Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 677
Filter
Add more filters

Publication year range
1.
Cell ; 141(6): 1006-17, 2010 Jun 11.
Article in English | MEDLINE | ID: mdl-20550936

ABSTRACT

Intracellular iron homeostasis is critical for survival and proliferation. Lipocalin 24p3 is an iron-trafficking protein that binds iron through association with a bacterial siderophore, such as enterobactin, or a postulated mammalian siderophore. Here, we show that the iron-binding moiety of the 24p3-associated mammalian siderophore is 2,5-dihydroxybenzoic acid (2,5-DHBA), which is similar to 2,3-DHBA, the iron-binding component of enterobactin. We find that the murine enzyme responsible for 2,5-DHBA synthesis, BDH2, is the homolog of bacterial EntA, which catalyzes 2,3-DHBA production during enterobactin biosynthesis. RNA interference-mediated knockdown of BDH2 results in siderophore depletion. Mammalian cells lacking the siderophore accumulate abnormally high amounts of cytoplasmic iron, resulting in elevated levels of reactive oxygen species, whereas the mitochondria are iron deficient. Siderophore-depleted mammalian cells and zebrafish embryos fail to synthesize heme, an iron-dependent mitochondrial process. Our results reveal features of intracellular iron homeostasis that are conserved from bacteria through humans.


Subject(s)
Enterobactin/metabolism , Gentisates/metabolism , Siderophores/metabolism , Amino Acid Sequence , Animals , Escherichia coli Proteins/metabolism , Gentisates/chemistry , Humans , Hydroxybutyrate Dehydrogenase/chemistry , Hydroxybutyrate Dehydrogenase/metabolism , Iron/metabolism , Mice , Molecular Sequence Data , Oxidative Stress , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Sequence Alignment , Zebrafish
2.
PLoS Genet ; 18(3): e1009815, 2022 03.
Article in English | MEDLINE | ID: mdl-35255079

ABSTRACT

Many fungal species utilize hydroxyderivatives of benzene and benzoic acid as carbon sources. The yeast Candida parapsilosis metabolizes these compounds via the 3-oxoadipate and gentisate pathways, whose components are encoded by two metabolic gene clusters. In this study, we determine the chromosome level assembly of the C. parapsilosis strain CLIB214 and use it for transcriptomic and proteomic investigation of cells cultivated on hydroxyaromatic substrates. We demonstrate that the genes coding for enzymes and plasma membrane transporters involved in the 3-oxoadipate and gentisate pathways are highly upregulated and their expression is controlled in a substrate-specific manner. However, regulatory proteins involved in this process are not known. Using the knockout mutants, we show that putative transcriptional factors encoded by the genes OTF1 and GTF1 located within these gene clusters function as transcriptional activators of the 3-oxoadipate and gentisate pathway, respectively. We also show that the activation of both pathways is accompanied by upregulation of genes for the enzymes involved in ß-oxidation of fatty acids, glyoxylate cycle, amino acid metabolism, and peroxisome biogenesis. Transcriptome and proteome profiles of the cells grown on 4-hydroxybenzoate and 3-hydroxybenzoate, which are metabolized via the 3-oxoadipate and gentisate pathway, respectively, reflect their different connection to central metabolism. Yet we find that the expression profiles differ also in the cells assimilating 4-hydroxybenzoate and hydroquinone, which are both metabolized in the same pathway. This finding is consistent with the phenotype of the Otf1p-lacking mutant, which exhibits impaired growth on hydroxybenzoates, but still utilizes hydroxybenzenes, thus indicating that additional, yet unidentified transcription factor could be involved in the 3-oxoadipate pathway regulation. Moreover, we propose that bicarbonate ions resulting from decarboxylation of hydroxybenzoates also contribute to differences in the cell responses to hydroxybenzoates and hydroxybenzenes. Finally, our phylogenetic analysis highlights evolutionary paths leading to metabolic adaptations of yeast cells assimilating hydroxyaromatic substrates.


Subject(s)
Candida parapsilosis , Gentisates , Candida parapsilosis/metabolism , Carbon , Gentisates/metabolism , Hydroxybenzoates/metabolism , Phylogeny , Proteome/genetics , Proteomics , Saccharomyces cerevisiae/metabolism , Transcriptome/genetics
3.
Plant Cell Environ ; 47(8): 3111-3131, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38686847

ABSTRACT

In plants, salicylic acid (SA) hydroxylation regulates SA homoeostasis, playing an essential role during plant development and response to pathogens. This reaction is catalysed by SA hydroxylase enzymes, which hydroxylate SA producing 2,3-dihydroxybenzoic acid (2,3-DHBA) and/or 2,5-dihydroxybenzoic acid (2,5-DHBA). Several SA hydroxylases have recently been identified and characterised from different plant species, but no such activity has yet been reported in maize. In this work, we describe the identification and characterisation of a new SA hydroxylase in maize plants. This enzyme, with high sequence similarity to previously described SA hydroxylases from Arabidopsis and rice, converts SA into 2,5-DHBA; however, it has different kinetic properties to those of previously characterised enzymes, and it also catalysers the conversion of the flavonoid dihydroquercetin into quercetin in in vitro activity assays, suggesting that the maize enzyme may have different roles in vivo to those previously reported from other species. Despite this, ZmS5H can complement the pathogen resistance and the early senescence phenotypes of Arabidopsis s3h mutant plants. Finally, we characterised a maize mutant in the S5H gene (s5hMu) that has altered growth, senescence and increased resistance against Colletotrichum graminicola infection, showing not only alterations in SA and 2,5-DHBA but also in flavonol levels. Together, the results presented here provide evidence that SA hydroxylases in different plant species have evolved to show differences in catalytic properties that may be important to fine tune SA levels and other phenolic compounds such as flavonols, to regulate different aspects of plant development and pathogen defence.


Subject(s)
Colletotrichum , Disease Resistance , Plant Diseases , Plant Proteins , Salicylic Acid , Zea mays , Zea mays/genetics , Zea mays/enzymology , Zea mays/microbiology , Salicylic Acid/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/immunology , Colletotrichum/physiology , Kinetics , Ketoglutaric Acids/metabolism , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/genetics , Gene Expression Regulation, Plant , Arabidopsis/genetics , Arabidopsis/enzymology , Arabidopsis/microbiology , Gentisates/metabolism , Phylogeny , Quercetin/metabolism , Hydroxybenzoates
4.
Anal Bioanal Chem ; 416(4): 861-872, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38062198

ABSTRACT

Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) based on micro/nanostructured materials with different natures has received increasing attention for the analysis of a wide variety of analytes. However, up to now, only a few studies have shown the application of simple platforms in MALDI-MS for the identification of intact proteins. The present work reports on the application of copper oxide particles (Cu2O PS), obtained by a greener route, in combination with low amounts of 2,5-dihydroxybenzoic acid (DHB) as a novel hybrid platform. The combined Cu2O PS@DHB matrix, containing only 2.5 mg mL-1 of particles and 10 mg mL-1 of DHB, was easily applicable in MALDI-MS without surface modification of target plates. Under optimal conditions, the analysis of intact proteins up to 150,000 Da was possible, including immunoglobulin G, bovine serum albumin, and cytochrome C with adequate spot-to-spot signal reproducibility (RSD < 10%). In addition, the analysis of glycopeptides from IgG digests was carried out to prove the multipurpose application of the Cu2O PS@DHB platform in the low m/z range (2500-3000 Da). From the obtained results, it can be concluded that the optical and surface properties of as-synthesized Cu2O PS are likely to be responsible for the superior performance of Cu2O PS@DHB in comparison with conventional matrices. In this sense, the proposed user-friendly methodology opens up the prospect for possible implementation in bioanalysis and diagnostic research.


Subject(s)
Copper , Glycopeptides , Hydroxybenzoates , Reproducibility of Results , Gentisates/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Proteins/analysis , Lasers , Oxides
5.
Mar Drugs ; 22(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38786596

ABSTRACT

The escalation of jellyfish stings has drawn attention to severe skin reactions, underscoring the necessity for novel treatments. This investigation assesses the potential of hydroxybenzoic acid derivatives, specifically protocatechuic acid (PCA) and gentisic acid (DHB), for alleviating Nemopilema nomurai Nematocyst Venom (NnNV)-induced injuries. By employing an in vivo mouse model, the study delves into the therapeutic efficacy of these compounds. Through a combination of ELISA and Western blot analyses, histological examinations, and molecular assays, the study scrutinizes the inflammatory response, assesses skin damage and repair mechanisms, and investigates the compounds' ability to counteract venom effects. Our findings indicate that PCA and DHB significantly mitigate inflammation by modulating critical cytokines and pathways, altering collagen ratios through topical application, and enhancing VEGF and bFGF levels. Furthermore, both compounds demonstrate potential in neutralizing NnNV toxicity by inhibiting metalloproteinases and phospholipase-A2, showcasing the viability of small-molecule compounds in managing toxin-induced injuries.


Subject(s)
Cnidarian Venoms , Hydroxybenzoates , Skin , Animals , Hydroxybenzoates/pharmacology , Mice , Cnidarian Venoms/pharmacology , Skin/drug effects , Skin/pathology , Skin/metabolism , Gentisates/pharmacology , Nematocyst/drug effects , Disease Models, Animal , Cytokines/metabolism
6.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Article in English | MEDLINE | ID: mdl-34215692

ABSTRACT

Plant diseases are among the major causes of crop yield losses around the world. To confer disease resistance, conventional breeding relies on the deployment of single resistance (R) genes. However, this strategy has been easily overcome by constantly evolving pathogens. Disabling susceptibility (S) genes is a promising alternative to R genes in breeding programs, as it usually offers durable and broad-spectrum disease resistance. In Arabidopsis, the S gene DMR6 (AtDMR6) encodes an enzyme identified as a susceptibility factor to bacterial and oomycete pathogens. Here, we present a model-to-crop translational work in which we characterize two AtDMR6 orthologs in tomato, SlDMR6-1 and SlDMR6-2. We show that SlDMR6-1, but not SlDMR6-2, is up-regulated by pathogen infection. In agreement, Sldmr6-1 mutants display enhanced resistance against different classes of pathogens, such as bacteria, oomycete, and fungi. Notably, disease resistance correlates with increased salicylic acid (SA) levels and transcriptional activation of immune responses. Furthermore, we demonstrate that SlDMR6-1 and SlDMR6-2 display SA-5 hydroxylase activity, thus contributing to the elucidation of the enzymatic function of DMR6. We then propose that SlDMR6 duplication in tomato resulted in subsequent subfunctionalization, in which SlDMR6-2 specialized in balancing SA levels in flowers/fruits, while SlDMR6-1 conserved the ability to fine-tune SA levels during pathogen infection of the plant vegetative tissues. Overall, this work not only corroborates a mechanism underlying SA homeostasis in plants, but also presents a promising strategy for engineering broad-spectrum and durable disease resistance in crops.


Subject(s)
Disease Resistance/immunology , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Proteins/metabolism , Sequence Homology, Amino Acid , Solanum lycopersicum/immunology , Arabidopsis Proteins/metabolism , Biocatalysis , Gene Expression Regulation, Plant , Gentisates/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Mutation/genetics , Phylogeny , Plant Immunity/genetics , Plant Proteins/genetics , Plants, Genetically Modified , Salicylic Acid/metabolism , Transcriptome/genetics , Up-Regulation , Xanthomonas/physiology
7.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791185

ABSTRACT

Acetylsalicylic acid or aspirin is the most commonly used drug in the world and is taken daily by millions of people. There is increasing evidence that chronic administration of low-dose aspirin of about 75-100 mg/day can cause iron deficiency anaemia (IDA) in the absence of major gastric bleeding; this is found in a large number of about 20% otherwise healthy elderly (>65 years) individuals. The mechanisms of the cause of IDA in this category of individuals are still largely unknown. Evidence is presented suggesting that a likely cause of IDA in this category of aspirin users is the chelation activity and increased excretion of iron caused by aspirin chelating metabolites (ACMs). It is estimated that 90% of oral aspirin is metabolized into about 70% of the ACMs salicyluric acid, salicylic acid, 2,5-dihydroxybenzoic acid, and 2,3-dihydroxybenzoic acid. All ACMs have a high affinity for binding iron and ability to mobilize iron from different iron pools, causing an overall net increase in iron excretion and altering iron balance. Interestingly, 2,3-dihydroxybenzoic acid has been previously tested in iron-loaded thalassaemia patients, leading to substantial increases in iron excretion. The daily administration of low-dose aspirin for long-term periods is likely to enhance the overall iron excretion in small increments each time due to the combined iron mobilization effect of the ACM. In particular, IDA is likely to occur mainly in populations such as elderly vegetarian adults with meals low in iron content. Furthermore, IDA may be exacerbated by the combinations of ACM with other dietary components, which can prevent iron absorption and enhance iron excretion. Overall, aspirin is acting as a chelating pro-drug similar to dexrazoxane, and the ACM as combination chelation therapy. Iron balance, pharmacological, and other studies on the interaction of iron and aspirin, as well as ACM, are likely to shed more light on the mechanism of IDA. Similar mechanisms of iron chelation through ACM may also be implicated in patient improvements observed in cancer, neurodegenerative, and other disease categories when treated long-term with daily aspirin. In particular, the role of aspirin and ACM in iron metabolism and free radical pathology includes ferroptosis, and may identify other missing links in the therapeutic effects of aspirin in many more diseases. It is suggested that aspirin is the first non-chelating drug described to cause IDA through its ACM metabolites. The therapeutic, pharmacological, toxicological and other implications of aspirin are incomplete without taking into consideration the iron binding and other effects of the ACM.


Subject(s)
Anemia, Iron-Deficiency , Aspirin , Iron Chelating Agents , Iron , Humans , Aspirin/therapeutic use , Aspirin/metabolism , Anemia, Iron-Deficiency/metabolism , Anemia, Iron-Deficiency/drug therapy , Iron/metabolism , Iron Chelating Agents/therapeutic use , Iron Chelating Agents/metabolism , Salicylic Acid/metabolism , Gentisates/metabolism , Hippurates/metabolism , Hydroxybenzoates
8.
Mol Microbiol ; 116(3): 783-793, 2021 09.
Article in English | MEDLINE | ID: mdl-34121246

ABSTRACT

Salicylate is a typical aromatic compound widely distributed in nature. Microbial degradation of salicylate has been well studied and salicylate hydroxylases play essential roles in linking the peripheral and ring-cleavage catabolic pathways. The direct hydroxylation of salicylate catalyzed by salicylate-1-hydroxylase or salicylate-5-hydroxylase has been well studied. However, the CoA mediated salicylate 5-hydroxylation pathway has not been characterized in detail. Here, we elucidate the molecular mechanism of the reaction in the conversion of salicylate to gentisate in the carbaryl-degrading strain Rhizobium sp. X9. Three enzymes (salicylyl-CoA ligase CehG, salicylyl-CoA hydroxylase CehH and gentisyl-CoA thioesterase CehI) catalyzed the conversion of salicylate to gentisate via a route, including CoA thioester formation, hydroxylation and thioester hydrolysis. Further analysis indicated that genes cehGHI are also distributed in other bacteria from terrestrial environment and marine sediments. These genomic evidences highlight the role of this salicylate degradation pathway in the carbon cycle of soil organic compounds and marine sediments. Our findings of this three-step strategy enhanced the current understanding of CoA mediated degradation of salicylate.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Coenzyme A/metabolism , Rhizobium/enzymology , Rhizobium/genetics , Rhizobium/metabolism , Salicylates/metabolism , Genetic Complementation Test , Genome, Bacterial , Gentisates/metabolism , Ligases/genetics , Ligases/metabolism , Metabolic Networks and Pathways , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Soil Microbiology , Thiolester Hydrolases/genetics , Thiolester Hydrolases/metabolism
9.
BMC Plant Biol ; 22(1): 549, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36443652

ABSTRACT

BACKGROUND: Salicylic acid (SA) is a major plant hormone that mediates the defence pathway against pathogens. SA accumulates in highly variable amounts depending on the plant-pathogen system, and several enzyme activities participate in the restoration of its levels. Gentisic acid (GA) is the product of the 5-hydroxylation of SA, which is catalysed by S5H, an enzyme activity regarded as a major player in SA homeostasis. GA accumulates at high levels in tomato plants infected by Citrus Exocortis Viroid (CEVd), and to a lesser extend upon Pseudomonas syringae DC3000 pv. tomato (Pst) infection. RESULTS: We have studied the induction of tomato SlS5H gene by different pathogens, and its expression correlates with the accumulation of GA. Transient over-expression of SlS5H in Nicotiana benthamiana confirmed that SA is processed by SlS5H in vivo. SlS5H-silenced tomato plants were generated, displaying a smaller size and early senescence, together with hypersusceptibility to the necrotrophic fungus Botrytis cinerea. In contrast, these transgenic lines exhibited an increased defence response and resistance to both CEVd and Pst infections. Alternative SA processing appears to occur for each specific pathogenic interaction to cope with SA levels. In SlS5H-silenced plants infected with CEVd, glycosylated SA was the most discriminant metabolite found. Instead, in Pst-infected transgenic plants, SA appeared to be rerouted to other phenolics such as feruloyldopamine, feruloylquinic acid, feruloylgalactarate and 2-hydroxyglutarate. CONCLUSION: Using SlS5H-silenced plants as a tool to unbalance SA levels, we have studied the re-routing of SA upon CEVd and Pst infections and found that, despite the common origin and role for SA in plant pathogenesis, there appear to be different pathogen-specific, alternate homeostasis pathways.


Subject(s)
Solanum lycopersicum , Solanum lycopersicum/genetics , Salicylic Acid , Gentisates , Pseudomonas syringae
10.
Appl Environ Microbiol ; 88(4): e0206021, 2022 02 22.
Article in English | MEDLINE | ID: mdl-34936841

ABSTRACT

Previously, a LysR family transcriptional regulator, McbG, that activates the mcbBCDEF gene cluster involved in the upstream pathway (from carbaryl to salicylate) of carbaryl degradation in Pseudomonas sp. strain XWY-1 was identified by us (Z. Ke, Y. Zhou, W. Jiang, M. Zhang, et al., Appl Environ Microbiol 87:e02970-20, 2021, https://doi.org/10.1128/AEM.02970-20). In this study, we identified McbH and McbN, which activate the mcbIJKLM cluster (responsible for the midstream pathway, from salicylate to gentisate) and the mcbOPQ cluster (responsible for the downstream pathway, from gentisate to pyruvate and fumarate), respectively. They both belong to the LysR family of transcriptional regulators. Gene disruption and complementation study reveal that McbH is essential for transcription of the mcbIJKLM cluster in response to salicylate and McbN is indispensable for the transcription of the mcbOPQ cluster in response to gentisate. The results of electrophoretic mobility shift assay (EMSA) and DNase I footprinting showed that McbH binds to the 52-bp motif in the mcbIJKLM promoter area and McbN binds to the 58-bp motif in the mcbOPQ promoter area. The key sequence of McbH binding to the mcbIJKLM promoter is a 13-bp motif that conforms to the typical characteristics of the LysR family. However, the 12-bp motif that is different from the typical characteristics of the LysR family regulator binding site sequence is identified as the key sequence for McbN to bind to the mcbOPQ promoter. This study revealed the regulatory mechanisms for the midstream and downstream pathways of carbaryl degradation in strain XWY-1 and further our knowledge of (and the size of) the LysR transcription regulator family. IMPORTANCE The enzyme-encoding genes involved in the complete degradation pathway of carbaryl in Pseudomonas sp. strain XWY-1 include mcbABCDEF, mcbIJKLM, and mcbOPQ. Previous studies demonstrated that the mcbA gene, responsible for hydrolysis of carbaryl to 1-naphthol, is constitutively expressed and that the transcription of mcbBCDEF was regulated by McbG. However, the transcription regulation mechanisms of mcbIJKLM and mcbOPQ have not been investigated yet. In this study, we identified two LysR-type transcriptional regulators, McbH and McbN, which activate the mcbIJKLM cluster (responsible for the degradation of salicylate to gentisate) and the mcbOPQ cluster (responsible for the degradation of gentisate to pyruvate and fumarate), respectively. The 13-bp motif is critical for McbH to bind to the promoter of mcbIJKLM, and 12-bp motif different from the typical characteristics of the LysR-type transcriptional regulator (LTTR) binding sequence affects the binding of McbN to the promoter. These findings help to expand the understanding of the regulatory mechanism of microbial degradation of carbaryl.


Subject(s)
Carbaryl , Pseudomonas , Bacterial Proteins/metabolism , Carbaryl/metabolism , Gene Expression Regulation, Bacterial , Gentisates/metabolism , Operon , Pseudomonas/genetics , Pseudomonas/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
11.
Analyst ; 147(13): 3017-3024, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35639347

ABSTRACT

Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) has become an attractive technique for the localization and visualization of small molecules in various biological tissue sections. In this work, submicron 3,4-dihydroxybenzoic acid-TiO2 composite particles (3,4-DHB-TiO2 CPs) were synthesized for enhanced MALDI MSI of secondary metabolites in the root of Scutellaria baicalensis Georgi (baical skullcap). Submicron TiO2 particles were synthesized as starting materials by using a facile sol-gel method and chemically modified with six analogs of dihydroxybenzoic acids (DHB) (2,3-DHB, 2,4-DHB, 2,5-DHB, 2,6-DHB, 3,4-DHB, and 3,5-DHB). Among them, 3,4-DHB-TiO2 CPs provided superior performance in MALDI MSI of small molecules. Compared with conventional matrices, such as 2,5-dihydroxybenzoic acid (2,5-DHB) and α-cyano-4-hydroxycinnamic acid (CHCA), 3,4-DHB-TiO2 CPs exhibited low background noise and high detection sensitivity for the visualization of spatial distribution patterns of secondary metabolites in the roots of differently aged S. baicalensis by using MALDI MSI. The age-related spatial and content changes of flavonoids in S. baicalensis roots were demonstrated and further validated by liquid chromatography-mass spectrometry (LC-MS). This work provides a potential organic-inorganic hybrid matrix for MALDI MSI of secondary metabolites in plant tissues.


Subject(s)
Gentisates , Scutellaria , Gentisates/chemistry , Hydroxybenzoates , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Titanium
12.
Molecules ; 27(20)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36296448

ABSTRACT

The use of crystal engineering to convert liquids into crystalline solids remains a powerful method for inhibiting undesired degradation pathways. When nicotine, a liquid sensitive to both light and air, is combined with the GRAS-listed compound, gentisic acid, the resulting crystalline solid, exhibits enhanced photo and thermal stability. Despite a modest ΔTm of 42.7 °C, the melting point of 155.9 °C for the nicotinium gentisate salt is the highest reported for nicotine-containing crystalline solids. An analysis of the crystal packing and thermodynamic properties provides context for the observed properties.


Subject(s)
Gentisates , Nicotine , Thermodynamics
13.
Proc Natl Acad Sci U S A ; 115(7): 1576-1581, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29378951

ABSTRACT

Lipocalin-2 (Lcn2), a critical component of the innate immune response which binds siderophores and limits bacterial iron acquisition, can elicit spillover adverse proinflammatory effects. Here we show that holo-Lcn2 (Lcn2-siderophore-iron, 1:3:1) increases mitochondrial reactive oxygen species (ROS) generation and attenuates mitochondrial oxidative phosphorylation in adult rat primary cardiomyocytes in a manner blocked by N-acetyl-cysteine or the mitochondria-specific antioxidant SkQ1. We further demonstrate using siderophores 2,3-DHBA (2,3-dihydroxybenzoic acid) and 2,5-DHBA that increased ROS and reduction in oxidative phosphorylation are direct effects of the siderophore component of holo-Lcn2 and not due to apo-Lcn2 alone. Extracellular apo-Lcn2 enhanced the potency of 2,3-DHBA and 2,5-DHBA to increase ROS production and decrease mitochondrial respiratory capacity, whereas intracellular apo-Lcn2 attenuated these effects. These actions of holo-Lcn2 required an intact plasma membrane and were decreased by inhibition of endocytosis. The hearts, but not serum, of Lcn2 knockout (LKO) mice contained lower levels of 2,5-DHBA compared with wild-type hearts. Furthermore, LKO mice were protected from ischemia/reperfusion-induced cardiac mitochondrial dysfunction. Our study identifies the siderophore moiety of holo-Lcn2 as a regulator of cardiomyocyte mitochondrial bioenergetics.


Subject(s)
Lipocalin-2/physiology , Mitochondria/pathology , Myocytes, Cardiac/pathology , Reactive Oxygen Species/metabolism , Reperfusion Injury/pathology , Siderophores/metabolism , Animals , Gentisates/pharmacology , Hydroxybenzoates/pharmacology , Iron/metabolism , Male , Mice , Mice, Knockout , Mitochondria/drug effects , Mitochondria/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Oxidative Phosphorylation , Rats , Rats, Wistar , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism
14.
Mikrochim Acta ; 188(2): 36, 2021 01 09.
Article in English | MEDLINE | ID: mdl-33420843

ABSTRACT

An amperometric sensor based on an inkjet-printed graphene electrode (IPGE) modified with amine-functionalized montmorillonite (Mt-NH2) for the electroanalysis and quantification of gentisic acid (GA) has been developed. The organoclay used as IPGE modifier was prepared and characterized by infrared spectroscopy, X-ray diffraction, scanning electron microscopy, CHN elemental analysis, and thermogravimetry. The electrochemical features of the Mt-NH2/IPGE sensor were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The sensor exhibited charge selectivity ability which was exploited for the electrochemical oxidation of GA. The GA amperometric response was high in acidic medium (Brinton-Robinson buffer, pH 2) due to favorable interactions between the protonated amine groups and the negatively charged GA. Kinetic studies were also performed by cyclic voltammetry, and the obtained electron transfer rate constant of 11.3 s-1 indicated a fast direct electron transfer rate of GA to the electrode. An approach using differential pulse voltammetry was then developed for the determination of GA (at + 0.233 V vs. a pseudo Ag/Ag+ reference electrode), and under optimized conditions, the sensor showed high sensitivity, a wide working linear range from 1 to 21 µM (R2 = 0.999), and a low detection limit of 0.33 µM (0.051 ± 0.01 mg L-1). The proposed sensor was applied to quantify GA in a commercial red wine sample. The simple and rapid method developed using a cheap clay material could be employed for the determination of various phenolic acids.


Subject(s)
Bentonite/chemistry , Gentisates/analysis , Graphite/chemistry , Electrochemical Techniques/methods , Electrodes , Gentisates/chemistry , Limit of Detection , Oxidation-Reduction , Printing , Wine/analysis
15.
Int J Mol Sci ; 22(4)2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33572316

ABSTRACT

Pyomelanin mimics from homogentisic acid (HGA) and gentisic acid (GA) were biosynthesized by the oxidative enzyme T. versicolor laccase at physiological pH to obtain water soluble melanins. The pigments show brown-black color, broad band visible light absorption, a persistent paramagnetism and high antioxidant activity. The EPR approach shows that at least two different radical species are present in both cases, contributing to the paramagnetism of the samples. This achievement can also shed light on the composition of the ochronotic pigment in the Alkaptonuria disease. On the other hand, these soluble pyomelanin mimics, sharing physico-chemical properties with eumelanin, can represent a suitable alternative to replace the insoluble melanin pigment in biotechnological applications.


Subject(s)
Antioxidants/pharmacology , Gentisates/pharmacology , Homogentisic Acid/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/metabolism , Biotechnology/methods , Fungal Proteins/metabolism , Gentisates/chemistry , Gentisates/isolation & purification , Gentisates/metabolism , Homogentisic Acid/chemistry , Homogentisic Acid/isolation & purification , Homogentisic Acid/metabolism , Laccase/metabolism , Melanins/chemistry , Polyporaceae/enzymology
16.
Molecules ; 26(7)2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33808152

ABSTRACT

Numerous scientific studies have confirmed the beneficial therapeutic effects of phenolic acids. Among them gentisic acid (GA), a phenolic acid extensively found in many fruit and vegetables has been associated with an enormous confirmed health benefit. The present study aims to evaluate the antidiabetic potential of gentisic acid and highlight its mechanisms of action following in silico and in vitro approaches. The in silico study was intended to predict the interaction of GA with eight different receptors highly involved in the management and complications of diabetes (dipeptidyl-peptidase 4 (DPP4), protein tyrosine phosphatase 1B (PTP1B), free fatty acid receptor 1 (FFAR1), aldose reductase (AldR), glycogen phosphorylase (GP), α-amylase, peroxisome proliferator-activated receptor gamma (PPAR-γ) and α-glucosidase), while the in vitro study studied the potential inhibitory effect of GA against α-amylase and α-glucosidase. The results indicate that GA interacted moderately with most of the receptors and had a moderate inhibitory activity during the in vitro tests. The study therefore encourages further in vivo studies to confirm the given results.


Subject(s)
Fruit/chemistry , Gentisates/metabolism , Glycoside Hydrolase Inhibitors/metabolism , Hypoglycemic Agents/metabolism , alpha-Amylases , alpha-Glucosidases/metabolism , Humans , Molecular Docking Simulation , Protein Binding , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism
17.
BMC Bioinformatics ; 21(1): 129, 2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32245392

ABSTRACT

BACKGROUND: Imaging mass spectrometry (imaging MS) is an enabling technology for spatial metabolomics of tissue sections with rapidly growing areas of applications in biology and medicine. However, imaging MS data is polluted with off-sample ions caused by sample preparation, particularly by the MALDI (matrix-assisted laser desorption/ionization) matrix application. Off-sample ion images confound and hinder statistical analysis, metabolite identification and downstream analysis with no automated solutions available. RESULTS: We developed an artificial intelligence approach to recognize off-sample ion images. First, we created a high-quality gold standard of 23,238 expert-tagged ion images from 87 public datasets from the METASPACE knowledge base. Next, we developed several machine and deep learning methods for recognizing off-sample ion images. The following methods were able to reproduce expert judgements with a high agreement: residual deep learning (F1-score 0.97), semi-automated spatio-molecular biclustering (F1-score 0.96), and molecular co-localization (F1-score 0.90). In a test-case study, we investigated off-sample images corresponding to the most common MALDI matrix (2,5-dihydroxybenzoic acid, DHB) and characterized properties of matrix clusters. CONCLUSIONS: Overall, our work illustrates how artificial intelligence approaches enabled by open-access data, web technologies, and machine and deep learning open novel avenues to address long-standing challenges in imaging MS.


Subject(s)
Machine Learning , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Deep Learning , Gentisates/chemistry
18.
Analyst ; 145(6): 2168-2175, 2020 Mar 16.
Article in English | MEDLINE | ID: mdl-32104793

ABSTRACT

With their multiple biological activities and health benefit effects, polysaccharides from medicine and food dual purpose plants (MFDPPPs) have been extensively applied in many fields, including in medical treatments, stock farming, and cosmetics. However, to date, quality issues of MFDPPPs and technologies for the analysis of polysaccharides have posed challenges to chemists. Reported herein is a rapid and high-throughput quality control method for analyzing MFDPPPs, based on matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). For the analysis of illegally added and doped substances, ferroferric oxide nanoparticles were employed as the MALDI matrix to avoid small molecule interference. Qualitatively, high sensitivity was obtained for both illegal drugs and glucose. Quantitatively, the best linear response (R2 > 0.99) was attained in the concentration range from 0.005 to 1 mg mL-1 for glucose. For the analysis of polysaccharides, 2,5-dihydroxybenzoic acid/N-methylaniline was employed as the MALDI matrix to increase the detection sensitivity and mass range coverage. Furthermore, the established method was successfully applied to the analysis of supplements from Astragalus polysaccharides and Lentinan real samples, showing its potential in quality control for MFDPPPs.


Subject(s)
Polysaccharides/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Aniline Compounds/chemistry , Fabaceae/chemistry , Food Contamination/analysis , Gentisates/chemistry , Glucose/analysis , Lentinula/chemistry , Limit of Detection , Magnetite Nanoparticles/chemistry , Quality Control
19.
J Nat Prod ; 83(10): 3173-3180, 2020 10 23.
Article in English | MEDLINE | ID: mdl-33008263

ABSTRACT

Herein is reported the first total synthesis of benzyl salicylate and benzyl gentisate glucosides present in various plant species, in particular the Salix genus, such as Populus balsamifera and P. trichocarpa. The method permits the synthesis of several natural phenolic acid derivatives and their glucosides starting from salicylic or gentisic acid. The divergent approach afforded access to three different acetylated glucosides from a common synthetic intermediate. The key step in the total synthesis of naturally occurring glycosides-the selective deacetylation of the sugar moiety-was achieved in the presence of a labile benzyl ester group by employing mild deacetylation conditions. The protocol permitted synthesis of trichocarpine (4 steps, 40% overall yield), isotrichocarpine (3 steps, 51% overall yield), trichoside (6 steps, 40% overall yield), and deoxytrichocarpine (3 steps, 42% overall yield) for the first time (>95% purity). Also, the optimized mild deacetylation conditions allowed synthesis of 2-O-acetylated derivatives of all four glycosides (5-17% overall yield, 90-95% purity), which are rare plant metabolites.


Subject(s)
Benzyl Compounds/chemical synthesis , Gentisates/chemical synthesis , Glycosides/chemistry , Populus/chemistry , Salicylates/chemistry , Molecular Structure
20.
Int J Med Sci ; 17(5): 626-631, 2020.
Article in English | MEDLINE | ID: mdl-32210712

ABSTRACT

Keratinocyte proliferation is important for skin wound healing. The wound healing process includes blood clotting around the wound, removal of dead cells and pathogens through inflammation, and then re-epithelialization through proliferation and maturation. Proliferation assay was performed on acid natural compounds to identify candidates for natural-derived components of skin injury treatment. We found that gentisic acid promoted high cell proliferation activity compared with other compounds. Gentisic acid improved HaCaT cell proliferation by over 20% in MTT assay. Gentisic acid also had higher healing activity in an in vitro wound healing assay than allantoin as a positive control. Furthermore, we have identified how the treatment of gentisic acid can increase proliferation in the cell. Western blot analysis of proteins in the mitogen-activated protein (MAP) kinase signaling pathway showed that ERK1/2 phosphorylation was increased by gentisic acid treatment. Thus, our study indicates that gentisic acid promotes the proliferation of keratinocyte by phosphorylation of ERK1/2.


Subject(s)
Gentisates/pharmacology , Keratinocytes/drug effects , Wound Healing/drug effects , Cell Line , Cell Proliferation/drug effects , Drug Evaluation, Preclinical , Extracellular Signal-Regulated MAP Kinases/metabolism , Gentisates/therapeutic use , Humans , Phosphorylation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL