genetics , Single-Domain Antibodies/immunology , Animals , Antibody Formation , Cell Surface Display Techniques , Genetic Engineering , Humans , Immunoglobulin Heavy Chains/biosynthesis , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Single-Domain Antibodies/biosynthesis , Single-Domain Antibodies/therapeutic use , Structure-Activity Relationship
3.
Annu Rev Immunol ; 35: 229-253, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28446063

ABSTRACT

The ability of immune cells to survey tissues and sense pathologic insults and deviations makes them a unique platform for interfacing with the body and disease. With the rapid advancement of synthetic biology, we can now engineer and equip immune cells with new sensors and controllable therapeutic response programs to sense and treat diseases that our natural immune system cannot normally handle. Here we review the current state of engineered immune cell therapeutics and their unique capabilities compared to small molecules and biologics. We then discuss how engineered immune cells are being designed to combat cancer, focusing on how new synthetic biology tools are providing potential ways to overcome the major roadblocks for treatment. Finally, we give a long-term vision for the use of synthetic biology to engineer immune cells as a general sensor-response platform to precisely detect disease, to remodel disease microenvironments, and to treat a potentially wide range of challenging diseases.


Subject(s)
Allergy and Immunology , Cancer Vaccines/immunology , Immunotherapy, Adoptive/methods , Neoplasms/therapy , Synthetic Biology , T-Lymphocytes/immunology , Animals , Genetic Engineering , Humans , Lymphocyte Activation , Neoplasms/immunology , Receptors, Antigen, T-Cell/genetics , Recombinant Fusion Proteins/genetics , T-Lymphocytes/transplantation
4.
Cell ; 187(14): 3741-3760.e30, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38843831

ABSTRACT

Experimental studies on DNA transposable elements (TEs) have been limited in scale, leading to a lack of understanding of the factors influencing transposition activity, evolutionary dynamics, and application potential as genome engineering tools. We predicted 130 active DNA TEs from 102 metazoan genomes and evaluated their activity in human cells. We identified 40 active (integration-competent) TEs, surpassing the cumulative number (20) of TEs found previously. With this unified comparative data, we found that the Tc1/mariner superfamily exhibits elevated activity, potentially explaining their pervasive horizontal transfers. Further functional characterization of TEs revealed additional divergence in features such as insertion bias. Remarkably, in CAR-T therapy for hematological and solid tumors, Mariner2_AG (MAG), the most active DNA TE identified, largely outperformed two widely used vectors, the lentiviral vector and the TE-based vector SB100X. Overall, this study highlights the varied transposition features and evolutionary dynamics of DNA TEs and increases the TE toolbox diversity.


Subject(s)
DNA Transposable Elements , Humans , DNA Transposable Elements/genetics , Genetic Engineering/methods , Genome, Human , Animals , Evolution, Molecular
5.
Cell ; 186(2): 446-460.e19, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36638795

ABSTRACT

Precise targeting of large transgenes to T cells using homology-directed repair has been transformative for adoptive cell therapies and T cell biology. Delivery of DNA templates via adeno-associated virus (AAV) has greatly improved knockin efficiencies, but the tropism of current AAV serotypes restricts their use to human T cells employed in immunodeficient mouse models. To enable targeted knockins in murine T cells, we evolved Ark313, a synthetic AAV that exhibits high transduction efficiency in murine T cells. We performed a genome-wide knockout screen and identified QA2 as an essential factor for Ark313 infection. We demonstrate that Ark313 can be used for nucleofection-free DNA delivery, CRISPR-Cas9-mediated knockouts, and targeted integration of large transgenes. Ark313 enables preclinical modeling of Trac-targeted CAR-T and transgenic TCR-T cells in immunocompetent models. Efficient gene targeting in murine T cells holds great potential for improved cell therapies and opens avenues in experimental T cell immunology.


Subject(s)
Dependovirus , Genetic Engineering , T-Lymphocytes , Animals , Mice , CRISPR-Cas Systems/genetics , Dependovirus/genetics , Gene Targeting , Genetic Engineering/methods
6.
Cell ; 186(23): 4996-5014.e24, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37949056

ABSTRACT

A formal demonstration that mammalian pluripotent stem cells possess preimplantation embryonic cell-like (naive) pluripotency is the generation of chimeric animals through early embryo complementation with homologous cells. Whereas such naive pluripotency has been well demonstrated in rodents, poor chimerism has been achieved in other species including non-human primates due to the inability of the donor cells to match the developmental state of the host embryos. Here, we have systematically tested various culture conditions for establishing monkey naive embryonic stem cells and optimized the procedures for chimeric embryo culture. This approach generated an aborted fetus and a live chimeric monkey with high donor cell contribution. A stringent characterization pipeline demonstrated that donor cells efficiently (up to 90%) incorporated into various tissues (including the gonads and placenta) of the chimeric monkeys. Our results have major implications for the study of primate naive pluripotency and genetic engineering of non-human primates.


Subject(s)
Embryonic Stem Cells , Genetic Engineering , Haplorhini , Animals , Female , Pregnancy , Haplorhini/genetics , Live Birth , Mammals , Pluripotent Stem Cells , Primates , Genetic Engineering/methods
7.
Cell ; 186(11): 2456-2474.e24, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37137305

ABSTRACT

Systematic evaluation of the impact of genetic variants is critical for the study and treatment of human physiology and disease. While specific mutations can be introduced by genome engineering, we still lack scalable approaches that are applicable to the important setting of primary cells, such as blood and immune cells. Here, we describe the development of massively parallel base-editing screens in human hematopoietic stem and progenitor cells. Such approaches enable functional screens for variant effects across any hematopoietic differentiation state. Moreover, they allow for rich phenotyping through single-cell RNA sequencing readouts and separately for characterization of editing outcomes through pooled single-cell genotyping. We efficiently design improved leukemia immunotherapy approaches, comprehensively identify non-coding variants modulating fetal hemoglobin expression, define mechanisms regulating hematopoietic differentiation, and probe the pathogenicity of uncharacterized disease-associated variants. These strategies will advance effective and high-throughput variant-to-function mapping in human hematopoiesis to identify the causes of diverse diseases.


Subject(s)
Gene Editing , Hematopoietic Stem Cells , Humans , Cell Differentiation , CRISPR-Cas Systems , Genome , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Genetic Engineering , Single-Cell Analysis
8.
Annu Rev Immunol ; 33: 139-67, 2015.
Article in English | MEDLINE | ID: mdl-25493332

ABSTRACT

Cytokines exert a vast array of immunoregulatory actions critical to human biology and disease. However, the desired immunotherapeutic effects of native cytokines are often mitigated by toxicity or lack of efficacy, either of which results from cytokine receptor pleiotropy and/or undesired activation of off-target cells. As our understanding of the structural principles of cytokine-receptor interactions has advanced, mechanism-based manipulation of cytokine signaling through protein engineering has become an increasingly feasible and powerful approach. Modified cytokines, both agonists and antagonists, have been engineered with narrowed target cell specificities, and they have also yielded important mechanistic insights into cytokine biology and signaling. Here we review the theory and practice of cytokine engineering and rationalize the mechanisms of several engineered cytokines in the context of structure. We discuss specific examples of how structure-based cytokine engineering has opened new opportunities for cytokines as drugs, with a focus on the immunotherapeutic cytokines interferon, interleukin-2, and interleukin-4.


Subject(s)
Cytokines/genetics , Cytokines/metabolism , Genetic Engineering , Receptors, Cytokine/genetics , Receptors, Cytokine/metabolism , Animals , Cytokines/chemistry , Extracellular Space/metabolism , Humans , Intracellular Space/metabolism , Protein Binding , Protein Transport , Receptors, Cytokine/chemistry , Signal Transduction
9.
Cell ; 185(9): 1487-1505.e14, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35366417

ABSTRACT

Small molecules encoded by biosynthetic pathways mediate cross-species interactions and harbor untapped potential, which has provided valuable compounds for medicine and biotechnology. Since studying biosynthetic gene clusters in their native context is often difficult, alternative efforts rely on heterologous expression, which is limited by host-specific metabolic capacity and regulation. Here, we describe a computational-experimental technology to redesign genes and their regulatory regions with hybrid elements for cross-species expression in Gram-negative and -positive bacteria and eukaryotes, decoupling biosynthetic capacity from host-range constraints to activate silenced pathways. These synthetic genetic elements enabled the discovery of a class of microbiome-derived nucleotide metabolites-tyrocitabines-from Lactobacillus iners. Tyrocitabines feature a remarkable orthoester-phosphate, inhibit translational activity, and invoke unexpected biosynthetic machinery, including a class of "Amadori synthases" and "abortive" tRNA synthetases. Our approach establishes a general strategy for the redesign, expression, mobilization, and characterization of genetic elements in diverse organisms and communities.


Subject(s)
Biosynthetic Pathways , Host Microbial Interactions , Microbiota , Synthetic Biology/methods , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Eukaryota/genetics , Eukaryota/metabolism , Genetic Engineering , Humans , Metabolomics
10.
Cell ; 185(2): 250-265.e16, 2022 01 20.
Article in English | MEDLINE | ID: mdl-35021064

ABSTRACT

Methods to deliver gene editing agents in vivo as ribonucleoproteins could offer safety advantages over nucleic acid delivery approaches. We report the development and application of engineered DNA-free virus-like particles (eVLPs) that efficiently package and deliver base editor or Cas9 ribonucleoproteins. By engineering VLPs to overcome cargo packaging, release, and localization bottlenecks, we developed fourth-generation eVLPs that mediate efficient base editing in several primary mouse and human cell types. Using different glycoproteins in eVLPs alters their cellular tropism. Single injections of eVLPs into mice support therapeutic levels of base editing in multiple tissues, reducing serum Pcsk9 levels 78% following 63% liver editing, and partially restoring visual function in a mouse model of genetic blindness. In vitro and in vivo off-target editing from eVLPs was virtually undetected, an improvement over AAV or plasmid delivery. These results establish eVLPs as promising vehicles for therapeutic macromolecule delivery that combine key advantages of both viral and nonviral delivery.


Subject(s)
Drug Delivery Systems , Genetic Engineering , Proteins/therapeutic use , Virion/genetics , Animals , Base Sequence , Blindness/genetics , Blindness/therapy , Brain/metabolism , DNA/metabolism , Disease Models, Animal , Fibroblasts/metabolism , Gene Editing , HEK293 Cells , Humans , Liver/pathology , Mice , Mice, Inbred C57BL , Proprotein Convertase 9/metabolism , Retinal Pigment Epithelium/pathology , Retroviridae , Virion/ultrastructure , Vision, Ocular
11.
Cell ; 184(6): 1621-1635, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33581057

ABSTRACT

Feeding the ever-growing population is a major challenge, especially in light of rapidly changing climate conditions. Genome editing is set to revolutionize plant breeding and could help secure the global food supply. Here, I review the development and application of genome editing tools in plants while highlighting newly developed techniques. I describe new plant breeding strategies based on genome editing and discuss their impact on crop production, with an emphasis on recent advancements in genome editing-based plant improvements that could not be achieved by conventional breeding. I also discuss challenges facing genome editing that must be overcome before realizing the full potential of this technology toward future crops and food production.


Subject(s)
Agriculture , Crops, Agricultural/genetics , Genetic Engineering , Genome, Plant , Plant Breeding , Quantitative Trait Loci/genetics
12.
Cell ; 184(4): 881-898, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33571426

ABSTRACT

Synthetic biology is a design-driven discipline centered on engineering novel biological functions through the discovery, characterization, and repurposing of molecular parts. Several synthetic biological solutions to critical biomedical problems are on the verge of widespread adoption and demonstrate the burgeoning maturation of the field. Here, we highlight applications of synthetic biology in vaccine development, molecular diagnostics, and cell-based therapeutics, emphasizing technologies approved for clinical use or in active clinical trials. We conclude by drawing attention to recent innovations in synthetic biology that are likely to have a significant impact on future applications in biomedicine.


Subject(s)
Biomedical Research , Genetic Engineering , Synthetic Biology , Vaccines/immunology , Animals , CRISPR-Cas Systems/genetics , Humans , RNA/genetics
13.
Cell ; 184(9): 2284-2301, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33848464

ABSTRACT

A fundamental challenge in synthetic biology is to create molecular circuits that can program complex cellular functions. Because proteins can bind, cleave, and chemically modify one another and interface directly and rapidly with endogenous pathways, they could extend the capabilities of synthetic circuits beyond what is possible with gene regulation alone. However, the very diversity that makes proteins so powerful also complicates efforts to harness them as well-controlled synthetic circuit components. Recent work has begun to address this challenge, focusing on principles such as orthogonality and composability that permit construction of diverse circuit-level functions from a limited set of engineered protein components. These approaches are now enabling the engineering of circuits that can sense, transmit, and process information; dynamically control cellular behaviors; and enable new therapeutic strategies, establishing a powerful paradigm for programming biology.


Subject(s)
Cell Physiological Phenomena , Cellular Reprogramming , Genetic Engineering/methods , Proteins/metabolism , Synthetic Biology/methods , Animals , Humans , Proteins/chemistry , Proteins/genetics
14.
Cell ; 184(9): 2430-2440.e16, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33784496

ABSTRACT

Genomically minimal cells, such as JCVI-syn3.0, offer a platform to clarify genes underlying core physiological processes. Although this minimal cell includes genes essential for population growth, the physiology of its single cells remained uncharacterized. To investigate striking morphological variation in JCVI-syn3.0 cells, we present an approach to characterize cell propagation and determine genes affecting cell morphology. Microfluidic chemostats allowed observation of intrinsic cell dynamics that result in irregular morphologies. A genome with 19 genes not retained in JCVI-syn3.0 generated JCVI-syn3A, which presents morphology similar to that of JCVI-syn1.0. We further identified seven of these 19 genes, including two known cell division genes, ftsZ and sepF, a hydrolase of unknown substrate, and four genes that encode membrane-associated proteins of unknown function, which are required together to restore a phenotype similar to that of JCVI-syn1.0. This result emphasizes the polygenic nature of cell division and morphology in a genomically minimal cell.


Subject(s)
Bacterial Proteins/genetics , Chromosomes, Bacterial/genetics , DNA, Bacterial/genetics , Genome, Bacterial , Mycoplasma/genetics , Synthetic Biology/methods , Bacterial Proteins/antagonists & inhibitors , CRISPR-Cas Systems , Genetic Engineering
15.
Cell ; 184(20): 5201-5214.e12, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34536345

ABSTRACT

Certain obligate parasites induce complex and substantial phenotypic changes in their hosts in ways that favor their transmission to other trophic levels. However, the mechanisms underlying these changes remain largely unknown. Here we demonstrate how SAP05 protein effectors from insect-vectored plant pathogenic phytoplasmas take control of several plant developmental processes. These effectors simultaneously prolong the host lifespan and induce witches' broom-like proliferations of leaf and sterile shoots, organs colonized by phytoplasmas and vectors. SAP05 acts by mediating the concurrent degradation of SPL and GATA developmental regulators via a process that relies on hijacking the plant ubiquitin receptor RPN10 independent of substrate ubiquitination. RPN10 is highly conserved among eukaryotes, but SAP05 does not bind insect vector RPN10. A two-amino-acid substitution within plant RPN10 generates a functional variant that is resistant to SAP05 activities. Therefore, one effector protein enables obligate parasitic phytoplasmas to induce a plethora of developmental phenotypes in their hosts.


Subject(s)
Arabidopsis/growth & development , Arabidopsis/parasitology , Host-Parasite Interactions/physiology , Parasites/physiology , Proteolysis , Ubiquitins/metabolism , Amino Acid Sequence , Animals , Arabidopsis/genetics , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Genetic Engineering , Humans , Insecta/physiology , Models, Biological , Phenotype , Photoperiod , Phylogeny , Phytoplasma/physiology , Plant Development , Plant Shoots/growth & development , Plants, Genetically Modified , Proteasome Endopeptidase Complex/metabolism , Protein Stability , Reproduction , Nicotiana , Transcription Factors/metabolism , Transcription, Genetic
16.
Cell ; 184(8): 2033-2052.e21, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33765443

ABSTRACT

Metastasis is the leading cause of cancer-related deaths, and greater knowledge of the metastatic microenvironment is necessary to effectively target this process. Microenvironmental changes occur at distant sites prior to clinically detectable metastatic disease; however, the key niche regulatory signals during metastatic progression remain poorly characterized. Here, we identify a core immune suppression gene signature in pre-metastatic niche formation that is expressed predominantly by myeloid cells. We target this immune suppression program by utilizing genetically engineered myeloid cells (GEMys) to deliver IL-12 to modulate the metastatic microenvironment. Our data demonstrate that IL12-GEMy treatment reverses immune suppression in the pre-metastatic niche by activating antigen presentation and T cell activation, resulting in reduced metastatic and primary tumor burden and improved survival of tumor-bearing mice. We demonstrate that IL12-GEMys can functionally modulate the core program of immune suppression in the pre-metastatic niche to successfully rebalance the dysregulated metastatic microenvironment in cancer.


Subject(s)
Immunosuppression Therapy , Myeloid Cells/metabolism , Adaptive Immunity , Animals , Cell Line, Tumor , Genetic Engineering , Humans , Interleukin-12/genetics , Interleukin-12/metabolism , Lung/metabolism , Lung Neoplasms/immunology , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Lymphocyte Activation , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myeloid Cells/cytology , Myeloid Cells/immunology , Neoplasm Metastasis , Rhabdomyosarcoma/metabolism , Rhabdomyosarcoma/pathology , Survival Rate , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tumor Microenvironment
17.
Annu Rev Biochem ; 89: 77-101, 2020 06 20.
Article in English | MEDLINE | ID: mdl-32569517

ABSTRACT

DNA synthesis technology has progressed to the point that it is now practical to synthesize entire genomes. Quite a variety of methods have been developed, first to synthesize single genes but ultimately to massively edit or write from scratch entire genomes. Synthetic genomes can essentially be clones of native sequences, but this approach does not teach us much new biology. The ability to endow genomes with novel properties offers special promise for addressing questions not easily approachable with conventional gene-at-a-time methods. These include questions about evolution and about how genomes are fundamentally wired informationally, metabolically, and genetically. The techniques and technologies relating to how to design, build, and deliver big DNA at the genome scale are reviewed here. A fuller understanding of these principles may someday lead to the ability to truly design genomes from scratch.


Subject(s)
DNA/genetics , Gene Editing/methods , Gene Transfer Techniques , Genes, Synthetic , Genetic Engineering/methods , Genome , CRISPR-Cas Systems , DNA/chemistry , DNA/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Oligonucleotides/chemical synthesis , Oligonucleotides/metabolism , Plasmids/chemistry , Plasmids/metabolism , Poliovirus/genetics , Poliovirus/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Spheroplasts/genetics , Spheroplasts/metabolism
18.
Cell ; 181(1): 22-23, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32243792

ABSTRACT

With recent advances in both gene editing and stem cell biology, the promise of cellular therapies is now closer than ever. Clinical trials for the application of chimeric antigen receptor T cells has driven an enormous investment into the development of such cellular products and learnings from these emboldening investors and engaging regulators across the globe.


Subject(s)
Brain-Computer Interfaces , Tissue Engineering , Aging , Genetic Engineering , Humans , Regeneration , Stem Cells
19.
Cell ; 181(1): 46-62, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32243795

ABSTRACT

Cell therapies present an entirely new paradigm in drug development. Within this class, immune cell therapies are among the most advanced, having already demonstrated definitive evidence of clinical benefits in cancer and infectious disease. Numerous features distinguish these "living therapies" from traditional medicines, including their ability to expand and contract in proportion to need and to mediate therapeutic benefits for months or years following a single application. Continued advances in fundamental immunology, genetic engineering, gene editing, and synthetic biology exponentially expand opportunities to enhance the sophistication of immune cell therapies, increasing potency and safety and broadening their potential for treatment of disease. This perspective will summarize the current status of immune cell therapies for cancer, infectious disease, and autoimmunity, and discuss advances in cellular engineering to overcome barriers to progress.


Subject(s)
Autoimmune Diseases/therapy , Cell- and Tissue-Based Therapy , Immunotherapy/methods , Neoplasms/therapy , Virus Diseases/therapy , Cell Engineering , Gene Editing , Genetic Engineering , Humans , Synthetic Biology
20.
Cell ; 181(3): 728-744.e21, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32302591

ABSTRACT

Adoptive transfer of genetically modified immune cells holds great promise for cancer immunotherapy. CRISPR knockin targeting can improve cell therapies, but more high-throughput methods are needed to test which knockin gene constructs most potently enhance primary cell functions in vivo. We developed a widely adaptable technology to barcode and track targeted integrations of large non-viral DNA templates and applied it to perform pooled knockin screens in primary human T cells. Pooled knockin of dozens of unique barcoded templates into the T cell receptor (TCR)-locus revealed gene constructs that enhanced fitness in vitro and in vivo. We further developed pooled knockin sequencing (PoKI-seq), combining single-cell transcriptome analysis and pooled knockin screening to measure cell abundance and cell state ex vivo and in vivo. This platform nominated a novel transforming growth factor ß (TGF-ß) R2-41BB chimeric receptor that improved solid tumor clearance. Pooled knockin screening enables parallelized re-writing of endogenous genetic sequences to accelerate discovery of knockin programs for cell therapies.


Subject(s)
Gene Knock-In Techniques/methods , Genetic Engineering/methods , Immunotherapy/methods , Animals , Blood Cells , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Humans , Mice , Mice, Inbred NOD , Mice, SCID , RNA, Guide, Kinetoplastida/genetics , Single-Cell Analysis/methods , T-Lymphocytes , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL