Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.782
Filter
Add more filters

Publication year range
1.
Cell ; 184(18): 4651-4668.e25, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34450028

ABSTRACT

GRN mutations cause frontotemporal dementia (GRN-FTD) due to deficiency in progranulin (PGRN), a lysosomal and secreted protein with unclear function. Here, we found that Grn-/- mice exhibit a global deficiency in bis(monoacylglycero)phosphate (BMP), an endolysosomal phospholipid we identified as a pH-dependent PGRN interactor as well as a redox-sensitive enhancer of lysosomal proteolysis and lipolysis. Grn-/- brains also showed an age-dependent, secondary storage of glucocerebrosidase substrate glucosylsphingosine. We investigated a protein replacement strategy by engineering protein transport vehicle (PTV):PGRN-a recombinant protein linking PGRN to a modified Fc domain that binds human transferrin receptor for enhanced CNS biodistribution. PTV:PGRN rescued various Grn-/- phenotypes in primary murine macrophages and human iPSC-derived microglia, including oxidative stress, lysosomal dysfunction, and endomembrane damage. Peripherally delivered PTV:PGRN corrected levels of BMP, glucosylsphingosine, and disease pathology in Grn-/- CNS, including microgliosis, lipofuscinosis, and neuronal damage. PTV:PGRN thus represents a potential biotherapeutic for GRN-FTD.


Subject(s)
Biological Products/therapeutic use , Brain/metabolism , Lysosomal Storage Diseases/therapy , Progranulins/therapeutic use , Animals , Bone Morphogenetic Proteins/metabolism , Endosomes/metabolism , Female , Frontotemporal Dementia/blood , Frontotemporal Dementia/cerebrospinal fluid , Gliosis/complications , Gliosis/pathology , Humans , Induced Pluripotent Stem Cells/metabolism , Inflammation/pathology , Lipid Metabolism , Lipofuscin/metabolism , Lysosomes/metabolism , Macrophages/metabolism , Male , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microglia/metabolism , Nerve Degeneration/pathology , Phenotype , Progranulins/deficiency , Progranulins/metabolism , Receptors, Immunologic/metabolism , Receptors, Transferrin/metabolism , Tissue Distribution
2.
Immunity ; 52(1): 167-182.e7, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31883839

ABSTRACT

Multiple sclerosis (MS) is a demyelinating, autoimmune disease of the central nervous system. While work has focused on myelin and axon loss in MS, less is known about mechanisms underlying synaptic changes. Using postmortem human MS tissue, a preclinical nonhuman primate model of MS, and two rodent models of demyelinating disease, we investigated synapse changes in the visual system. Similar to other neurodegenerative diseases, microglial synaptic engulfment and profound synapse loss were observed. In mice, synapse loss occurred independently of local demyelination and neuronal degeneration but coincided with gliosis and increased complement component C3, but not C1q, at synapses. Viral overexpression of the complement inhibitor Crry at C3-bound synapses decreased microglial engulfment of synapses and protected visual function. These results indicate that microglia eliminate synapses through the alternative complement cascade in demyelinating disease and identify a strategy to prevent synapse loss that may be broadly applicable to other neurodegenerative diseases. VIDEO ABSTRACT.


Subject(s)
Complement C3/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Microglia/pathology , Multiple Sclerosis/pathology , Synapses/pathology , Thalamus/pathology , Aged , Aged, 80 and over , Animals , Callithrix , Cell Line, Tumor , Complement C3/antagonists & inhibitors , Disease Models, Animal , Female , Gliosis/pathology , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Receptors, Complement 3b/metabolism
3.
Immunity ; 50(4): 955-974, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30995509

ABSTRACT

Neurodegenerative diseases of the central nervous system progressively rob patients of their memory, motor function, and ability to perform daily tasks. Advances in genetics and animal models are beginning to unearth an unexpected role of the immune system in disease onset and pathogenesis; however, the role of cytokines, growth factors, and other immune signaling pathways in disease pathogenesis is still being examined. Here we review recent genetic risk and genome-wide association studies and emerging mechanisms for three key immune pathways implicated in disease, the growth factor TGF-ß, the complement cascade, and the extracellular receptor TREM2. These immune signaling pathways are important under both healthy and neurodegenerative conditions, and recent work has highlighted new functional aspects of their signaling. Finally, we assess future directions for immune-related research in neurodegeneration and potential avenues for immune-related therapies.


Subject(s)
Neurodegenerative Diseases/immunology , Signal Transduction/immunology , Aging/immunology , Animals , Complement Activation , Disease Progression , Genetic Predisposition to Disease , Genome-Wide Association Study , Gliosis/immunology , Gliosis/pathology , Humans , Immunity, Innate , Inflammation/immunology , Membrane Glycoproteins/immunology , Mice , Mice, Knockout , Mice, Transgenic , Microglia/immunology , Models, Immunological , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/therapy , Protein Aggregation, Pathological/immunology , Receptors, Immunologic/immunology , Transforming Growth Factor beta/immunology
4.
Development ; 150(8)2023 04 15.
Article in English | MEDLINE | ID: mdl-36971369

ABSTRACT

Failure of central nervous system projection neurons to spontaneously regenerate long-distance axons underlies irreversibility of white matter pathologies. A barrier to axonal regenerative research is that the axons regenerating in response to experimental treatments stall growth before reaching post-synaptic targets. Here, we test the hypothesis that the interaction of regenerating axons with live oligodendrocytes, which were absent during developmental axon growth, contributes to stalling axonal growth. To test this hypothesis, first, we used single cell RNA-seq (scRNA-seq) and immunohistology to investigate whether post-injury born oligodendrocytes incorporate into the glial scar after optic nerve injury. Then, we administered demyelination-inducing cuprizone and stimulated axon regeneration by Pten knockdown (KD) after optic nerve crush. We found that post-injury born oligodendrocyte lineage cells incorporate into the glial scar, where they are susceptible to the demyelination diet, which reduced their presence in the glial scar. We further found that the demyelination diet enhanced Pten KD-stimulated axon regeneration and that localized cuprizone injection promoted axon regeneration. We also present a resource for comparing the gene expression of scRNA-seq-profiled normal and injured optic nerve oligodendrocyte lineage cells.


Subject(s)
Axons , Demyelinating Diseases , Humans , Axons/physiology , Gliosis/metabolism , Gliosis/pathology , Cuprizone , Nerve Regeneration/physiology , Retinal Ganglion Cells/metabolism , Oligodendroglia , Demyelinating Diseases/chemically induced , Demyelinating Diseases/metabolism
5.
Nature ; 582(7810): 89-94, 2020 06.
Article in English | MEDLINE | ID: mdl-32483373

ABSTRACT

A hexanucleotide-repeat expansion in C9ORF72 is the most common genetic variant that contributes to amyotrophic lateral sclerosis and frontotemporal dementia1,2. The C9ORF72 mutation acts through gain- and loss-of-function mechanisms to induce pathways that are implicated in neural degeneration3-9. The expansion is transcribed into a long repetitive RNA, which negatively sequesters RNA-binding proteins5 before its non-canonical translation into neural-toxic dipeptide proteins3,4. The failure of RNA polymerase to read through the mutation also reduces the abundance of the endogenous C9ORF72 gene product, which functions in endolysosomal pathways and suppresses systemic and neural inflammation6-9. Notably, the effects of the repeat expansion act with incomplete penetrance in families with a high prevalence of amyotrophic lateral sclerosis or frontotemporal dementia, indicating that either genetic or environmental factors modify the risk of disease for each individual. Identifying disease modifiers is of considerable translational interest, as it could suggest strategies to diminish the risk of developing amyotrophic lateral sclerosis or frontotemporal dementia, or to slow progression. Here we report that an environment with reduced abundance of immune-stimulating bacteria10,11 protects C9orf72-mutant mice from premature mortality and significantly ameliorates their underlying systemic inflammation and autoimmunity. Consistent with C9orf72 functioning to prevent microbiota from inducing a pathological inflammatory response, we found that reducing the microbial burden in mutant mice with broad spectrum antibiotics-as well as transplanting gut microflora from a protective environment-attenuated inflammatory phenotypes, even after their onset. Our studies provide further evidence that the microbial composition of our gut has an important role in brain health and can interact in surprising ways with well-known genetic risk factors for disorders of the nervous system.


Subject(s)
C9orf72 Protein/genetics , Gastrointestinal Microbiome/physiology , Gliosis/microbiology , Gliosis/pathology , Inflammation/genetics , Inflammation/microbiology , Spinal Cord/pathology , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Anti-Bacterial Agents/pharmacology , Autoimmunity/drug effects , Autoimmunity/genetics , Autoimmunity/immunology , Cell Movement/drug effects , Cytokines/immunology , Fecal Microbiota Transplantation , Female , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/immunology , Gliosis/genetics , Gliosis/prevention & control , Inflammation/pathology , Inflammation/prevention & control , Loss of Function Mutation/genetics , Male , Mice , Microglia/immunology , Microglia/microbiology , Microglia/pathology , Spinal Cord/immunology , Spinal Cord/microbiology , Survival Rate
6.
J Neurosci ; 44(6)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38050082

ABSTRACT

Mixed pathologies are common in neurodegenerative disease; however, antemortem imaging rarely captures copathologic effects on brain atrophy due to a lack of validated biomarkers for non-Alzheimer's pathologies. We leveraged a dataset comprising antemortem MRI and postmortem histopathology to assess polypathologic associations with atrophy in a clinically heterogeneous sample of 125 human dementia patients (41 female, 84 male) with T1-weighted MRI ≤ 5 years before death and postmortem ordinal ratings of amyloid-[Formula: see text], tau, TDP-43, and [Formula: see text]-synuclein. Regional volumes were related to pathology using linear mixed-effects models; approximately 25% of data were held out for testing. We contrasted a polypathologic model comprising independent factors for each proteinopathy with two alternatives: a model that attributed atrophy entirely to the protein(s) associated with the patient's primary diagnosis and a protein-agnostic model based on the sum of ordinal scores for all pathology types. Model fits were evaluated using log-likelihood and correlations between observed and fitted volume scores. Additionally, we performed exploratory analyses relating atrophy to gliosis, neuronal loss, and angiopathy. The polypathologic model provided superior fits in the training and testing datasets. Tau, TDP-43, and [Formula: see text]-synuclein burden were inversely associated with regional volumes, but amyloid-[Formula: see text] was not. Gliosis and neuronal loss explained residual variance in and mediated the effects of tau, TDP-43, and [Formula: see text]-synuclein on atrophy. Regional brain atrophy reflects not only the primary molecular pathology but also co-occurring proteinopathies; inflammatory immune responses may independently contribute to degeneration. Our findings underscore the importance of antemortem biomarkers for detecting mixed pathology.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Humans , Male , Female , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/pathology , Gray Matter/pathology , tau Proteins/metabolism , Gliosis/pathology , Atrophy/pathology , Amyloid , Synucleins , DNA-Binding Proteins/metabolism , Biomarkers , Alzheimer Disease/pathology
7.
Semin Cell Dev Biol ; 139: 55-72, 2023 04.
Article in English | MEDLINE | ID: mdl-35292192

ABSTRACT

The presubiculum (PRS) is an integral component of the perforant pathway that has recently been recognised as a relatively unscathed region in clinical Alzheimer's disease (AD), despite neighbouring components of the perforant pathway, CA1 and the entorhinal cortex, responsible for formation of episodic memory and storage, showing severe hallmarks of AD including, amyloid-beta (Aß) plaques, tau tangles and marked gliosis. However, the question remains whether this anatomical resilience translates into functional resilience of the PRS neurons. Using neuroanatomy combined with whole-cell electrophysiological recordings, we investigated whether the unique spatial profile of the PRS was replicable in two knock-in mouse models of AD, APPNL-F/NL-F, and APPNL-F/MAPTHTAU and whether the intrinsic properties and morphological integrity of the PRS principal neurons was maintained compared to the lateral entorhinal cortex (LEC) and hippocampal CA1 principal cells. Our data revealed an age-dependent Aß and tau pathology with neuroinflammation in the LEC and CA1, but a presence of fleece-like Aß deposits with an absence of tau tangles and cellular markers of gliosis in the PRS of the mouse models at 11-16 and 18-22 months. These observations were consistent in human post-mortem AD tissue. This spatial profile also correlated with functional resilience of strong burst firing PRS pyramidal cells that showed unaltered sub- and suprathreshold intrinsic biophysical membrane properties and gross morphology in the AD models that were similar to the properties of pyramidal cells recorded in age-matched wild-type mice (11-14 months). This was in contrast to the LEC and CA1 principal cells which showed altered subthreshold intrinsic properties such as a higher input resistance, longer membrane time constants and hyperexcitability in response to suprathreshold stimulation that correlated with atrophied dendrites in both AD models. In conclusion, our data show for the first time that the unique anatomical profile of the PRS constitutes a diffuse AD pathology that is correlated with the preservation of principal pyramidal cell intrinsic biophysical and morphological properties despite alteration of LEC and CA1 pyramidal cells in two distinct genetic models of AD. Understanding the underlying mechanisms of this resilience could be beneficial in preventing the spread of disease pathology before cognitive deficits are precipitated in AD.


Subject(s)
Alzheimer Disease , Mice , Humans , Animals , Infant , Alzheimer Disease/metabolism , Gliosis/metabolism , Gliosis/pathology , Mice, Transgenic , Parahippocampal Gyrus/metabolism , Parahippocampal Gyrus/pathology , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Disease Models, Animal , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism
8.
Ann Neurol ; 95(3): 558-575, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38069470

ABSTRACT

OBJECTIVE: Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset progressive genetic neurodegenerative disorder that occurs in FMR1 premutation carriers. The temporal, spatial, and cell-type specific patterns of neurodegeneration in the FXTAS brain remain incompletely characterized. Intranuclear inclusion bodies are the neuropathological hallmark of FXTAS, which are largest and occur most frequently in astrocytes, glial cells that maintain brain homeostasis. Here, we characterized neuropathological alterations in astrocytes in multiple regions of the FXTAS brain. METHODS: Striatal and cerebellar sections from FXTAS cases (n = 12) and controls (n = 12) were stained for the astrocyte markers glial fibrillary acidic protein (GFAP) and aldehyde dehydrogenase 1L1 (ALDH1L1) using immunohistochemistry. Reactive astrogliosis severity, the prevalence of GFAP+ fragments, and astrocyte density were scored. Double label immunofluorescence was utilized to detect co-localization of GFAP and cleaved caspase-3. RESULTS: FXTAS cases showed widespread reactive gliosis in both grey and white matter. GFAP staining also revealed remarkably severe astrocyte pathology in FXTAS white matter - characterized by a significant and visible reduction in astrocyte density (-38.7% in striatum and - 32.2% in cerebellum) and the widespread presence of GFAP+ fragments reminiscent of apoptotic bodies. White matter specific reductions in astrocyte density were confirmed with ALDH1L1 staining. GFAP+ astrocytes and fragments in white matter were positive for cleaved caspase-3, suggesting that apoptosis-mediated degeneration is responsible for reduced astrocyte counts. INTERPRETATION: We have established that FXTAS neuropathology includes robust degeneration of astrocytes, which is specific to white matter. Because astrocytes are essential for maintaining homeostasis within the central nervous system, a loss of astrocytes likely further exacerbates neuropathological progression of other cell types in the FXTAS brain. ANN NEUROL 2024;95:558-575.


Subject(s)
Fragile X Syndrome , White Matter , Humans , Astrocytes/metabolism , Tremor/genetics , Gliosis/pathology , Caspase 3/metabolism , White Matter/pathology , Fragile X Syndrome/diagnosis , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Ataxia/genetics , Fragile X Mental Retardation Protein/genetics
9.
Nature ; 566(7745): 503-508, 2019 02.
Article in English | MEDLINE | ID: mdl-30787438

ABSTRACT

The grey matter is a central target of pathological processes in neurodegenerative disorders such as Parkinson's and Alzheimer's diseases. The grey matter is often also affected in multiple sclerosis, an autoimmune disease of the central nervous system. The mechanisms that underlie grey matter inflammation and degeneration in multiple sclerosis are not well understood. Here we show that, in Lewis rats, T cells directed against the neuronal protein ß-synuclein specifically invade the grey matter and that this is accompanied by the presentation of multifaceted clinical disease. The expression pattern of ß-synuclein induces the local activation of these T cells and, therefore, determined inflammatory priming of the tissue and targeted recruitment of immune cells. The resulting inflammation led to significant changes in the grey matter, which ranged from gliosis and neuronal destruction to brain atrophy. In humans, ß-synuclein-specific T cells were enriched in patients with chronic-progressive multiple sclerosis. These findings reveal a previously unrecognized role of ß-synuclein in provoking T-cell-mediated pathology of the central nervous system.


Subject(s)
Gray Matter/immunology , Gray Matter/pathology , Multiple Sclerosis, Chronic Progressive/immunology , Multiple Sclerosis, Chronic Progressive/pathology , T-Lymphocytes/immunology , beta-Synuclein/immunology , Animals , Brain/pathology , Cell Movement/immunology , Female , Gene Expression Regulation , Gliosis/pathology , Humans , Inflammation/immunology , Inflammation/pathology , Lymphocyte Activation , Lymphocyte Count , Male , Multiple Sclerosis, Chronic Progressive/blood , Neurodegenerative Diseases/immunology , Neurodegenerative Diseases/pathology , Neurons/pathology , Rats , Rats, Inbred Lew , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , beta-Synuclein/analysis , beta-Synuclein/genetics , beta-Synuclein/metabolism
10.
Nature ; 565(7738): 246-250, 2019 01.
Article in English | MEDLINE | ID: mdl-30602786

ABSTRACT

In addition to maintaining immune tolerance, FOXP3+ regulatory T (Treg) cells perform specialized functions in tissue homeostasis and remodelling1,2. However, the characteristics and functions of brain Treg cells are not well understood because there is a low number of Treg cells in the brain under normal conditions. Here we show that there is massive accumulation of Treg cells in the mouse brain after ischaemic stroke, and this potentiates neurological recovery during the chronic phase of ischaemic brain injury. Although brain Treg cells are similar to Treg cells in other tissues such as visceral adipose tissue and muscle3-5, they are apparently distinct and express unique genes related to the nervous system including Htr7, which encodes the serotonin receptor 5-HT7. The amplification of brain Treg cells is dependent on interleukin (IL)-2, IL-33, serotonin and T cell receptor recognition, and infiltration into the brain is driven by the chemokines CCL1 and CCL20. Brain Treg cells suppress neurotoxic astrogliosis by producing amphiregulin, a low-affinity epidermal growth factor receptor (EGFR) ligand. Stroke is a leading cause of neurological disability, and there are currently few effective recovery methods other than rehabilitation during the chronic phase. Our findings suggest that Treg cells and their products may provide therapeutic opportunities for neuronal protection against stroke and neuroinflammatory diseases.


Subject(s)
Astrocytes/pathology , Brain Ischemia/immunology , Brain Ischemia/pathology , Gliosis/pathology , Neuroprotection/immunology , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , Animals , Brain/cytology , Brain/immunology , Cell Movement , Cell Proliferation , Chemokine CCL1/immunology , Chemokine CCL20/immunology , Interleukin-2/immunology , Interleukin-33/immunology , Interleukin-6/immunology , Male , Mice , Mice, Inbred C57BL , Receptors, Antigen, T-Cell/immunology , Receptors, CCR/metabolism , Receptors, Serotonin/genetics , Receptors, Serotonin/metabolism , STAT3 Transcription Factor/metabolism , Serotonin/metabolism , Signal Transduction , T-Lymphocytes, Regulatory/metabolism
11.
J Biol Chem ; 299(12): 105461, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37977220

ABSTRACT

Müller glial cells, which are the most predominant glial subtype in the retina, play multiple important roles, including the maintenance of structural integrity, homeostasis, and physiological functions of the retina. We have previously found that the Rax homeoprotein is expressed in postnatal and mature Müller glial cells in the mouse retina. However, the function of Rax in postnatal and mature Müller glial cells remains to be elucidated. In the current study, we first investigated Rax function in retinal development using retroviral lineage analysis and found that Rax controls the specification of late-born retinal cell types, including Müller glial cells in the postnatal retina. We next generated Rax tamoxifen-induced conditional KO (Rax iCKO) mice, where Rax can be depleted in mTFP-labeled Müller glial cells upon tamoxifen treatment, by crossing Raxflox/flox mice with Rlbp1-CreERT2 mice, which we have produced. Immunohistochemical analysis showed a characteristic of reactive gliosis and enhanced gliosis of Müller glial cells in Rax iCKO retinas under normal and stress conditions, respectively. We performed RNA-seq analysis on mTFP-positive cells purified from the Rax iCKO retina and found significantly reduced expression of suppressor of cytokinesignaling-3 (Socs3). Reporter gene assays showed that Rax directly transactivates the Socs3 promoter. We observed decreased expression of Socs3 in Müller glial cells of Rax iCKO retinas by immunostaining. Taken together, the present results suggest that Rax suppresses inflammation in Müller glial cells by transactivating Socs3. This study sheds light on the transcriptional regulatory mechanisms underlying retinal Müller glial cell homeostasis.


Subject(s)
Ependymoglial Cells , Eye Proteins , Homeodomain Proteins , Homeostasis , Retina , Transcription Factors , Animals , Mice , Ependymoglial Cells/metabolism , Eye Proteins/genetics , Eye Proteins/metabolism , Gliosis/genetics , Gliosis/metabolism , Gliosis/pathology , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Homeostasis/genetics , Retina/cytology , Retina/growth & development , Retina/metabolism , Retina/pathology , RNA-Seq , Tamoxifen/pharmacology , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Activation
12.
Glia ; 72(5): 899-915, 2024 05.
Article in English | MEDLINE | ID: mdl-38288580

ABSTRACT

Alzheimer's disease (AD) represents an urgent yet unmet challenge for modern society, calling for exploration of innovative targets and therapeutic approaches. Astrocytes, main homeostatic cells in the CNS, represent promising cell-target. Our aim was to investigate if deletion of the regulatory CaNB1 subunit of calcineurin in astrocytes could mitigate AD-related memory deficits, neuropathology, and neuroinflammation. We have generated two, acute and chronic, AD mouse models with astrocytic CaNB1 ablation (ACN-KO). In the former, we evaluated the ability of ß-amyloid oligomers (AßOs) to impair memory and activate glial cells once injected in the cerebral ventricle of conditional ACN-KO mice. Next, we generated a tamoxifen-inducible astrocyte-specific CaNB1 knock-out in 3xTg-AD mice (indACNKO-AD). CaNB1 was deleted, by tamoxifen injection, in 11.7-month-old 3xTg-AD mice for 4.4 months. Spatial memory was evaluated using the Barnes maze; ß-amyloid plaques burden, neurofibrillary tangle deposition, reactive gliosis, and neuroinflammation were also assessed. The acute model showed that ICV injected AßOs in 2-month-old wild type mice impaired recognition memory and fostered a pro-inflammatory microglia phenotype, whereas in ACN-KO mice, AßOs were inactive. In indACNKO-AD mice, 4.4 months after CaNB1 depletion, we found preservation of spatial memory and cognitive flexibility, abolishment of amyloidosis, and reduction of neurofibrillary tangles, gliosis, and neuroinflammation. Our results suggest that ACN is crucial for the development of cognitive impairment, AD neuropathology, and neuroinflammation. Astrocyte-specific CaNB1 deletion is beneficial for both the abolishment of AßO-mediated detrimental effects and treatment of ongoing AD-related pathology, hence representing an intriguing target for AD therapy.


Subject(s)
Alzheimer Disease , Calcineurin , Cognitive Dysfunction , Animals , Mice , Alzheimer Disease/pathology , Amyloid beta-Peptides , Astrocytes/pathology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Disease Models, Animal , Gliosis/pathology , Mice, Inbred C57BL , Mice, Transgenic , Neuroinflammatory Diseases , Tamoxifen/pharmacology , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism
13.
Glia ; 72(3): 504-528, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37904673

ABSTRACT

Retinal degeneration, characterized by Müller cell gliosis and photoreceptor apoptosis, is considered an early event in diabetic retinopathy (DR). Our previous study proposed that GMFB may mediate diabetic retinal degeneration. This study identified GMFB as a sensitive and functional gliosis marker for DR. Compared to the wild type (WT) group, Gmfb knockout (KO) significantly improved visual function, attenuated gliosis, reduced the apoptosis of neurons, and decreased the mRNA levels of tumor necrosis factor α (Tnf-α) and interleukin-1ß (Il-1ß) in diabetic retinas. Tgf-ß3 was enriched by hub genes using RNA sequencing in primary WT and KO Müller cells. Gmfb KO significantly upregulated the transforming growth factor (TGF)-ß3 protein level via the AKT pathway. The protective effect of TGF-ß3 in the vitreous resulted in significantly improved visual function and decreased the number of apoptotic cells in the diabetic retina. The protection of Gmfb KO in primary Müller cells against high glucose (HG)-induced photoreceptor apoptosis was partially counteracted by TGF-ß3 antibody and administration of TGFBR1/2 inhibitors. Nuclear receptor subfamily 3 group C member 1 (NR3C1) binds to the promoter region of Gmfb and regulates Gmfb mRNA at the transcriptional level. NR3C1 was increased in the retinas of early diabetic rats but decreased in the retinas of late diabetic rats. N'-[(1E)-(3-Methoxyphenyl)Methylene]-3-Methyl-1H-Pyrazole-5-Carbohydrazide (DS-5) was identified as an inhibitor of GMFB, having a protective role in DR. We demonstrated that GMFB/AKT/TGF-ß3 mediated early diabetic retinal degeneration in diabetic rats. This study provides a novel therapeutic strategy for treating retinal degeneration in patients with DR.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Retinopathy , Retinal Degeneration , Humans , Rats , Animals , Retinal Degeneration/pathology , Ependymoglial Cells/metabolism , Streptozocin/toxicity , Proto-Oncogene Proteins c-akt/metabolism , Transforming Growth Factor beta3/adverse effects , Transforming Growth Factor beta3/metabolism , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Gliosis/pathology , Retina/metabolism , Diabetic Retinopathy/pathology , RNA, Messenger/metabolism
14.
Neurobiol Dis ; 198: 106554, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38844243

ABSTRACT

Huntington's disease (HD) is a neurodegenerative disorder that severely affects the basal ganglia and regions of the cerebral cortex. While astrocytosis and microgliosis both contribute to basal ganglia pathology, the contribution of gliosis and potential factors driving glial activity in the human HD cerebral cortex is less understood. Our study aims to identify nuanced indicators of gliosis in HD which is challenging to identify in the severely degenerated basal ganglia, by investigating the middle temporal gyrus (MTG), a cortical region previously documented to demonstrate milder neuronal loss. Immunohistochemistry was conducted on MTG paraffin-embedded tissue microarrays (TMAs) comprising 29 HD and 35 neurologically normal cases to compare the immunoreactivity patterns of key astrocytic proteins (glial fibrillary acidic protein, GFAP; inwardly rectifying potassium channel 4.1, Kir4.1; glutamate transporter-1, GLT-1; aquaporin-4, AQP4), key microglial proteins (ionised calcium-binding adapter molecule-1, IBA-1; human leukocyte antigen (HLA)-DR; transmembrane protein 119, TMEM119; purinergic receptor P2RY12, P2RY12), and indicators of proliferation (Ki-67; proliferative cell nuclear antigen, PCNA). Our findings demonstrate an upregulation of GFAP+ protein expression attributed to the presence of more GFAP+ expressing cells in HD, which correlated with greater cortical mutant huntingtin (mHTT) deposition. In contrast, Kir4.1, GLT-1, and AQP4 immunoreactivity levels were unchanged in HD. We also demonstrate an increased number of IBA-1+ and TMEM119+ microglia with somal enlargement. IBA-1+, TMEM119+, and P2RY12+ reactive microglia immunophenotypes were also identified in HD, evidenced by the presence of rod-shaped, hypertrophic, and dystrophic microglia. In HD cases, IBA-1+ cells contained either Ki-67 or PCNA, whereas GFAP+ astrocytes were devoid of proliferative nuclei. These findings suggest cortical microgliosis may be driven by proliferation in HD, supporting the hypothesis of microglial proliferation as a feature of HD pathophysiology. In contrast, astrocytes in HD demonstrate an altered GFAP expression profile that is associated with the degree of mHTT deposition.


Subject(s)
Astrocytes , Cell Proliferation , Huntington Disease , Microglia , Humans , Huntington Disease/metabolism , Huntington Disease/pathology , Microglia/metabolism , Microglia/pathology , Astrocytes/metabolism , Astrocytes/pathology , Male , Female , Middle Aged , Cell Proliferation/physiology , Adult , Aged , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Calcium-Binding Proteins/metabolism , Gliosis/metabolism , Gliosis/pathology , Glial Fibrillary Acidic Protein/metabolism , Membrane Proteins , Microfilament Proteins
15.
Eur J Neurosci ; 59(11): 3009-3029, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38576159

ABSTRACT

Metabolic disorders are risk factors for stroke exacerbating subsequent complications. Rapidly after brain injury, a glial scar forms, preventing excessive inflammation and limiting axonal regeneration. Despite the growing interest in wound healing following brain injury, the formation of a glial scar in the context of metabolic disorders is poorly documented. In this study, we used db/db mice to investigate the impact of metabolic perturbations on brain repair mechanisms, with a focus on glial scarring. First, we confirmed the development of obesity, poor glucose regulation, hyperglycaemia and liver steatosis in these mice. Then, we observed that 3 days after a 30-min middle cerebral artery occlusion (MCAO), db/db mice had larger infarct area compared with their control counterparts. We next investigated reactive gliosis and glial scar formation in db/+ and db/db mice. We demonstrated that astrogliosis and microgliosis were exacerbated 3 days after stroke in db/db mice. Furthermore, we also showed that the synthesis of extracellular matrix (ECM) proteins (i.e., chondroitin sulphate proteoglycan, collagen IV and tenascin C) was increased in db/db mice. Consequently, we demonstrated for the first time that metabolic disorders impair reactive gliosis post-stroke and increase ECM deposition. Given that the damage size is known to influence glial scar, this study now raises the question of the direct impact of hyperglycaemia/obesity on reactive gliosis and glia scar. It paves the way to promote the development of new therapies targeting glial scar formation to improve functional recovery after stroke in the context of metabolic disorders.


Subject(s)
Cicatrix , Gliosis , Infarction, Middle Cerebral Artery , Animals , Gliosis/metabolism , Gliosis/pathology , Mice , Cicatrix/metabolism , Cicatrix/pathology , Infarction, Middle Cerebral Artery/metabolism , Neuroglia/metabolism , Neuroglia/pathology , Male , Mice, Inbred C57BL , Metabolic Diseases/metabolism , Metabolic Diseases/etiology , Stroke/metabolism , Stroke/pathology , Obesity/metabolism , Obesity/complications , Extracellular Matrix Proteins/metabolism , Hyperglycemia/metabolism
16.
Int J Obes (Lond) ; 48(4): 594-597, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38273035

ABSTRACT

Exposure to maternal diabetes (DM) or hypertension (HTN) during pregnancy impacts offspring metabolic health in childhood and beyond. Animal models suggest that induction of hypothalamic inflammation and gliosis in the offspring's hypothalamus is a possible mechanism mediating this effect. We tested, in children, whether in utero exposures to maternal DM or HTN were associated with mediobasal hypothalamic (MBH) gliosis as assessed by brain magnetic resonance imaging (MRI). The study included a subsample of 306 children aged 9-11 years enrolled in the ABCD Study®; 49 were DM-exposed, 53 were HTN-exposed, and 204 (2:1 ratio) were age- and sex-matched children unexposed to DM and/or HTN in utero. We found a significant overall effect of group for the primary outcome of MBH/amygdala (AMY) T2 signal ratio (F(2,300):3.51, p = 0.03). Compared to unexposed children, MBH/AMY T2 signal ratios were significantly higher in the DM-exposed (ß:0.05, p = 0.02), but not the HTN-exposed children (ß:0.03, p = 0.13), findings that were limited to the MBH and independent of adiposity. We concluded that children exposed to maternal DM in utero display evidence of hypothalamic gliosis, suggesting that gestational DM may have a distinct influence on offspring's brain development and, by extension, children's long-term metabolic health.


Subject(s)
Diabetes, Gestational , Hypertension , Pregnancy , Child , Female , Animals , Humans , Gliosis/pathology , Obesity , Diabetes, Gestational/epidemiology , Adiposity , Hypertension/complications , Hypertension/epidemiology
17.
Exp Eye Res ; 239: 109781, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38184223

ABSTRACT

In addition to regulating cholesterol synthesis, statins have neuroprotective effects. Apoptosis of retinal ganglion cells (RGCs) causes a gradual loss of visual function in glaucoma. This study aimed to investigate the neuroprotective effect of statins on the RGC apoptosis induced by activated Müller glia. Primary Müller cells and RGCs were cultured from the retina of C57BL6 mice. Müller cells were activated with GSK101, a transient receptor potential vanilloid 4 (TRPV4) agonist, and tumor necrosis factor-alpha (TNF-α) released to the medium was measured using an enzyme-linked immunosorbent assay. Cells were pretreated with simvastatin or lovastatin before GSK101. RGCs were treated with conditioned media from Müller glia cultures, and apoptosis was determined using flow cytometry. TRPV4 activation through GSK101 treatment induced gliosis of Müller cells, and the conditioned media from activated Müller cells was potent to induce RGC apoptosis. Statins suppress both gliosis in Müller cells and subsequent RGC apoptosis. TNF-α release to the media was increased in GSK101-treated Müller cells, and TNF-α in the conditioned media was the critical factor causing RGC apoptosis. The increase in TRPV4-mediated TNF-α expression occurred through the nuclear factor kappa-light chain enhancer of activated B cell pathway activation, which was inhibited by statins. Herein, we showed that statins can modulate gliosis and TNF-α expression in Müller cells, protecting RGCs. These data further support the neuroprotective effect of statins, promoting them as a potential treatment for glaucoma.


Subject(s)
Antineoplastic Agents , Glaucoma , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Neuroprotective Agents , Animals , Mice , Antineoplastic Agents/pharmacology , Apoptosis , Culture Media, Conditioned/pharmacology , Ependymoglial Cells/metabolism , Glaucoma/drug therapy , Glaucoma/pathology , Gliosis/pathology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , TRPV Cation Channels/metabolism , Tumor Necrosis Factor-alpha/metabolism
18.
Toxicol Pathol ; 52(2-3): 114-122, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38828567

ABSTRACT

Gliosis, including microgliosis and astrocytosis, can be challenging to interpret in nonclinical studies. Incidences of glial foci in brains and spinal cords of control rats and nonhuman primates (NHPs) were reviewed in the historical control databases from two contract research organizations, including one specializing in neuropathology. In the brain, minimal to mild (grades 1-2) microgliosis was the most common diagnosis, especially in NHPs, although occasional moderate or marked microgliosis (grades 3 and 4) was encountered in both species. Microgliosis was more common in the cerebral cortex, cerebellum, and medulla oblongata in both species and was frequent in the white matter (brain), thalamus, and basal nuclei of NHPs. Gliosis ("not otherwise specified") of minimal severity was diagnosed in similar brain sub-sites for both species and was more common in NHPs compared with rats. Astrocytosis was most prominent in the cerebellum (molecular layer) of NHPs but was otherwise uncommon. In the spinal cord, microgliosis was most common in the lateral white matter tracts in rats and NHPs, and in the dorsal white matter tracts in NHPs. These data indicate that low-grade spontaneous glial responses occur with some frequency in control animals of two common nonclinical species.


Subject(s)
Gliosis , Spinal Cord , Animals , Gliosis/pathology , Rats , Spinal Cord/pathology , Male , Brain/pathology , Female , Central Nervous System/pathology , Macaca fascicularis
19.
J Immunol ; 208(8): 2054-2066, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35379749

ABSTRACT

Neurobehavioral disorders and brain abnormalities have been extensively reported in both Crohn's disease and ulcerative colitis patients. However, the mechanism causing neuropathological disorders in inflammatory bowel disease patients remains unknown. Studies have linked the Th17 subset of CD4+ T cells to brain diseases associated with neuroinflammation and cognitive impairment, including multiple sclerosis, ischemic brain injury, and Alzheimer's disease. To better understand how CD4+ T lymphocytes contribute to brain pathology in chronic intestinal inflammation, we investigated the development of brain inflammation in the T cell transfer model of chronic colitis. Our findings demonstrate that CD4+ T cells infiltrate the brain of colitic Rag1 -/- mice in proportional levels to colitis severity. Colitic mice developed hypothalamic astrogliosis that correlated with neurobehavioral disorders. Moreover, the brain-infiltrating CD4+ T cells expressed Th17 cell transcription factor retinoic acid-related orphan receptor γt (RORγt) and displayed a pathogenic Th17 cellular phenotype similar to colonic Th17 cells. Adoptive transfer of RORγt-deficient naive CD4+ T cells failed to cause brain inflammation and neurobehavioral disorders in Rag1 -/- recipients, with significantly less brain infiltration of CD4+ T cells. The finding is mirrored in chronic dextran sulfate sodium-induced colitis in Rorcfl/fl Cd4-Cre mice that showed lower frequency of brain-infiltrating CD4+ T cells and astrogliosis despite onset of significantly more severe colitis compared with wild-type mice. These findings suggest that pathogenic RORγt+CD4+ T cells that aggravate colitis migrate preferentially into the brain, contributing to brain inflammation and neurobehavioral disorders, thereby linking colitis severity to neuroinflammation.


Subject(s)
Colitis , Encephalitis , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , Animals , CD4-Positive T-Lymphocytes/metabolism , Carrier Proteins , Colitis/pathology , Disease Models, Animal , Gliosis/complications , Gliosis/pathology , Homeodomain Proteins/genetics , Humans , Inflammation/pathology , Mice , Mice, Inbred C57BL , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Receptors, Retinoic Acid , Th17 Cells/metabolism
20.
Brain ; 146(3): 1212-1226, 2023 03 01.
Article in English | MEDLINE | ID: mdl-35953450

ABSTRACT

There are currently no non-invasive imaging methods available for astrogliosis assessment or mapping in the central nervous system despite its essential role in the response to many disease states, such as infarcts, neurodegenerative conditions, traumatic brain injury and infection. Multidimensional MRI is an increasingly employed imaging modality that maximizes the amount of encoded chemical and microstructural information by probing relaxation (T1 and T2) and diffusion mechanisms simultaneously. Here, we harness the exquisite sensitivity of this imagining modality to derive a signature of astrogliosis and disentangle it from normative brain at the individual level using machine learning. We investigated ex vivo cerebral cortical tissue specimens derived from seven subjects who sustained blast-induced injuries, which resulted in scar-border forming astrogliosis without being accompanied by other types of neuropathological abnormality, and from seven control brain donors. By performing a combined post-mortem radiology and histopathology correlation study we found that astrogliosis induces microstructural and chemical changes that are robustly detected with multidimensional MRI, and which can be attributed to astrogliosis because no axonal damage, demyelination or tauopathy were histologically observed in any of the cases in the study. Importantly, we showed that no one-dimensional T1, T2 or diffusion MRI measurement can disentangle the microscopic alterations caused by this neuropathology. Based on these findings, we developed a within-subject anomaly detection procedure that generates MRI-based astrogliosis biomarker maps ex vivo, which were significantly and strongly correlated with co-registered histological images of increased glial fibrillary acidic protein deposition (r = 0.856, P < 0.0001; r = 0.789, P < 0.0001; r = 0.793, P < 0.0001, for diffusion-T2, diffusion-T1 and T1-T2 multidimensional data sets, respectively). Our findings elucidate the underpinning of MRI signal response from astrogliosis, and the demonstrated high spatial sensitivity and specificity in detecting reactive astrocytes at the individual level, and if reproduced in vivo, will significantly impact neuroimaging studies of injury, disease, repair and aging, in which astrogliosis has so far been an invisible process radiologically.


Subject(s)
Brain Injuries, Traumatic , Gliosis , Humans , Gliosis/pathology , Astrocytes/metabolism , Brain/pathology , Magnetic Resonance Imaging , Brain Injuries, Traumatic/complications , Glial Fibrillary Acidic Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL