Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Cell ; 181(5): 1046-1061.e6, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32392465

ABSTRACT

Since their discovery, giant viruses have expanded our understanding of the principles of virology. Due to their gargantuan size and complexity, little is known about the life cycles of these viruses. To answer outstanding questions regarding giant virus infection mechanisms, we set out to determine biomolecular conditions that promote giant virus genome release. We generated four infection intermediates in Samba virus (Mimivirus genus, lineage A) as visualized by cryoelectron microscopy (cryo-EM), cryoelectron tomography (cryo-ET), and scanning electron microscopy (SEM). Each of these four intermediates reflects similar morphology to a stage that occurs in vivo. We show that these genome release stages are conserved in other mimiviruses. Finally, we identified proteins that are released from Samba and newly discovered Tupanvirus through differential mass spectrometry. Our work revealed the molecular forces that trigger infection are conserved among disparate giant viruses. This study is also the first to identify specific proteins released during the initial stages of giant virus infection.


Subject(s)
Giant Viruses/genetics , Giant Viruses/metabolism , Giant Viruses/physiology , Capsid/metabolism , DNA Viruses/genetics , Genome, Viral/genetics , Proteomics/methods , Virus Assembly/genetics , Virus Assembly/physiology , Virus Diseases/genetics , Viruses/genetics
2.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Article in English | MEDLINE | ID: mdl-33707211

ABSTRACT

Marine viruses are the most abundant biological entity in the ocean and are considered as major evolutionary drivers of microbial life [C. A. Suttle, Nat. Rev. Microbiol. 5, 801-812 (2007)]. Yet, we lack quantitative approaches to assess their impact on the marine ecosystem. Here, we provide quantification of active viral infection in the bloom forming single-celled phytoplankton Emiliania huxleyi infected by the large virus EhV, using high-throughput single-molecule messenger RNA in situ hybridization (smFISH) of both virus and host transcripts. In natural samples, viral infection reached only 25% of the population despite synchronized bloom demise exposing the coexistence of infected and noninfected subpopulations. We prove that photosynthetically active cells chronically release viral particles through nonlytic infection and that viral-induced cell lysis can occur without viral release, thus challenging major assumptions regarding the life cycle of giant viruses. We could also assess active infection in cell aggregates linking viral infection and carbon export to the deep ocean [C. P. Laber et al., Nat. Microbiol. 3, 537-547 (2018)] and suggest a potential host defense strategy by enrichment of infected cells in sinking aggregates. Our approach can be applied to diverse marine microbial systems, opening a mechanistic dimension to the study of biotic interactions in the ocean.


Subject(s)
Eutrophication , Giant Viruses/physiology , Haptophyta/virology , Algal Proteins/genetics , Host-Pathogen Interactions , In Situ Hybridization, Fluorescence , Life Cycle Stages , RNA, Messenger/metabolism , Seawater/microbiology , Single-Cell Analysis , Viral Proteins/genetics , Virion/metabolism
3.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892066

ABSTRACT

In this paper, the characteristics of 40 so far described virophages-parasites of giant viruses-are given, and the similarities and differences between virophages and satellite viruses, which also, like virophages, require helper viruses for replication, are described. The replication of virophages taking place at a specific site-the viral particle factory of giant viruses-and its consequences are presented, and the defence mechanisms of virophages for giant virus hosts, as a protective action for giant virus hosts-protozoa and algae-are approximated. The defence systems of giant viruses against virophages were also presented, which are similar to the CRISPR/Cas defence system found in bacteria and in Archea. These facts, and related to the very specific biological features of virophages (specific site of replication, specific mechanisms of their defensive effects for giant virus hosts, defence systems in giant viruses against virophages), indicate that virophages, and their host giant viruses, are biological objects, forming a 'novelty' in biology.


Subject(s)
Giant Viruses , Satellite Viruses , Virophages , Virus Replication , Giant Viruses/genetics , Giant Viruses/physiology , Satellite Viruses/genetics , Virophages/genetics , Gene Silencing
4.
Nature ; 540(7632): 288-291, 2016 12 07.
Article in English | MEDLINE | ID: mdl-27929021

ABSTRACT

Endogenous viral elements are increasingly found in eukaryotic genomes, yet little is known about their origins, dynamics, or function. Here we provide a compelling example of a DNA virus that readily integrates into a eukaryotic genome where it acts as an inducible antiviral defence system. We found that the virophage mavirus, a parasite of the giant Cafeteria roenbergensis virus (CroV), integrates at multiple sites within the nuclear genome of the marine protozoan Cafeteria roenbergensis. The endogenous mavirus is structurally and genetically similar to eukaryotic DNA transposons and endogenous viruses of the Maverick/Polinton family. Provirophage genes are not constitutively expressed, but are specifically activated by superinfection with CroV, which induces the production of infectious mavirus particles. Virophages can inhibit the replication of mimivirus-like giant viruses and an anti-viral protective effect of provirophages on their hosts has been hypothesized. We find that provirophage-carrying cells are not directly protected from CroV; however, lysis of these cells releases infectious mavirus particles that are then able to suppress CroV replication and enhance host survival during subsequent rounds of infection. The microbial host-parasite interaction described here involves an altruistic aspect and suggests that giant-virus-induced activation of provirophages might be ecologically relevant in natural protist populations.


Subject(s)
Genome/genetics , Giant Viruses/physiology , Host-Parasite Interactions , Stramenopiles/genetics , Stramenopiles/virology , Virophages/growth & development , Virus Integration , DNA Transposable Elements/genetics , Gene Expression Regulation, Viral , Genome, Viral/genetics , Giant Viruses/genetics , Giant Viruses/growth & development , Mimiviridae/growth & development , Prophages/genetics , Prophages/physiology , Stramenopiles/growth & development , Superinfection , Virion/growth & development , Virophages/genetics , Virus Release , Virus Replication
5.
J Virol ; 93(23)2019 12 01.
Article in English | MEDLINE | ID: mdl-31534042

ABSTRACT

Pandoraviridae is a rapidly growing family of giant viruses, all of which have been isolated using laboratory strains of Acanthamoeba The genomes of 10 distinct strains have been fully characterized, reaching up to 2.5 Mb in size. These double-stranded DNA genomes encode the largest of all known viral proteomes and are propagated in oblate virions that are among the largest ever described (1.2 µm long and 0.5 µm wide). The evolutionary origin of these atypical viruses is the object of numerous speculations. Applying the chaos game representation to the pandoravirus genome sequences, we discovered that the tetranucleotide (4-mer) "AGCT" is totally absent from the genomes of 2 strains (Pandoravirus dulcis and Pandoravirus quercus) and strongly underrepresented in others. Given the amazingly low probability of such an observation in the corresponding randomized sequences, we investigated its biological significance through a comprehensive study of the 4-mer compositions of all viral genomes. Our results indicate that AGCT was specifically eliminated during the evolution of the Pandoraviridae and that none of the previously proposed host-virus antagonistic relationships could explain this phenomenon. Unlike the three other families of giant viruses (Mimiviridae, Pithoviridae, and Molliviridae) infecting the same Acanthamoeba host, the pandoraviruses exhibit a puzzling genomic anomaly suggesting a highly specific DNA editing in response to a new kind of strong evolutionary pressure.IMPORTANCE Recent years have seen the discovery of several families of giant DNA viruses infecting the ubiquitous amoebozoa of the genus Acanthamoeba With double-stranded DNA (dsDNA) genomes reaching 2.5 Mb in length packaged in oblate particles the size of a bacterium, the pandoraviruses are currently the most complex and largest viruses known. In addition to their spectacular dimensions, the pandoraviruses encode the largest proportion of proteins without homologs in other organisms, which is thought to result from a de novo gene creation process. While using comparative genomics to investigate the evolutionary forces responsible for the emergence of such an unusual giant virus family, we discovered a unique bias in the tetranucleotide composition of the pandoravirus genomes that can result only from an undescribed evolutionary process not encountered in any other microorganism.


Subject(s)
Acanthamoeba/virology , Giant Viruses/classification , Giant Viruses/genetics , Giant Viruses/physiology , Base Sequence , DNA Viruses/genetics , Evolution, Molecular , Gene Editing , Genome, Viral , Host-Pathogen Interactions/physiology , Mimiviridae/genetics , Virion/genetics
6.
J Virol ; 93(13)2019 07 01.
Article in English | MEDLINE | ID: mdl-30996095

ABSTRACT

Cellular membranes ensure functional compartmentalization by dynamic fusion-fission remodeling and are often targeted by viruses during entry, replication, assembly, and egress. Nucleocytoplasmic large DNA viruses (NCLDVs) can recruit host-derived open membrane precursors to form their inner viral membrane. Using complementary three-dimensional (3D)-electron microscopy techniques, including focused-ion beam scanning electron microscopy and electron tomography, we show that the giant Mollivirus sibericum utilizes the same strategy but also displays unique features. Indeed, assembly is specifically triggered by an open cisterna with a flat pole in its center and open curling ends that grow by recruitment of vesicles never reported for NCLDVs. These vesicles, abundant in the viral factory (VF), are initially closed but open once in close proximity to the open curling ends of the growing viral membrane. The flat pole appears to play a central role during the entire virus assembly process. While additional capsid layers are assembled from it, it also shapes the growing cisterna into immature crescent-like virions and is located opposite to the membrane elongation and closure sites, thereby providing virions with a polarity. In the VF, DNA-associated filaments are abundant, and DNA is packed within virions prior to particle closure. Altogether, our results highlight the complexity of the interaction between giant viruses and their host. Mollivirus assembly relies on the general strategy of vesicle recruitment, opening, and shaping by capsid layers similar to all NCLDVs studied until now. However, the specific features of its assembly suggest that the molecular mechanisms for cellular membrane remodeling and persistence are unique.IMPORTANCE Since the first giant virus Mimivirus was identified, other giant representatives are isolated regularly around the world and appear to be unique in several aspects. They belong to at least four viral families, and the ways they interact with their hosts remain poorly understood. We focused on Mollivirus sibericum, the sole representative of "Molliviridae," which was isolated from a 30,000-year-old permafrost sample and exhibits spherical virions of complex composition. In particular, we show that (i) assembly is initiated by a unique structure containing a flat pole positioned at the center of an open cisterna, (ii) core packing involves another cisterna-like element seemingly pushing core proteins into particles being assembled, and (iii) specific filamentous structures contain the viral genome before packaging. Altogether, our findings increase our understanding of how complex giant viruses interact with their host and provide the foundation for future studies to elucidate the molecular mechanisms of Mollivirus assembly.


Subject(s)
Virion/physiology , Virus Assembly/physiology , Viruses, Unclassified/physiology , Acanthamoeba castellanii/cytology , Acanthamoeba castellanii/virology , Capsid/metabolism , DNA Viruses/genetics , DNA Viruses/physiology , Electron Microscope Tomography , Genome, Viral , Giant Viruses/genetics , Giant Viruses/physiology , Host-Pathogen Interactions , Imaging, Three-Dimensional , Microscopy, Electron , Microscopy, Electron, Transmission , Mimiviridae/genetics , Virion/genetics , Virion/ultrastructure , Virus Replication , Viruses, Unclassified/ultrastructure
7.
J Virol ; 93(14)2019 07 15.
Article in English | MEDLINE | ID: mdl-31019058

ABSTRACT

Viruses depend on cells to replicate and can cause considerable damage to their hosts. However, hosts have developed a plethora of antiviral mechanisms to counterattack or prevent viral replication and to maintain homeostasis. Advantageous features are constantly being selected, affecting host-virus interactions and constituting a harsh race for supremacy in nature. Here, we describe a new antiviral mechanism unveiled by the interaction between a giant virus and its amoebal host. Faustovirus mariensis infects Vermamoeba vermiformis, a free-living amoeba, and induces cell lysis to disseminate into the environment. Once infected, the cells release a soluble factor that triggers the encystment of neighbor cells, preventing their infection. Remarkably, infected cells stimulated by the factor encyst and trap the viruses and viral factories inside cyst walls, which are no longer viable and cannot excyst. This unprecedented mechanism illustrates that a plethora of antiviral strategies remains to be discovered in nature.IMPORTANCE Understanding how viruses of microbes interact with its hosts is not only important from a basic scientific point of view but also for a better comprehension of the evolution of life. Studies involving large and giant viruses have revealed original and outstanding mechanisms concerning virus-host relationships. Here, we report a mechanism developed by Vermamoeba vermiformis, a free-living amoeba, to reduce Faustovirus mariensis dissemination. Once infected, V. vermiformis cells release a factor that induces the encystment of neighbor cells, preventing infection of further cells and/or trapping the viruses and viral factories inside the cyst walls. This phenomenon reinforces the need for more studies regarding large/giant viruses and their hosts.


Subject(s)
Amoebozoa/virology , Giant Viruses/physiology , Virus Replication/physiology , Viruses, Unclassified/physiology
8.
Virol J ; 17(1): 13, 2020 01 31.
Article in English | MEDLINE | ID: mdl-32005257

ABSTRACT

BACKGROUND: Viruses are the most numerous entities on Earth and have also been central to many episodes in the history of humankind. As the study of viruses progresses further and further, there are several limitations in transferring this knowledge to undergraduate and high school students. This deficiency is due to the difficulty in designing hands-on lessons that allow students to better absorb content, given limited financial resources and facilities, as well as the difficulty of exploiting viral particles, due to their small dimensions. The development of tools for teaching virology is important to encourage educators to expand on the covered topics and connect them to recent findings. Discoveries, such as giant DNA viruses, have provided an opportunity to explore aspects of viral particles in ways never seen before. Coupling these novel findings with techniques already explored by classical virology, including visualization of cytopathic effects on permissive cells, may represent a new way for teaching virology. This work aimed to develop a slide microscope kit that explores giant virus particles and some aspects of animal virus interaction with cell lines, with the goal of providing an innovative approach to virology teaching. METHODS: Slides were produced by staining, with crystal violet, purified giant viruses and BSC-40 and Vero cells infected with viruses of the genera Orthopoxvirus, Flavivirus, and Alphavirus. Slides with amoebae infected with different species of giant viruses and stained with hemacolor reagents were also produced. RESULTS: Staining of the giant viruses allowed better visualization of the viral particles, and this technique highlights the diversity in morphology and sizes among them. Hemacolor staining enabled visualization of viral factories in amoebae, and the staining of infected BSC-40 and Vero cell monolayers with crystal violet highlights plaque-forming units. CONCLUSIONS: This kit was used in practical virology classes for the Biological Sciences course (UFMG, Brazil), and it will soon be made available at a low-cost for elementary school teachers in institutions that have microscopes. We hope this tool will foster an inspiring learning environment.


Subject(s)
Teaching Materials , Teaching , Virology/education , Viruses , Animals , Cell Line , Chlorocebus aethiops , Giant Viruses/physiology , Humans , Microscopy/instrumentation , Students , Vero Cells
9.
Virol J ; 16(1): 126, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31684962

ABSTRACT

Since the discovery of mimivirus, numerous giant viruses associated with free-living amoebae have been described. The genome of giant viruses can be more than 2.5 megabases, and virus particles can exceed the size of many bacteria. The unexpected characteristics of these viruses have made them intriguing research targets and, as a result, studies focusing on their interactions with their amoeba host have gained increased attention. Studies have shown that giant viruses can establish host-pathogen interactions, which have not been previously demonstrated, including the unprecedented interaction with a new group of small viruses, called virophages, that parasitize their viral factories. In this brief review, we present recent advances in virophage-giant virus-host interactions and highlight selected studies involving interactions between giant viruses and amoebae. These unprecedented interactions involve the giant viruses mimivirus, marseillevirus, tupanviruses and faustovirus, all of which modulate the amoeba environment, affecting both their replication and their spread to new hosts.


Subject(s)
Amoeba/virology , Giant Viruses/physiology , Host-Pathogen Interactions , Amoeba/physiology , Extracellular Vesicles/metabolism , Extracellular Vesicles/virology , Genome, Viral , Host Specificity , Mimiviridae/physiology , Models, Biological , Virophages/physiology , Virus Replication
10.
Int J Mol Sci ; 20(8)2019 Apr 16.
Article in English | MEDLINE | ID: mdl-30995716

ABSTRACT

In the last three decades, many giant DNA viruses have been discovered. Giant viruses present a unique and essential research frontier for studies of self-assembly and regulation of supramolecular assemblies. The question on how these giant DNA viruses assemble thousands of proteins so accurately to form their protein shells, the capsids, remains largely unanswered. Revealing the mechanisms of giant virus assembly will help to discover the mysteries of many self-assembly biology problems. Paramecium bursaria Chlorella virus-1 (PBCV-1) is one of the most intensively studied giant viruses. Here, we implemented a multi-scale approach to investigate the interactions among PBCV-1 capsid building units called capsomers. Three binding modes with different strengths are found between capsomers around the relatively flat area of the virion surface at the icosahedral 2-fold axis. Furthermore, a capsomer structure manipulation package is developed to simulate the capsid assembly process. Using these tools, binding forces among capsomers were investigated and binding funnels were observed that were consistent with the final assembled capsid. In addition, total binding free energies of each binding mode were calculated. The results helped to explain previous experimental observations. Results and tools generated in this work established an initial computational approach to answer current unresolved questions regarding giant virus assembly mechanisms. Results will pave the way for studying more complicated process in other biomolecular structures.


Subject(s)
Capsid/physiology , Phycodnaviridae/physiology , Virus Assembly , Capsid/chemistry , Capsid Proteins/chemistry , Giant Viruses/chemistry , Giant Viruses/physiology , Models, Molecular , Phycodnaviridae/chemistry , Static Electricity , Thermodynamics
11.
Arch Microbiol ; 200(3): 413-422, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29184974

ABSTRACT

Lytic viral infection and programmed cell death (PCD) are thought to represent two distinct death mechanisms in phytoplankton, unicellular photoautotrophs that drift with ocean currents. PCD (apoptosis) is mainly brought about by the activation of caspases, a protease family with unique substrate selectivity. Here, we demonstrated that virus infection induced apoptosis of marine coccolithophorid Emiliania huxleyi BOF92 involving activation of metacaspase. E. huxleyi cells exhibited cell death process akin to that of apoptosis when exposed to virus infection. We observed typical hallmarks of apoptosis including cell shrinkage, associated nuclear morphological changes and DNA fragmentation. Immunoblotting revealed that antibody against human active-caspase-3 shared epitopes with a protein of ≈ 23 kDa; whose pattern of expression correlated with the onset of cell death. Moreover, analysis on two-dimensional gel electrophoresis revealed that two spots of active caspase-3 co-migrated with the different isoelectric points. Phosphatase treatment of cytosolic extracts containing active caspases-3 showed a mobility shift, suggesting that phosphorylated form of this enzyme might be present in the extracts. Computational prediction of phosphorylation sites based on the amino acid sequence of E. huxleyi metacaspase showed multiple phosphorylated sites for serine, threonine and tyrosine residues. This is the first report showing that phosphorylation modification of metacaspase in E. huxleyi might be required for certain biochemical and morphological changes during virus induced apoptosis.


Subject(s)
Apoptosis , Caspases/metabolism , Giant Viruses/physiology , Haptophyta/enzymology , Phytoplankton/enzymology , Amino Acid Sequence , Caspases/genetics , Conserved Sequence , DNA Fragmentation , Gene Expression , Haptophyta/genetics , Haptophyta/ultrastructure , Haptophyta/virology , Phosphorylation , Protein Processing, Post-Translational
12.
J Virol ; 90(11): 5246-55, 2016 06 01.
Article in English | MEDLINE | ID: mdl-26984730

ABSTRACT

UNLABELLED: Triggering the amoebal phagocytosis process is a sine qua non condition for most giant viruses to initiate their replication cycle and consequently to promote their progeny formation. It is well known that the amoebal phagocytosis process requires the recognition of particles of >500 nm, and most amoebal giant viruses meet this requirement, such as mimivirus, pandoravirus, pithovirus, and mollivirus. However, in the context of the discovery of amoebal giant viruses in the last decade, Marseillevirus marseillevirus (MsV) has drawn our attention, because despite its ability to successfully replicate in Acanthamoeba, remarkably it does not fulfill the >500-nm condition, since it presents an ∼250-nm icosahedrally shaped capsid. We deeply investigated the MsV cycle by using a set of methods, including virological, molecular, and microscopic (immunofluorescence, scanning electron microscopy, and transmission electron microscopy) assays. Our results revealed that MsV is able to form giant vesicles containing dozens to thousands of viral particles wrapped by membranes derived from amoebal endoplasmic reticulum. Remarkably, our results strongly suggested that these giant vesicles are able to stimulate amoebal phagocytosis and to trigger the MsV replication cycle by an acidification-independent process. Also, we observed that MsV entry may occur by the phagocytosis of grouped particles (without surrounding membranes) and by an endosome-stimulated pathway triggered by single particles. Taken together, not only do our data deeply describe the main features of MsV replication cycle, but this is the first time, to our knowledge, that the formation of giant infective vesicles related to a DNA virus has been described. IMPORTANCE: Triggering the amoebal phagocytosis process is a sine qua non condition required by most giant viruses to initiate their replication cycle. This process requires the recognition of particles of >500 nm, and many giant viruses meet this requirement. However, MsV is unusual, as despite having particles of ∼250 nm it is able to replicate in Acanthamoeba Our results revealed that MsV is able to form giant vesicles, containing dozens to thousands of viral particles, wrapped in membranes derived from amoebal endoplasmic reticulum. Remarkably, our results strongly suggest that these giant vesicles are able to stimulate phagocytosis using an acidification-independent process. Our work not only describes the main features of the MsV replication cycle but also describes, for the first time to our knowledge, the formation of huge infective vesicles in a large DNA viruses.


Subject(s)
Acanthamoeba/virology , Cytoplasmic Vesicles/virology , Giant Viruses/physiology , Virus Internalization , Animals , Capsid/chemistry , Capsid/metabolism , Capsid Proteins/genetics , Cytoplasmic Vesicles/metabolism , Endoplasmic Reticulum/ultrastructure , Endoplasmic Reticulum/virology , Genome, Viral , Giant Viruses/ultrastructure , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Phagocytosis , Phylogeny , Virion/genetics , Virion/physiology , Virion/ultrastructure , Virus Replication
13.
Nat Commun ; 15(1): 3307, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658525

ABSTRACT

Giant viruses (Nucleocytoviricota) are significant lethality agents of various eukaryotic hosts. Although metagenomics indicates their ubiquitous distribution, available giant virus isolates are restricted to a very small number of protist and algal hosts. Here we report on the first viral isolate that replicates in the amoeboflagellate Naegleria. This genus comprises the notorious human pathogen Naegleria fowleri, the causative agent of the rare but fatal primary amoebic meningoencephalitis. We have elucidated the structure and infection cycle of this giant virus, Catovirus naegleriensis (a.k.a. Naegleriavirus, NiV), and show its unique adaptations to its Naegleria host using fluorescence in situ hybridization, electron microscopy, genomics, and proteomics. Naegleriavirus is only the fourth isolate of the highly diverse subfamily Klosneuvirinae, and like its relatives the NiV genome contains a large number of translation genes, but lacks transfer RNAs (tRNAs). NiV has acquired genes from its Naegleria host, which code for heat shock proteins and apoptosis inhibiting factors, presumably for host interactions. Notably, NiV infection was lethal to all Naegleria species tested, including the human pathogen N. fowleri. This study expands our experimental framework for investigating giant viruses and may help to better understand the basic biology of the human pathogen N. fowleri.


Subject(s)
Genome, Viral , Giant Viruses , Naegleria , Genome, Viral/genetics , Giant Viruses/genetics , Giant Viruses/classification , Giant Viruses/ultrastructure , Giant Viruses/isolation & purification , Giant Viruses/physiology , Naegleria/genetics , Naegleria/virology , Naegleria fowleri/genetics , Naegleria fowleri/isolation & purification , Phylogeny , Humans
15.
Curr Opin Virol ; 47: 79-85, 2021 04.
Article in English | MEDLINE | ID: mdl-33647556

ABSTRACT

The virosphere is fascinatingly vast and diverse, but as mandatory intracellular parasites, viral particles must reach the intracellular space to guarantee their species' permanence on the planet. While most known viruses that infect animals explore the endocytic pathway to enter the host cell, a diverse group of ancient viruses that make up the phylum Nucleocytoviricota appear to have evolved to explore new access' routes to the cell's cytoplasm. Giant viruses of amoeba take advantage of the phagocytosis process that these organisms exploit a lot, while phycodnavirus must actively break through a algal cellulose cell wall. The mechanisms of entry into the cell and the viruses themselves are diverse, varying in the steps of adhesion, entry, and uncoating. These are clues left by evolution about how these organisms shaped and were shaped by convoluting with eukaryotes.


Subject(s)
Giant Viruses/physiology , Virus Internalization , Amoeba/virology , Animals , Biological Coevolution , Chlorella/virology , Giant Viruses/classification , Virus Attachment , Virus Uncoating
16.
Microbiol Spectr ; 9(1): e0036821, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34431709

ABSTRACT

Most virus-infected cells show morphological and behavioral changes, which are called cytopathic effects. Acanthamoeba castellanii, an abundant, free-living protozoan, serves as a laboratory host for some viruses of the phylum Nucleocytoviricota-the giant viruses. Many of these viruses cause cell rounding in the later stages of infection in the host cells. Here, we show the changes that lead to cell rounding in the host cells through time-lapse microscopy and image analysis. Time-lapse movies of A. castellanii cells infected with Mimivirus shirakomae, kyotovirus, medusavirus, or Pandoravirus japonicus were generated using a phase-contrast microscope. We updated our phase-contrast-based kinetic analysis algorithm for amoebae (PKA3) and used it to analyze these time-lapse movies. Image analysis revealed that the process leading to cell rounding varies among the giant viruses; for example, M. shirakomae infection did not cause changes for some time after the infection, kyotovirus infection caused an early decrease in the number of cells with typical morphologies, and medusavirus and P. japonicus infection frequently led to the formation of intercellular bridges and rotational behavior of host cells. These results suggest that in the case of giant viruses, the putative reactions of host cells against infection and the putative strategies of virus spread are diverse. IMPORTANCE Quantitative analysis of the infection process is important for a better understanding of viral infection strategies and virus-host interactions. Here, an image analysis of the phase-contrast time-lapse movies displayed quantitative differences in the process of cytopathic effects due to the four giant viruses in Acanthamoeba castellanii, which were previously unclear. It was revealed that medusavirus and Pandoravirus japonicus infection led to the formation of a significant number of elongated particles related to intercellular bridges, emphasizing the importance of research on the interaction of viruses with host cell nuclear function. Mimivirus shirakomae infection did not cause any changes in the host cells initially, so it is thought that the infected cells can actively move and spread over a wider area, emphasizing the importance of observation in a wider area and analysis of infection efficiency. These results suggest that a kinetic analysis using the phase-contrast-based kinetic analysis algorithm for amoebae (PKA3) reveals the infection strategies of each giant virus.


Subject(s)
Acanthamoeba castellanii/virology , Giant Viruses/physiology , Host Microbial Interactions/physiology , Acanthamoeba castellanii/genetics , DNA Viruses , Genome, Viral , Giant Viruses/classification , Giant Viruses/genetics , Kinetics , Mimiviridae/genetics , Particle Size
17.
Pathog Dis ; 79(8)2021 10 23.
Article in English | MEDLINE | ID: mdl-34601577

ABSTRACT

The fascinating discovery of the first giant virus, Acanthamoeba polyphaga mimivirus (APMV), belonging to the family Mimiviridae in 2008, and its associated virophage, Sputnik, have left the world of microbiology awestruck. To date, about 18 virophages have been isolated from different environmental sources. With their unique feature of resisting host cell infection and lysis by giant viruses, analogous to bacteriophage, they have been assigned under the family Lavidaviridae. Genome of T-27, icosahedral-shaped, non-enveloped virophages, consist of dsDNA encoding four proteins, namely, major capsid protein, minor capsid protein, ATPase and cysteine protease, which are essential in the formation and assembly of new virophage particles during replication. A few virophage genomes have been observed to contain additional sequences like PolB, ZnR and S3H. Another interesting characteristic of virophage is that Mimivirus lineage A is immune to infection by the Zamilon virophage through a phenomenon termed MIMIVIRE, resembling the CRISPR-Cas mechanism in bacteria. Based on the fact that giant viruses have been found in clinical samples of hospital-acquired pneumonia and rheumatoid arthritis patients, virophages have opened a novel era in the search for cures of various diseases. This article aims to study the prospective role of virophages in the future of human therapeutics.


Subject(s)
Antibiosis , Disease Susceptibility , Host-Pathogen Interactions , Virophages/physiology , Amoeba/virology , Biological Evolution , Genome, Viral , Genomics/methods , Giant Viruses/physiology , Humans , Microbial Interactions , Phage Therapy/methods , Virophages/classification , Virophages/ultrastructure
18.
Curr Opin Virol ; 49: 58-67, 2021 08.
Article in English | MEDLINE | ID: mdl-34051592

ABSTRACT

Although giant viruses have existed for millennia and possibly exerted great evolutionary influence in their environment. Their presence has only been noticed by virologists recently with the discovery of Acanthamoeba polyphaga mimivirus in 2003. Its virion with a diameter of 500 nm and its genome larger than 1 Mpb shattered preconceived standards of what a virus is and triggered world-wide prospection studies. Thanks to these investigations many giant virus families were discovered, each with its own morphological peculiarities and genomes ranging from 0.4 to 2.5 Mpb that possibly encode more than 400 viral proteins. This review aims to present the morphological diversity, the different aspects observed in host-virus interactions during replication, as well as the techniques utilized during their investigation.


Subject(s)
Amoebida/virology , Giant Viruses/physiology , Giant Viruses/ultrastructure , Host Microbial Interactions , Acanthamoeba castellanii/virology , Genome, Viral , Giant Viruses/classification , Giant Viruses/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Viral Replication Compartments/physiology , Virion/physiology , Virion/ultrastructure , Virus Replication
19.
Curr Biol ; 30(19): R1108-R1110, 2020 10 05.
Article in English | MEDLINE | ID: mdl-33022247

ABSTRACT

Chantal Abergel and Jean-Michel Claverie introduce giant viruses.


Subject(s)
Biological Evolution , Ecosystem , Genome, Viral , Giant Viruses/classification , Giant Viruses/physiology , Host-Pathogen Interactions , Humans
20.
PLoS One ; 15(1): e0226758, 2020.
Article in English | MEDLINE | ID: mdl-31899921

ABSTRACT

The pelagophyte Aureococcus anophagefferens has caused recurrent brown tide blooms along the northeast coast of the United States since the mid-1980's, and more recently spread to other regions of the globe. These blooms, due to the high cell densities, are associated with severe light attenuation that destroys the sea grass beds which provide the basis for many fisheries. Data collected by transmission electron microscopy, PCR, and metatranscriptomic studies of the blooms, support the hypothesis that large dsDNA viruses play a role in bloom dynamics. While a large (~140 nm) icosahedral virus, with a 371 kbp genome, was first isolated more than a decade ago, the constraints imposed by environmental parameters on bloom infection dynamics by Aureococcus anophagefferens Virus, (AaV) remain unknown. To investigate the role light plays in infection by this virus, we acclimated A. anophagefferens to light intensities of 30 (low), 60 (medium) or 90 µmol photons m-2 s-1 (high) and infected cultures at these irradiance levels. Moreover, we completed light shift experiments where acclimated cultures were exposed to even lower light intensities (0, 5, and 15 µmol photons m-2 s-1) consistent with irradiance found during the peak of the bloom when cell concentrations are highest. The abundance of viruses produced per lytic event (burst size) was lower in the low irradiance acclimated cultures compared to the medium and high acclimated cultures. Transferring infected cultures to more-limiting light availabilities further decreased burst size and increased the length of time it took for cultures to lyse, regardless of acclimation irradiance level. A hypothetical mechanism for the reduced efficiency of the infection cycle in low light due to ribosome biogenesis was predicted from pre-existing transcriptomes. Overall, these studies provide a framework for understanding light effects on infection dynamics over the course of the summer months when A. anophagefferens blooms occur.


Subject(s)
DNA Virus Infections/virology , Giant Viruses/physiology , Host-Pathogen Interactions , Light , Microalgae/growth & development , Microalgae/virology , Virus Replication/radiation effects , Microalgae/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL